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ABSTRACT. In this paper, we presents two discrete queueing inventory models with positive

service time and lead time where customers arrive according to a Bernoulli process and service time

follows a geometric distribution. In model 1, we assume that an arriving customer joins the system

only if the number in the queue is less than the number of items in the inventory at that epoch.

In model 2, it is assumed that if the inventory level is greater than reorder level, s at the time of

arrival of a customer, then he necessarily joins. However, if it is less than or equal to s (but larger

than zero) then he joins only if the number of customers present is less than the on hand inventory.

We analyse this queueing system using the matrix geometric method and we derive an explicit ex-

pression for the stability condition of the model-2. We obtain the steady-state behaviour of these

systems and several system performance measures. An average system cost function is constructed

for the models and are investigated numerically. The influence of various parameters on the system

performances are also discussed through numercal example.
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1. Introduction

There is a growing research interest in discrete time queues mainly motivated by

their applications in computer and communication systems because the basic time
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unit in these systems is a binary code.(See [2], [3]). Also the discrete time system can

be used to approximate the continuous system in practice. Recently, due to the fast

progress of computer and telecommunication network technologies, the discrete time

models have received more attention from queueing researchers. BISDN (Broadband

Integrated Service Digital Network) has been of significant interest because it can

provide a common interface for future communication needs including video, voice

and data communication signals through high speed Local Area Network (LAN), on-

demand video distribution and video telephony communications. The Asynchronous

Transfer Mode(ATM) is a key technology for accommodating such a wide area of

services. Applications of discrete time queues were discussed in the books (see [4],

[5], [19]).

In a discrete time analysis, the system is observed only at specific points in

time. e.g., a system in which observation is made only at points of event occurrences

such as arrivals or departures at specified points which may be equal and numbered

sequentially as 0, 1, 2, . . ..

The first work on discrete time queues is due to Meisling (1958). (see [14]). Since

1958, many researches have dedicated time to study of such systems. One of the

most outstanding works of the queueing theory has been carried out by Yang and

Li (1998) (see [15]) who extended the queues with repeated attempts to the discrete

time systems.

Inventory models have a wide range of application in industries, hospitals, banks,

agriculture, educational institutions etc. The ultimate objective of any inventory

model is to answer two basic questions: how much to order and when to order. The

answer to the first question is expressed in terms of what we call the order quantity

and that of the second, the reorder level. Order quantity is the optimum amount that

should be ordered every time an order is placed so as to minimize the total system

running cost. Reorder level depends on the type of inventory model.

The objective of inventory control is often to balance conflicting goal of making

available the required item at a time of need and minimizing the related costs. In

inventory models, the availability of items has also to be taken into consideration

along with features of queueing theory. In inventory models with negligible service

times, queue of customers is formed only when the system is out of stock and un-

satisfied customers are permitted to wait. On the contrary for the case of inventory

with positive service time, queue is formed even when inventoried items are available

because new customers can join while a service is going on. If either service time or

lead time or both are taken to be positive, then also a queue is formed, depending on

assumptions on backlogging of demands/on other factors.

The analysis of inventory problem was started by Harris [7] in 1915. The cost

analysis of different inventory policies is given by Naddor [16]. The book by Hadley
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and Whitin [8] provides inventory theory and applications. A systematic approach to

(s, S) inventory policy is provided by Arrow, Karlin and Scarf [1] using renewal theory.

One of the recent contributions of significance to inventory with positive service time

is due to Schwarz et alia (et al.) [18]. Krishnamoorthy and Viswanath ([10],[11] )

analyzed production inventory system with service time. One of the works of the

queueing theory has been carried out by Yang and Li [15] who extended the queues

with repeated attempts to the discrete time systems. Lian and Liu [12] developed

a discrete time inventory model with geometric inter demand times and constant

life time. The (s, S) inventory system with positive lead time has been studied by

several researchers. (See [9], [13]). Deepthi (see [6]) have studied many discrete time

inventory models with/withot positive time in her thesis.

