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ABSTRACT. Herein, we summarise a set of fundamental results of various random polynomials including
algebraic polynomials, binomial polynomials, trigonometric polynomials, Weyl polynomials, hyperbolic
polynomials, etc. This article contains a survey of selected results in random polynomials on the real zeros
and distribution of zeros of random polynomials. A few applications are also presented.
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1 INTRODUCTION

An exciting topic in statistical physics is the study of properties of the zeros of random
polynomials ([9], [10]). In fact, the positions of quantized vortices in 2D rotating ideal
Bose gas can be mapped to the zeros of the random polynomial depicting the atomic state.
Further the zeros of random polynomials are popping up in many areas of physics as peak
points of signals; vacua in compactifications of M-Theory on Calati-Yau manifolds with
flux; extremal black holes, peak points of galaxy distributions etc. Algebraic Geometers
are interested in zeros of holomorphic sections of any positive holomorphic line bundle
over any Kähler manifold. We try to provide a life jacket to swim in the theory of random
polynomials.

Definition 1.1. Let I be an interval of the real axis. Define smooth functions f0, f1, . . . , fn :
I → R; and consider the random variables Xk, with mean µk and variance σ2

k > 0,
k = 0, 1, . . . , n, defined on the same probability space (Ω,F , P). We form a linear
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combination

(1.1) F(t) ≡ Fn(ω, t) =

n∑
k=0

Xk(ω) fk(t)

This is called a random function. The value of this random function at each point t ∈ I
is a random variable. When fk(t) = tk, k = 0, 1, . . . , n, and fk(t) = sin(kt) or cos(kt) or
Ak sin(kt) + Bk cos(kt), then F is known as a random algebraic polynomial(RAP) and a
random trigonometric polynomial(RTP) respectively.

In particular, F is called Gaussian random polynomial when X′ks are normal random
variables with mean µk and variance σ2

k > 0. It is known that the real Gaussian random
polynomials, whose coefficients are independent identically distributed (IID) standard
normal random variables N (0; 1), have zeros concentrated on -1 and +1. The zeros of
complex Gaussian random polynomials really tend to concentrate on unit circle in the
complex domain. Further if we orthonormalize the polynomials on the boundary of any
simply connected bounded domain in the complex plane, the zeros of the associated random
polynomials concentrate on the boundary. This situation triggers a question whether there
are random polynomials whose zeros are uniform on the complex plane. Surprisingly the
answer is positive with suitable choice of inner product and metric. This is a classical topic
of research in probabilistic analysis. These observations motivate us to study, summarise,
and explore the results as well as new avenues for further investigation in the theory of
random polynomials. Some times it may become a hard nut to crack.

Let us denote the number of real zeros of random polynomial F with degree n as
Nn(F,R), its expectation as E[Nn(F,R)], and the variance as V[Nn(F,R)].

The study on random polynomials has been broadly focused on the following topics in
this survey.

• Bounds for the number of real zeros
• Average number of real zeros with moments conditions on the random coefficients
• Maxima and minima of number of real roots of random algebraic curves
• Variance of the number of real zeros with moments conditions on the coefficients
• Central Limit Theorem and Large Deviation Principle on the number of real zeros
• Average number of points of inflection
• Other random polynomials and applications in pure mathematics, mathematical

physics, social sciences, computer science etc.

Our purpose is to give a bird’s eye view of the above topics. We may not cover
all contributions. In literature, one may find many interesting contributions by many
passionate researchers.

Block and Polya [8] have initiated the study of the expectation of the number of real
zeros of a random polynomial in the thirties. Further investigations have been made by
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Littlewood and Offord [55]. However, the first sharp result is by Kac (see [50], [51]), who
gives the asymptotic average value

E[Nn(F,R)] ∼
2
π

log n as n→ +∞

when the coefficients of univariate polynomial F =
n−1∑
k=0

Xktk of degree n − 1 are

Gaussian centered independent random variables N (0; 1). One may consult the books by
Bharucha-Reid and Sambandham [1] for historical developments and Farahmand [31] for
innovative devices to capture the behavior of random polynomials. This is the first time that
these methods appear in book form. In [31], he has obtained the number of sharp crossings,
maxima below a level and the exceedance measure to compensate for the absence of a
graphical image.

