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ABSTRACT. Existence and uniqueness of the solution of Caputo fractional impulsive differential

equations has been established recently by generalized monotone method. In this work, we will

demonstrate the numerical application of the generalized monotone method for Caputo fractional

impulsive differential equations which arises in population models, and blow up problems. The

numerical code developed here is applicable in a variety of other physical application problems

also. In this work, we will be discussing the numerical applications of Caputo fractional impulsive

differential equations.
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1. Introduction

Study of fractional differential has gained great importance due to its myr-

iad applications in various branches of science and engineering. For example, see

[1, 3, 7, 16, 24, 26, 28, 29] and the references there in. Among the different types

of fractional derivative involved, the most common type of fractional derivative used

are the Caputo fractional derivative and the Riemann-Lioville fractional derivative.

See [7, 16, 20, 26, 28] for details on Caputo derivative, Riemann-Liouville derivative

and other types of derivative that are discussed in literature. However, the Caputo

derivative reduces to an integer derivative when the order of the fractional derivative

tends to an integer. In fact, the integer derivative is used as a tool to define the

Caputo fractional derivative. In addition, in the study of Caputo dynamic equations

the initial and boundary conditions are the same as that of the integer dynamic equa-

tions. See [7, 8, 12, 16, 18, 20, 21, 26, 28, 36] for some of the details. However,

the fractional dynamic equations are considered as equations with memory, mainly

because the fractional derivative is global in nature, where as the integer derivative

is local in nature. Thus from modeling point of view, we can use the order of the
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fractional derivative as a parameter to enhance the model. We will illustrate this in

our work numerically.

It is known that many mathematical models of real world problems arising from

medicine, biology, economics, and financial market exhibit impulsive behavior at reg-

ular interval of time. Although, there is a vast literature on this topic, see [13, 19] for

a few references, on the analysis and applications of ordinary impulsive differential

equations. See [2, 4, 14, 25, 38] for the existence and uniqueness of the solutions

of Caputo fractional impulsive differential equations with initial or boundary condi-

tions. Majority of the existence results for Caputo fractional impulsive differential

equations has been obtained using some kind of fixed point theorem results. How-

ever, the fixed point theorem approach does not guarantee the interval of existence.

Existence of solution for the nonlinear dynamic equations by the method of lower

and upper solutions or the method of coupled lower and solutions combined with a

monotone iterative technique is both theoretical as well as computational. In ad-

dition, the interval of existence is guaranteed. These methods are known as mono-

tone method,generalized monotone method, quasilinearization method or general-

ized quasilinearization method. These method yields linear convergence or quadratic

convergence depending on whether monotone method is used or quasilinearization

method is used. See [17, 23] for integer order nonlinear ordinary and partial differ-

ential equations. See [6, 9, 10, 15, 30, 37, 34, 35] for Caputo and Riemann Liouville

fractional dynamic equations. In a recent article [40], we have obtained a closed form

solution for the linear Caputo fractional impulsive differential equation when the im-

pulses are in the forcing function in the form of the characteristic function or the unit

step function. We have achieved this by using the Laplace transform method since

the Caputo derivative is in convolution integral form. See [7, 16, 26, 28, 38, 39, 40] for

references where Laplace transform method has been used to solve linear fractional

differential equations. In addition, in [40] we have developed a generalized compar-

ison result for nonlinear Caputo fractional impulsive differential equation when the

forcing function is the sum of an increasing and decreasing functions. Thus, we have

all tools to develop generalized monotone method for the nonlinear Caputo fractional

impulsive differential equation with initial condition.

In this work, we have developed the numerical application of the generalized

monotone method for Caputo fractional impulsive differential equations. The ex-

amples discussed are blow up problems and population models. See [36] for the

theoretical approach of blow problems in Caputo fractional dynamic equations with

initial conditions without impulses. See [15] for the Caputo fractional logistic equation

without impulses. See [11, 22, 27, 32, 33, 35, 41] for some of the numerical methods

developed for Caputo fractional initial and boundary value problems. Majority of the

numerical results developed for fractional dynamic equations are analogous to the
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well known numerical results of the integer dynamic equation, which is approximat-

ing the derivative. Thus the procedure to approximate the derivative increases the

computational complexity of the fractional dynamic equation. However in [22, 32, 35]