Discrete time queueing system has been found to be more appropriate in mod-

elling computer systems and communication network.

In this paper, we analyze two discrete time (s, S) inventory models with positive

service time and lead time. In model 1, we assume that an arriving customer joins

the system only if the number in the queue is less than the number of items in the

inventory at that epoch. In model 2, it is assumed that if the inventory level is greater

than or equal to s+ 1 at the time of arrival of a customer, then he necessarily joins.

However, if it is less than or equal to s (but larger than zero) then he joins only if the

number of customers present is less than the on hand inventory since this guaranties

that he gets service without waiting for replenishment.

This paper is organized as follows :- In section 2, we present the mathematical

formulation of the model-1 its long run bevavior and some key performance measures.

Section 3 discuss mathematical formulation of the model-2 and its stability condition.

We also analyze the computation of steady-state probabilities of the system state and

derive some performance measures. In section 4, we obtain a cost function for the

models. Finally some numerical results are given in section 5.

2. Mathematical Formulation of Model 1

Consider a single product (s, S) inventory system in which customers asking for

the product arrive according to a Bernoulli process with parameter p and no demand

with probability p = 1 − p. Each demand is for exactly one unit. Here we assume

that an arriving customer joins the system only if the number in the queue is less

than the number of items in the inventory at that epoch. The service time follows

geometric distribution with parameter q. Denote q = 1− q. Whenever the inventory

level depletes to s due to demand, an order is placed for replenishment up to S. Lead

time for replenishment of the inventory has a geometric distribution with parameter

r. Denote r = 1 − r. Each time a replenishment is done, the on hand inventory is

raised up to the maximum level S.
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At time m+ the system can be described by X1 = = {(Nm, Im) : m = 0, 1, . . . S}
where Nm is the number of customers in the system and Im is the inventory level. It

can be seen that X1 is a finite Markov chain with state space

E1 = {(i, j) : 0 ≤ i < j; 0 ≤ j ≤ S}.

The corresponding one-step transition probability matrix P1 is given by

P1 =



B0,0 B0,1

B1,0 A1,1 A1,2

A2,1 A2,2 A2,3

. . . . . . . . .

AS−2,S−3 AS−2,S−2 AS−2,S−1

AS−1,S−2 AS−1,S−1 AS−1,S

AS,S−1 AS,S


where

[B0,0] is of dimension (S + 1)× (S + 1) and is given by

[B0,0]ij =



r, j = i, i = 0

p r, j = i, i = 1, 2, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

pr, j = S, i = 0, 1, . . . , s

0, otherwise

[B0,1] is of dimension (S + 1)× S and is given by

[B0,1]ij =


p r, j = i, i = 1, 2, . . . , s

p r, j = S, i = 0, 1, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

0, otherwise

[B1,0] is of dimension S × (S + 1) and is given by

[B1,0]ij =


q r, j = i− 1, i = 1, 2, . . . , s

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S

pqr, j = S − 1, i = 1, 2, . . . , s

0, otherwise

[A1,1] is of dimension S × S and is given by

[A1,1]ij =



q r, j = i, i = 1

p q r, j = i, i = 2, 3, . . . , s

p q, j = i, i = s+ 1, s+ 2, . . . , S

p q r, j = S − 1, i = 1, 2, . . . , s

p qr, j = S, i = 1, 2, . . . , s

0, otherwise
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[A1,2] is of dimension S × (S − 1) and is given by

[A1,2]ij =


pq r, j = i, i = 2, 3, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

pqr, j = S, i = 1, 2, . . . , s

0, otherwise

[A2,1] is of dimension (S − 1)× S and is given by

[A2,1]ij =


q r, j = i− 1, i = 2, 3, . . . , s

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S

pqr, j = S − 1, i = 1, 2, . . . , s

0, otherwise

[A2,2] is of dimension (S − 1)× (S − 1) and is given by

[A2,2]ij =



q r, j = i, i = s− 1

p q r, j = i, i = s

p q, j = i, i = s+ 1, s+ 2, . . . , S

p qr, j = S, i = 2, . . . , s

pqr, j = S − 1, i = 2, 3, . . . , s

0, otherwise

[A2,3] is of dimension (S − 1)× (S − 2) and is given by

[A2,3]ij =


pq r, j = i, i = s

p, j = i, i = s+ 1, s+ 2, . . . , S

pqr, j = S, i = 1, 2, . . . , s

0, otherwise
...