At the first instance, consider a random quadratic equation(QE) ax2 +bx+c = 0 where
a, b, and c are IID uniform random variables over [0, 1]. The probability of real roots of
this equation is an exercise in Karlin [[53], p.36 Problem 1]. It is cleverly evaluated using
shadow method as

P(Real roots of QE ) = P(R)

= P(b2 > 4ac)

= 1 − P(b2 < 4ac)

= 1 −
$
b2<4ac

dcdbda

= 1 −


1∫

1
4

1∫
0

1∫
b2
4a

dcdbda +

1
4∫

0

2
√

a∫
0

1∫
b2
4a

dcdbda


=

5 + 3 log 4
36

.

Also when a, b, and c are IID uniform random variable over [−1, 1],

P(Real roots of QE ) =
1
2

+
1
2


1
4∫

0

1∫
0

1∫
2
√

ac

dbdadc +

1∫
1
4

1
4c∫

0

1∫
2
√

ac

dbdadc


=

1
2

+
1
2

5 + 3 log 4
36

=
41
72

+
log 2
12

.

Here we could get the exact value for the probability of real roots of a quadratic equation.
Further Hamblen [41] in his Ph.D. Dissertation has derived the probability of real roots and
complex roots of quadratic equation x2 + ξ1x + ξ2 = 0 when (ξ1, ξ2) follow general bivariate
normal distribution with means µ1, µ2 standard deviation σ1, σ2 and constant correlation ρ
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and gamma type density exp{−x− y}, x ≥ 0, y ≥ 0. The probabilities are expressed in terms
of computable integrals.

As a generalisation, consider the cubic equation(CE) ax3 + bx2 + cx + d = 0 where
a, b, c, and d are IID uniform over [−1,+1]. In view of homogeneity among the random
coefficients a, b, c, and d, the probability of real roots of this equation is given by

P(Real roots of CE) =
1

16

∫ ∫ ∫ ∫
[−1,+1]4

I(∆ > 0)da db dc dd.

where ∆ = −27a2d2 + 18abcd − 4ac3 − 4b3d + b2c2. But it is open to evaluate this integral.
For random cubic polynomial, Soileau [91] has discussed a cubic equation of the type
x3 + ξ1x + ξ2 = 0. A well-known result in the theory of equations gives the following
information about the roots of x3 + ξ1x + ξ2 = 0 : if

ξ2
2

4
+
ξ3

1

27


> 0, then there are exactly one real root and two conjugate imaginary roots;

= 0, then there are exactly one real root and two conjugate imaginary roots;

< 0, then there are three distinct real roots.

These three conditions define a disjoint partition of Ω into three events, D,S, and K
respectively. Since S is a zero-probability event, it is omitted and considered the events
D and K, both of which are assumed to have nonzero probabilities. Then the densities
h(u, v|D) and h(u, v, |K, ) have been calculated in [91] .

The degree of difficulty increases when the polynomial of degree increases. When the
degree is n, we have to use calculus carefully as enunciated by Kac [50], and, Edelman and
Kostlan [27]. We make a modest attempt to review recent different developments.

2 HOW TO COUNT THE NUMBER OF REAL ZEROS?

Now our journey starts on a rosy garden. First let us state the Kac’s counting formula.
For this purpose, we state the known definition.

Definition 2.1. Let F : [a, b] → R be a C1−function. Then we say that F is convenient if
the following conditions are satisfied.

• F(a) · F(b) , 0,
• if F(t) = 0, then F′(t) , 0.

In 1637, Descartes recorded his famous rule of counting real roots of algebraic
equations on p.373 of ‘gé0métrie’. Next, in 1829 Sturm gave the most precise result
on counting the number of roots of an equation. The introduction of random character
in the equations has created a challenge. At first, Waring in 1782 and Sylvester in
1864 used probabilistic method in random polynomials. During 1932, Bloch and Pólya,
Littlewood and Offord in 1938 started the game of calculating the number of roots of
random polynomials in a very tricky way. But Kac is the first person to give elegant and
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beautiful formula for finding average number of real zeros of random algebraic polynomial
with centered Gaussian coefficients.

2.1 Kac’s Counting Method-1 Let F : [a, b]→ R be a convenient C1−function. Then

Nn(F, [a, b]) = lim
ε→0

1
2ε

b∫
a

1{|F(t)|<ε}|F′(t)|dt.