the integral representation has been used. In out present work also we have used the

integral representation for each of the linear iterates (approximate solution of the

nonlinear problem). This provides an opportunity to compare the solutions of the

first order impulsive differential equation with the solution of the Caputo fractional

impulsive differential equation with initial conditions of order q and 0.5 < q < 1. Our

solution tends to the integer order solution, as q → 1. In fact we have also established

numerically using monotone method starting from the lower solution that the solu-

tion of the Caputo fractional impulsive differential equation blows up on before the

solution of the first order impulsive differential equation when the forcing function is

u2, together with a positive impulse. In this work, it is also established numerically

a similar thing happens for a simple logistic equation. The examples discussed are

basically to enhance the mathematical model from the available data by a proper

choice of the vale q. Thus, we can choose the order of the fractional derivative to

match with the available data whose forecasting will be more accurate.

2. Preliminary Results

In this section, we introduce some known definitions and results, which are needed

in the main results.

Definition 2.1. The Caputo (left) fractional derivative of u(t) of order q, when

0 < q < 1, is defined as:

(2.1) cD
q
t u(t) =

1

Γ(1 − q)

∫ t

0

(t − s)−qu′(s)ds.

Throughout this work, we assume that the value of q is such that 0 < q < 1. In

our main result, we further restrict q values such that 0.5 < q < 1. Consider nonlinear

Caputo fractional impulsive differential equation with initial condition of the form:

(2.2)



























cDqu(t) = λu(t) +
N
∑

i=1

ciχ(t − ti)si(t − ti)u(ti)

+
N
∑

i=1

biχ(t − ti)ri(t − ti)u(ti) + f(t, u(t)) + g(t, u(t))

u(o) = u0.

where t ∈ [0, T ], and 0 < t1 < t2 < · · · < tN = T. Also, χ(t− ti) is the Heaviside unit

step function which is left continuous,

(2.3) χ(t − ti) =

{

1 if, t > ti

0 if, t ≤ ti.
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Furthermore, we assume that λ 6= 0, and ciχ(t− ti)si(t− ti) ≥ 0 and biχ(t− ti)ri(t−

ti) ≤ 0 for each i = 0, 1, 2...N . The function f(t, u) is nondecreasing in u and g(t, u)

is non-increasing in u. In addition, si(t − ti) and ri(t − ti) are continuous on each

interval [ti, ti+1] for i = 1, . . . , N − 1. Therefore, they are bounded on each interval.

We need the following definition to recall known theoretical results on generalized

monotone method relative to equation (2.2). See [15] for other types of coupled lower

and upper solutions.

Definition 2.2. We say v and w are coupled lower and upper solutions of type 1 if

they satisfy the inequalities:

cDqv(t) ≤ λv(t) +
N

∑

i=1

aiχ(t − ti)si(t − ti)v(ti) +
N

∑

i=1

biχ(t − ti)ri(t − ti)w(ti)

+ f(t, v) + g(t, w)

v(0) ≤ u0,

(2.4)

cDqw(t) ≥ λw(t) +

N
∑

i=1

aiχ(t − ti)si(t − ti)w(ti) +

N
∑

i=1

biχ(t − ti)ri(t − ti)v(ti)

+ f(t, w) + g(t, v)

w(0) ≥ u0.

(2.5)

Next we merely state the generalized monotone method relative to equation (2.2)

from [42].

Theorem 2.3. Assume

(A1). v0 and w0 be coupled lower and upper solutions of type 1 of the equation (2.2),

such that v0 ≤ w0 on [0, T ];

(A2). f(t, u) and g(t, u) be nondecreasing and non-increasing respectively on Ω;

Then the sequences of coupled lower and upper solutions {vn} and {wn} are well

defined satisfy the following results:

(i). {vn} and {wn} satisfy the inequality,

(2.6) v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0, ∀t ∈ [0, T ].

(ii). If u is any solution of equation (2.2) such that v0 ≤ u ≤ w0, then the sequences

{vn} and {wn} converge uniformly and monotonically to the coupled minimal and

maximal solutions v(t) and w(t) respectively such that v(t) ≤ u ≤ w(t).