AS−1,S =

[
0

p

]
;

AS,S−1 =
[
q 0

]
;

AS,S = q.

2.1. Long run behaviour of the system. Assuming p, q, r ∈ (0, 1), the Markov

chain X1 is seen to be irreducible and positive recurrent. An irreducible Markov

Chain on finite state space is always stable. So there exists a unique steady-state

probability vector x .

Let x = (x0,x1, . . . ,xS−1, xS) be the steady-state vector of X1.

Then

(2.1) xP1 = x; xe = 1
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gives

x0 = x1D0 where D0 = B1,0(I −B0,0)
−1;

x1 = x2A2,1(I − A1,1)
−1D1 where D1 = [I −D0B0,1(I − A1,1)

−1]−1;

x2 = x3A3,2(I−A2,2)
−1D2 where D2 =[I−A2,1(I−A1,1)

−1D1A1,2(I−A2,2)
−1]−1;

x3 = x4A4,3(I − A3,3)
−1D3 where D3 =[I−A3,2(I−A2,2)

−1D2A2,3(I−A3,3)
−1]−1;

...

xS−1 =xSAS,S−1(I−AS−1,S−1)
−1DS−1

where DS−1 = [I−AS−1,S−2(I−AS−2,S−2)
−1DS−2AS−2,S−1(I−AS−1,S−1)

−1]−1

xS can be found using the normalizing condition

x0e + x1e + . . .+ xS−1e + xS = 1.

2.2. System Performance Measures Model- 1. Let the steady-state probability

vector x be partitioned as x0 = (x0,0, x0,1, . . . , x0,S); x1 = (x1,1, x1,2, . . . , x1,S); x2 =

(x2,2, x2,3, . . . , x2,S); . . . xS−1 =(xS−1,S−1, xS−1,S); xS =xS,S.

We have obtained the following measures for evaluating performance of the sys-

tem.

1. Expected number of customers in the system is, EC =
S∑

i=0

i xie.

2. Expected inventory level is, EI =
S∑

j=1

j∑
i=0

j xi,j.

3. Expected reorder rate is, ER = q
s∑

i=1

xi,s+1.

4. Expected replenishment rate is, ERR = r
s∑

j=1

j∑
i=0

xi,j.

5. Probability that the inventory level is zero is,
S∑

i=0

xi,0.

6. Expected loss rate of fresh arrivals is, EL = p
S∑

i=1

xi,i.

7. Expected rate of departure after completing service is, ED = q
S∑

j=1

j∑
i=1

xi,j.
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3. Mathematical Formulation of Model 2

In this model, we assume that at the time of arrival of a customer, if the inventory

level is ≥ s + 1, then he joins. However, if it is ≤ s (but larger than zero) then he

joins only if the number of customers present is less than the on hand inventory.

At time m+ the system can be described by X2 == {(Nm, Im) : m ∈ N} where

Nm is the number of customers in the system and Im is the inventory level at epoch

after the occurence of probable events. It can be seen that X2 is a Discrete Time

Markov Chain (DTMC) with state space E2 = {(i, j) : i ≥ 0; 0 ≤ j ≤ S}.

The corresponding one step transition probability matrix P2 is

P2 =



0 1 2 · · · s− 1 s s+ 1 s+ 2 · · ·
0 E0 C0

1 B1 E1 C1

2 B2 E2 C2
...

. . . . . . . . .

s Bs Es Cs

s+ 1 A2 A1 A0
...

. . . . . . . . .



where each sub-matrix is of order (S + 1)× (S + 1). They are given by

[E0]ij =



r, j = i, i = 0

p r, j = i, i = 1, 2, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

pr, j = S, i = 0, 1, . . . , s

0, otherwise

[Ek]ij =



r, j = i, i = 0, k = 1, 2, . . . , s

q r, j = i, i = 1, . . . , k k = 1, . . . , s

p q r, j = i, i = k + 1, . . . , s, k = 1, . . . , s− 1

pqr, j = i− 1, i = k + 1, . . . , s, k = 1, . . . , s− 1

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S k = 1, 2, . . . , s

pr, j = S, i = 0, k = 1, 2, . . . , s

p q, j = i, i = s+ 1, s+ 2, . . . , S k = 1, 2, . . . , s

p q r, j = S − 1, i = 1, 2, . . . , s k = 1, 2, . . . , s

p qr, j = S, i = 1, 2, . . . , s k = 1, 2, . . . , s

0, otherwise
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[C0]ij =


p r, j = i, i = 1, 2, . . . , s

p r, j = S, i = 0, 1, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

0, otherwise

[Ck]ij =



pr, j = S, i = 0 k = 1, 2, . . . , s

pqr, j = S, i = 1, 2, . . . , s k = 1, 2, . . . , s

pq r, j = i, i = k + 1, . . . , s, k = 1, . . . , s− 1

pq j = i, i = s+ 1, s+ 2, . . . , S k = 1, 2, . . . , s

0, otherwise

[Bk]ij =



qr, j = i− 1, i = 1, . . . , k k = 1, . . . , s

pqr, j = i− 1, i = k + 1, . . . , s k = 1, . . . , s− 1

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S k = 1, 2, . . . , s

pqr, j = S − 1, i = 1, 2, . . . , s k = 1, 2, . . . , s

0, otherwise

[A1]ij =



r, j = i, i = 0

pr, j = S, i = 0

q r, j = i, i = 1, 2, . . . , s

p q, j = i, i = s+ 1, s+ 2, . . . , S

pqr, j = S − 1, i = 1, 2, . . . , s

p qr, j = S, i = 1, 2, . . . , s

pq, j = i− 1, i = s+ 2, s+ 3, . . . , S

0, otherwise

[A2]ij =


q r, j = i− 1, i = 1, 2, . . . , s

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S

pqr, j = S − 1, i = 1, 2, . . . , s

0, otherwise

[A0]ij =



pr, j = S, i = 0

pqr, j = S, i = 1, 2, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

pq, j = i, i = s+ 1, s+ 2, . . . , S

0, otherwise
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3.1. Stability condition. In this section, we perform the steady-state analysis of

the queueing model under study. For determining the stability condition for the

system, we consider the transition probability matrix A = A0 + A1 + A2 , which is

obtained as

[A]ij =



r, j = i, i = 0

r, j = S, i = 0

qr, j = i− 1, i = 1, 2, . . . , s

q r, j = i, i = 1, 2, . . . , s

qr, j = S − 1, i = 1, 2, . . . , s

qr, j = S, i = 1, 2, . . . , s

pq, j = i− 1, i = s+ 1

p+ p q, j = i, i = s+ 1

q, j = i− 1, i = s+ 2, s+ 3, . . . , S

q, j = i, i = s+ 2, s+ 3, . . . , S

0, otherwise

Let π = (π0, π1, . . . πs, πs+1, . . . , πS) be the stationary probability vector of A.

Then

(3.1) πA = π; πe = 1,

where e is a column vector of 1’s of appropriate order.

From equation 3.1

πj =


(1−r)(1−q r)j−1

(q r)j π0, j = 1, 2, . . . , s;

(1−r)(1−q r)j−1

p q(q r)j−1 π0, j = s+ 1;

(1−r)(1−q r)j−2

q(q r)j−2 π0, j = s+ 2, s+ 3, . . . , S − 1.

πS =
(1− r)[q(q r)s + q(1− q r)s]

q(q r)s
π0.