(iii). Furthermore, if f(t, u) and g(t, u) satisfies the one-sided Lipschitz condition of

the form

(2.7) f(t, u1) − f(t, u2) ≤ L1(u1 − u2), g(t, u1) − g(t, u2) ≥ L2(u1 − u2),

where u1 ≥ u2, L1 ≥ 0 and L2 ≥ 0, ∀t ∈ [0, T ], then we have v(t) = w(t) = u(t) the

unique solution of (2.2) on [0, T ].
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See [42] for proof and other details. Note that the results of 2.3 holds true for

λ = 0. This is precisely what we use in our main result.

3. Main Results

In this section, we develop numerical applications of the generalized monotone

method for the blow up type of nonlinear function and for the logistic type of nonlinear

function with impulses in the nonhomogeneous terms. Our computation of the linear

approximations do not involve the Mittag-Leffer functions since we have chosen λ = 0

in 2.3 for our examples. Our numerical iterates depends on the value of q. In addition

as q → 1 we can demonstrate that the solution tends to the solution of the integer

impulsive differential equation. We have used MATLAB code for all our numerical

results and graphs.

In our first example, we consider the Caputo fractional impulsive differential

equations with initial conditions of the form:

(3.1)







cDqu(t) = u2 + χ(t − 1)(t − 1)u(1)

u(0) = 1

2

where t ∈ [0, 1.6].

It is easy to see that v0(t) = 1

2
is the lower solution for equation (3.1). Then the

linear iterates relative to equation (3.1) are given by:

(3.2) cDqvn(t) = v2

n−1 + χ(t − 1)(t − 1)vn(1)

To compute v1(t), we initially compute v1(t) on the interval t ∈ [0, 1) and use it

for the impulsive part. Then v1(t) is given by:

(3.3) v1(t) =
1

2
+

tq

4Γ(q + 1)
.

Thus we get

(3.4) v1(1) =
1

2
+

1

4Γ(q + 1)
.

For t ∈ [1, 1.6], v1(t) is the solution of

(3.5) cDqv1(t) = v2

0 + (t − 1)v1(1).

By using the Laplace transformation, we can get the solution on [0, 1.6] as,

(3.6) v1(t) =
1

2
+

tq

4Γ(q + 1)
+ v1(1)

(t − 1)q

Γ(q + 2)
.

Similarly, we compute v2(t) and v3(t) using equation (3.2).

In the following Figure 1, we present the graph of the iterates v1(t), v2(t) and

v3(t) for values of q = 0.7, 0.8, 0.9, and 1 respectively, relative to equation (3.1).
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Figure 1. Lower solutions v1(t), v2(t) and v3(t) with different values of q.

In Figure 2-4, we have compared the iterates v1(t), v2(t) and v3(t) for values of

q = 0.7, 0.8, 0.9, and 1. By labeling vi,q(t) as the ith iterate with the fractional order

of q. It is easy to observe that, in Figure 2-4,

(3.7) vi,0.7(t) ≥ vi,0.8(t) ≥ vi,0.9(t) ≥ vi,1(t) i = 1, 2, 3.

This has also been illustrated in the numerical Table 1 for t = 0.5 and t = 1.2,

respectively.
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q = 0.7 q = 0.8 q = 0.9 q = 1

v1(0.5) 0.6694 0.6542 0.6393 0.6250

v2(0.5) 0.7538 0.7178 0.6862 0.6589

v3(0.5) 0.7907 0.7386 0.6972 0.6643

v1(1.2) 0.8126 0.8106 0.8063 0.8000

v2(1.2) 1.1875 1.1376 1.0868 1.0371

v3(1.2) 1.5383 1.3980 1.2729 1.1659
Table 1. Numerical values of the iterates for values q = 0.7, 0.8, 0.9,

and 1.

In our next example, we consider the Caputo fractional impulsive differential

equations with initial conditions of the form:

(3.8)







cDqu(t) = u2 + χ(t − 0.4)(t − 0.4)u(0.4)

u(0) = 1

where t ∈ [0, 0.8].

It is easy to see that v0(t) = 1 is the lower solution for equation (3.8). Then the

linear iterates relative to equation (3.8) are given by:

(3.9) cDqvn(t) = v2

n−1 + χ(t − 0.4)(t − 0.4)vn(0.4)
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To compute v1(t), we initially compute v1(t) on the interval t ∈ [0, 0.4) and use

it for the impulsive part. Then v1(t) is given by:

(3.10) v1(t) = 1 +
tq

Γ(q + 1)
.