Further πe = 1 gives,

π0 =
q(q r)s

(1− q r)s[p q + (S − s− 1)r + r q] + rq(q r)s

Now,

πA0e =
(1− q r)s[pr + (S − s− 1)pp qr] + ppqr(qr)s

pq(q r)s
π0.

and

πA2e =
(1− q r)s[qr + r + (S − s− 1)pr]− (q r)s+1

(q r)s
π0.
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Thus we obtained the stationary probability vector, π, explicitly in terms of the

parameters of the model, and hence, we have the stability condition in the following

theorem [see, [17]].

Theorem 3.1. The Markov chain under study is stable if and only if

(3.2)
(q r)s(pq2r + ppqr)

(1− q r)s [pq2r + pqr − pr + (S − s− 1)pr(p− q)]
< 1

3.2. Steady-state analysis. We define the steady-state distribution of {Nm = n, Im =

i : m ∈ N} as follows :

xn,i = lim
m→∞

P (Nm = n, Im = i); (n, i) ∈ E2.

Let x = (x0,x1, . . . ,xs,xs+1,xs+2, . . .) be the steady-state probability vector of X2,

where xn = (xn,0, xn,1, . . . , xn,S) for n ≥ 0.

Then

(3.3) xP2 = x, x e = 1.

Using Matrix-geometric method [see [17]], under the stability condition (3.2), the

steady-state probability vector x is obtained as

(3.4) xn = xs+1R
n−(s+1); n ≥ s+ 2

where R is the minimal non-negative solution to the matrix equation

(3.5) R2A2 +RA1 + A0 = R

The vectors x0,x1, . . . ,xs, xs+1 are obtained from the equations

(3.6) x0E0 + x1B1 = x0

(3.7) xn−1Cn−1 + xnEn + xn+1Bn+1 = xn, 1 ≤ n ≤ s− 1

(3.8) xs−1Cs−1 + xsEs + xs+1A2 = xs

(3.9) xsCs + xs+1A1 + xs+2A2 = xs+1

From (3.9), we get,

xsCs + xs+1(A1 − I −RA2) = 0.

Thus

xs+1 = xsRs, where Rs = Cs(I − A1 −RA2)
−1.

From (3.8), we have

xs−1Cs−1 + xs(Es − I −RsA2) = 0.

Thus

xs = x s−1Rs−1, where Rs−1 = Cs−1(I − Es −RsA2)
−1.
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From (3.7) we have,

xn = xn−1Rn−1; 1 ≤ n ≤ s− 1, where Rn−1 = Cn−1(I − En −Rs−1Bn+1)
−1.

Finally x0 can be found from the normalizing condition

(3.10) x0e + x1e + . . .+ xse + xs+1(I −R)−1e = 1.

That is, x0

(
I +

s−1∑
i=0

∏i

j=0
Rj +

∏s

j=0
Rj(I −R)−1

)
e = 1.

3.3. System Performance Measures : Model - 2.

1. Expected number of customers in the system is,

EC =
∞∑
i=1

i xie =
s∑

i=1

i xie + xs+1R(I−R)−2e + (s+1)xs+1(I−R)−1e.

2. Expected inventory level is, EI =
∞∑
i=0

S∑
j=1

j xi,j.

3. Expected reorder rate is, ER = q
∞∑
i=1

xi,s+1.

4. Expected replenishment rate is, ERR = r
∞∑
i=0

s∑
j=0

xi,j.

5. Expected loss rate of fresh arrivals is, EL = p
∞∑
i=0

xi,0.

6. Expected rate of departure after completing service is, ED = q
∞∑
i=0

S∑
j=1

xi,j.

4. Cost Analysis of the models

In this section we study the Cost Analysis of the models and discuss it through

figure 1 in section 5. To construct an objective cost function with the following.

Let

• c0 denote the fixed ordering cost.

• c1 - procurement cost/unit.

• c2 - holding cost of inventory /unit/unit time.

• c3 - holding cost of customers/unit/unit time.

• c4 - cost due to the loss of customers /unit/unit time.

• c5 - cost due to decay of items per unit per unit time.

Then for Model 1 and Model 2, the Expected Total Cost

(4.1) ETC = [c0 + (S − s)c1]ER + c2EI + c3EC + c4EL+ c5ED.
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5. Numerical Illustrations

By fixing the parameters, (p, q, r, s) = (0.3, 0.7, 0.4, 5), a look at the Table 1 shows

the following observations.

• System idle probability, Pidle decreases as S increases and the rate of increase

is almost negligible in Model-2, this is because of increase in the maximum

inventory level results in more customers can join the system, so traffic intensity

of the system increases.

• The measures expected number of customers, EC as well as expected inventory

level, EI are non-decreasing function of S as expected.

• The measure expected loss of primary arrival, EL is a non-increasing function

of S. This due to the fact that in model-1, customer arrival depends on the

inventory level. So customer loss will be higher in model-1 and negligible in

model-2.

Table 1. Effect of S on Model-1 when (p, q, r, s) = (0.3, 0.7, 0.4, 5).

S Pidle EC EI ER EL ED

Model - 1

20 0.41041 1.35927 12.51734 0.02506 0.00251 0.41272

25 0.40548 1.40085 15.04177 0.01894 0.00208 0.41616

30 0.40230 1.42963 17.56195 0.01523 0.00175 0.41839

35 0.40007 1.45077 20.07878 0.01273 0.00151 0.41995

40 0.39843 1.46692 22.59291 0.01095 0.00132 0.42110

45 0.39716 1.47962 25.10484 0.00960 0.00118 0.42199

Model - 2

20 0.5716 0.52443 12.45552 0.01941 0.00004 0.01361

25 0.5715 0.52477 14.95997 0.01467 0.00003 0.01028

30 0.5715 0.52485 17.46261 0.01179 0.00003 0.00826

35 0.5715 0.52491 19.96405 0.00985 0.00002 0.00690

40 0.5715 0.52495 22.46473 0.00847 0.00002 0.00593

45 0.5714 0.52498 24.96490 0.00742 0.00002 0.00519

• Table 2 shows that as the arrival rate p increases, expected number of customers

as well as expected inventory level increases. Expected reorder rate decreases

which is completely against our expectation. This may be due to the increase

in the number of customers above the reorder level. Expected rate of departure

after completion of service increases.
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• From table 3 we notice that the expected number of customers increases and

the expected inventory level decreases as p increases which is as expected. Here

expected reorder rate and ED also increase with increasing value of p.

Table 2. Effect of p on Model-1 when (q, s, S) = (0.7, 5, 20)

p Pidle EC EI ER EL ED

r = 0.3

0.400 0.18429 3.10560 12.30936 0.02388 0.02734 0.57100

0.425 0.13985 3.69822 12.33383 0.02117 0.04100 0.60210

0.450 0.10388 4.30922 12.38669 0.01779 0.05797 0.62728

0.475 0.07627 4.91289 12.46673 0.01416 0.07776 0.64661

0.500 0.05602 5.48963 12.56962 0.01068 0.09967 0.66078

0.525 0.04170 6.02814 12.68933 0.00764 0.12302 0.67081

0.550 0.03181 6.52450 12.81963 0.00517 0.14723 0.67773

r = 0.4

0.400 0.17118 3.24947 12.44302 0.02443 0.02636 0.58017

0.425 0.12573 3.88555 12.47622 0.02156 0.04004 0.61199

0.450 0.08945 4.53842 12.53896 0.01800 0.05715 0.63738

0.475 0.06219 5.17810 12.62933 0.01422 0.07718 0.65647

0.500 0.04272 5.78265 12.74208 0.01063 0.09938 0.67009

0.525 0.02939 6.34053 12.87043 0.00752 0.12302 0.67943

0.550 0.02052 6.84898 13.00772 0.00504 0.14751 0.68564

r = 0.5

0.400 0.16281 3.35611 12.52091 0.02476 0.02569 0.58604

0.425 0.11690 4.02446 12.56128 0.02176 0.03937 0.61817

0.450 0.08072 4.70769 12.63205 0.01807 0.05657 0.64349

0.475 0.05401 5.37252 12.73057 0.01417 0.07673 0.66220

0.500 0.03536 5.99544 12.85078 0.01050 0.09909 0.67525

0.525 0.02293 6.56511 12.98532 0.00737 0.12288 0.68395

0.550 0.01490 7.07996 13.12730 0.0049 0.14750 0.68957

From figure 1, we give the optimum value of the expected total cost per unit time