Thus we get

(3.11) v1(0.4) = 1 +
0.4q

Γ(q + 1)
.

For t ∈ [0.4, 0.8], v1(t) is the solution of

(3.12) cDqv1(t) = v2

0 + (t − 1)v1(0.4).

By using the Laplace transformation, we can get the solution on [0, 0.8] as:

(3.13) v1(t) =
1

2
+

tq

Γ(q + 1)
+ v1(0.4)

(t − 1)q

Γ(q + 2)
.

Similarly, we compute v2(t) and v3(t) using equation (3.9).

In the following Figure 5, we present the graph of the iterates v1(t), v2(t) and

v3(t) for values of q = 0.7, 0.8, 0.9, and 1 relative to equation (3.8)
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Figure 5. Lower solutions v1(t), v2(t) and v3(t) with different values of q.
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In Figure 6-8, we have compared the iterates v1(t), v2(t) and v3(t) for values of

q = 0.7, 0.8, 0.9, and 1. By labeling vi,q(t) as the ith iterate with the fractional order

of q. It is easy to observe that, in Figure 2-4,

(3.14) vi,0.7(t) ≥ vi,0.8(t) ≥ vi,0.9(t) ≥ vi,1(t) i = 1, 2, 3.

This has also been illustrated numerical Table 2 for t = 0.3 and t = 0.7, respec-

tively.
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Figure 6. Lower solutions v1(t) with different values of q.



NUMERICAL RESULTS FOR NONLINEAR CAPUTO 29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0<=t<=0.8

1

1.5

2

2.5

3

3.5

4

4.5

u(
t)

v2

o

o
o
o

q=0.7 q=0.8

q=0.9 q=1
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q = 0.7 q = 0.8 q = 0.9 q = 1

v1(0.3) 1.4738 1.1098 1.3518 1.3000

v2(0.3) 1.8208 1.6425 1.5049 1.3990

v3(0.3) 2.0631 1.7553 1.5553 1.4203

v1(0.7) 2.0819 1.9935 1.9079 1.8260

v2(0.7) 3.5021 3.0711 2.7120 2.4174

v3(0.7) 6.1008 4.5574 3.5434 2.8738
Table 2. Numerical values of the iterates for of q = 0.7, 0.8, 0.9, and 1.

Note: From our examples 1 and 2, the solutions of the integer case without the

impulses blows up in a finite time t = 2 and t = 1 respectively. With a positive

impulses it definitely it blows up on or before t = 2 and t = 1 respectively. In [36],

we have established that the the integer solution with t replaced by tq

γq+1
, will be

a lower solution for (3.1) and (3.8)having a similar initial conditions. This proves

theoretically, the solution of the Caputo fractional impulsive differential equations of

(3.1) and (3.8)blows up on or before t = 2, and t = 1, respectively.In this work, this

has been illustrated numerically in Figure 2-4 and Figure 6-8, for (3.1) and (3.8),

respectively.

In example three, we consider the nonlinear Caputo fractional impulsive differ-

ential equations with initial conditions of the form:

(3.15)







cDqu(t) = u − u2 − χ(t − 0.3)(t − 0.3)u(0.3)

u(0) = 1

2

where t ∈ [0, 0.6].

In this case, it is not easy to compute coupled lower and upper solutions of Type

1 for (3.15). Therefore, we use monotone method with coupled lower and upper

solutions of natural type initially, to use it as a tool to compute coupled lower and

upper solutions of Type 1. It is easy to observe that v0(t) = 0, w0(t) = 1 are

natural lower and upper solutions of equation (3.15) since the impulsive effect is

negative. Then, we will compute the iterates as in generalized monotone method (ie

Theorem 2.3 with λ = 0.) as the solution of

(3.16)



















cDqv1(t) = v0 − w2
0 − χ(t − 0.3)(t − 0.3)w1(0.3)

cDqw1(t) = w0 − v2
0 − χ(t − 0.3)(t − 0.3)v1(0.3).