by varying the parameter one at a time and keeping others fixed. Here, we fixed

maximum inventory level as 20 unit. In figure 1 (a) we can observe that for model-2,

the cost function has the minimum value 74.9575 and optimum reorder level is s = 5.

In figure1(b) it can be seen that the expected total cost ETC is getting reduce as

the service rate q increases.
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Table 3. Effect of p on Model-2 when (q, s, S) = (0.7, 5, 20)

p Pidle EC EI ER EL ED

r = 0.3

0.400 0.4312 0.78998 12.09634 0.02503 0.00087 0.01534

0.425 0.3958 0.87849 12.03603 0.02655 0.00115 0.0156

0.450 0.3610 0.97460 11.98145 0.02803 0.00147 0.01583

0.475 0.3266 1.08523 11.92748 0.02953 0.00185 0.01600

0.500 0.2925 1.21591 11.87408 0.03109 0.0023 0.01612

0.525 0.2588 1.37615 11.82097 0.03278 0.00281 0.01620

0.550 0.2255 1.58437 11.76729 0.03473 0.00337 0.01622

r = 0.4

0.400 0.4275 0.81025 12.25618 0.02583 0.00020 0.01535

0.425 0.3938 0.88429 12.22904 0.02720 0.00026 0.01572

0.450 0.3586 0.98327 12.18449 0.02876 0.00034 0.01592

0.475 0.3234 1.09829 12.14019 0.03036 0.00044 0.01605

0.500 0.2885 1.23601 12.09601 0.03203 0.00057 0.01611

0.525 0.2537 1.40836 12.05153 0.03385 0.00071 0.01612

0.550 0.2191 1.63981 12.00552 0.03601 0.00088 0.01626

r = 0.5

0.400 0.4268 0.81367 12.36443 0.02621 0.00004 0.01545

0.425 0.3933 0.88673 12.34523 0.02759 0.00006 0.01587

0.450 0.3578 0.98719 12.30706 0.02920 0.00008 0.01607

0.475 0.3223 1.10471 12.26897 0.03086 0.00010 0.01618

0.500 0.2870 1.24682 12.23077 0.03260 0.00013 0.01623

0.525 0.2517 1.42754 12.19189 0.03452 0.00017 0.01631

0.550 0.2164 1.67716 12.15079 0.03683 0.00021 0.01642

Coclusion

In this paper, we studied two Geo/Geo/1 discrete time queueing systems with

positive service time and lead time. In model 1, we assumed that an arriving customer

joins the system only if the number in the queue is less than the number of items in the

inventory at that epoch. In model 2, it is assumed that if the inventory level is greater

than or equal to s+ 1 at the time of arrival of a customer, then he necessarily joins.

However, if it is less than or equal to s (s > 0) then he joins only if the number of

customers present is less than the on hand inventory since this guaranties that he gets

service without waiting for replenishment. The systems are exhaustively analyzed.

Steady-state analysis of the model is carried out using Matrix-geometric method.

Several performance measures are derived. The influence of various parameters on the
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Figure 1. ETC of Model-1 and Model-2 when (p, r, S, c0, c1, c2, c3, c4,

c5) = (0.4, 0.4, 20, 20, 1, 5, 1, 2, 3)

system performance are also investigated through numercal example. Cost analysis

for the models are numerically investigated. We observed that the loss probability of

the primary arrival will be high in model-1 in comparison with model-2.
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