v1(0) = w1(0) = 1

2
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The solutions v1(t) and w1(t) on [0, 0.3] will be solutions of

cDqv1(t) = −12

cDqw1(t) = 1,
(3.17)

respectively. Thus, we get

v1(t) =
1

2
−

tq

Γ(q + 1)

w1(t) =
1

2
+

tq

Γ(q + 1)
,

(3.18)

on [0, 0.3]. Now using this, we can compute v1(t) and w1(t) on [0.3, 0.6], which is

given by

v1(t) =
1

2
−

tq

Γ(q + 1)
− w1(t1)

(t − t1)
q

Γ(q + 2)

w1(t) =
1

2
+

tq

Γ(q + 1)
− v1(t1)

(t − t1)
q

Γ(q + 2)
.

(3.19)

In the following Figure 9, we present the graph of the iterates v1(t), v2(t), v3(t)

and w1(t), w2(t), w3(t) for values of q = 0.7, 0.8, 0.9, and 1 relative to equation (3.15)

Note: Suppose v1(t) and w1(t) meets v0(t) and w0(t) at say t1 and t1. Then we will
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Figure 9. Iterations of coupled lower and upper solutions of type 1

with different values of q.
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redefine v1(t) and w1(t) as computed above on [0, t1] and [0, t1] respectively. Further

v1(t) = v0(t) on [t1, T ] and w1(t) = w0(t) on [t1, T ] respectively.We continue this

process for vi(t) and wi(t). See ([34, 35]) for fractional differential equations without

impulses.

The linear approximation vn(t) and wn(t), n = 1, 2, 3. of the solution of ( (3.15)are

computed as below.

(3.20)



















cDqvn(t) = vn−1 − w2
n−1 − χ(t − 0.3)(t − 0.3)wn(0.3)

cDqwn(t) = wn−1 − v2
n−1 − χ(t − 0.3)(t − 0.3)vn(0.3).

vn(0) = wn(0) = 1

2

where n = 1, 2, 3. Since the explicit formulas of vn and wn cannot be obtained, we

use numerical method to get an approximation.

In Figure 10-12, we have compared the iterates v1(t), v2(t), v3(t) and w1(t), w2(t),

w3(t) for values of q = 0.7, 0.8, 0.9, and 1. By labeling vi,q(t) and wi,q(t) as the ith

iterate with the fractional order of q, respectively. It is easy to observe that, in Figure

10-12,

vi,0.7(t) ≤ vi,0.8(t) ≤ vi,0.9(t) ≤ vi,1(t) i = 1, 2, 3

wi,0.7(t) ≥ wi,0.8(t) ≥ wi,0.9(t) ≥ wi,1(t) i = 1, 2, 3.
(3.21)
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Figure 10. Coupled Lower and upper solutions v1(t) and w1(t) with

different values of q.
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Figure 11. Coupled Lower and upper solutions v2(t) and w2(t) with

different values of q.
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Figure 12. Coupled Lower and upper solutions v3(t) and w3(t) with

different values of q.

In this part, we can see it is very clear that vn−1(t) ≤ vn(t) and wn(t) ≤ wn−1(t),

which satisfies the generalized monotone method result. In addition, the numerical

results show that vn(t) and wn(t) is sandwiching the exact solutions of equation (3.15).

The real solution u(t) is sandwiched between vn(t) and wn(t). The error in computing
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the solution can be minimized by computing enough number of iterates. Also, the

value of q can be chosen as a parameter to improve the model to suit the available

data.

4. Conclusion

In this work, we have developed numerical results for application problems such as

blow up in finite time and the logistic equation by using generalized monotone method

for Caputo fractional impulsive differential equations when the impulses introduced

in the forcing function are through unit step functions. See [36] for the theoretical

justification of blow up results for Caputo fractional differential equation without im-

pulses. Generalized monotone method for Caputo fractional equations are applicable

to more general nonlinear terms including a linear term which is either increasing

or decreasing. In this case we will have λ 6= 0, in Theorem 2.3. When λ 6= 0, the

computation of each iterates will involve the computation of Mittag-Leffler function.

Although a lot of literature is available about Mittag-Leffler function, computation of

series involving Mittag-Leffler functions, product of Mittag-Leffler functions etc are

nontrivial. See [5, 31] for some known results. We plan to take up this in our future

work to include a variety of other physical application problems.
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