As in Kac[50], let us start with Dirac delta function∫
R

δ0(x)dx = 1, where δ0(x) = ∞ when x = 0; 0 whenx , 0.

and its approximation

ηε : R→ R, x→
1
2ε
1{|x|<ε}

which is by the change of variables x 7→ F(t), gives∫
R

δ0(F(t))|F′(t)|dt =

∫
Ik

δ0(F(t))|F′(t)|dt = 1,

for k = 1, 2, . . . , n. We take ∪n
k=1Ik ⊂ [a, b]. Now summing over k on both sides of the last

equality, and using the fact that F crosses level u = 0 in each of the subinterval Ik at t = sk,

it follows ∫
[a,b]

δ0(F(t))|F′(t)|dt = n

which leads to Kac’s counting formula. The expectation of number of real zeros of
polynomials with IID random coefficients is given by

E[Nn(F, [a, b])] = lim
ε→0

1
2ε

b∫
a

E
[
1{|F(t)|<ε}|F′(t)|

]
dt.

Let G(x, y) = 1{|x|<ε}|y|. Then the above formula can be written as

E[Nn(F, [a, b])] = lim
ε→0

1
2ε

b∫
a

E[G(F(t), F′(t))]dt.

Pemantle in [65] has remarked that Kac has said, roughly (this doesn’t require Gaussian
assumption): F has a zero in [t − ε, t + ε] ⇔ |F(t)| ≤ ε|F′(t)| : Letting ε → 0 and
multiplying by ε−1, the expectation is given by

(density of F(t) at 0) · E{|F′(t)|/F(t) = 0}.

For any Gaussian pair (X,Y) with covariances

A B
B C

 the density of X at zero is 1/
√

A

and
E[|Y |/X = 0] =

√
∆/A
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where |∆| is the determinant AC − B2. Thus

(density of X at 0) · E[|Y |/X = 0] =

√
∆

A
.

The vector (F(t), F′(t)) has covariance structure (i.e. by taking K(s, t) = E[F(s)F(t)]) K(t, t) Ks(s, t)|s=t

Ks(s, t)|s=t Kst(s, t)|s=t


which leads to √

∆

A
=

√
∂2

st log K(s, t).

Here

A(t) = K(x, y)|x=y=t =

n−1∑
k=0

t2k,

C(t) = Kxy(x, y)|x=y=t =

n−1∑
k=1

k2t2k−2, and

B(t) = Kx(x, y)|x=y=t =

n−1∑
k=1

kt2k−1

Theorem 2.2. (Kac-Rice Formula) Let E[Nn(F, I)] denote the expected number of zeros of
F in the real interval I. Then E is a measure with density

ρ(t) =
1
π

√
∂2

xy log K(x, y)
∣∣∣∣∣
x=y=t

.

2.2 Kac’s Counting Method-2 We know from the basic calculus course that
∞∫

−∞

sin(ξα)
ξ

dξ = π sgn (α)

1
π

∞∫
−∞

(1 − cos ηy)η−2dη = |y|

Using these two identities, Kac [52] has derived a formula in an analytically elegant
way for the number of real zeros of a random polynomial.

Nn(F, [a, b]) = (2π)−1

∞∫
−∞

dξ

b∫
a

cos(ξF(t))|F′(t)|dt.

2.3 Edelman’s Geometric Method-3 Now we present some basic geometric arguments
and show their relationship with real roots of certain deterministic smooth functions. Let
S n be the surface of the unit sphere centered at the origin in Rn+1. Edelman and Kostlan
count zeros for Gaussian random polynomials in a geometric way via the Crofton formula
which expresses the arc length of the curve γ in terms of an integral over the space of all
oriented lines.



112 V. THANGARAJ AND M. SAMBANDHAM

Definition 2.3. Let P be a point on the sphere S n, the corresponding equator P⊥ is the set of
points of S n which lie on the plane through origin that is perpendicular to the line passing
through the origin and the point P.

Definition 2.4. Let γ(t) be a rectifiable curve on the sphere S n parametrized by t ∈ R, then
γ⊥ := {P⊥|P ∈ γ} is the set of equators of the curve γ.

Let us explain how random polynomial can be viewed in this approach. Consider the
curve Γ in Rn+1 defined by

Γ = {x0 = 1, x1 = t, . . . , xn = tn}, t ∈ R,

Projecting on Sn, one obtains

γ =

x0 =
1(

n∑
j=0

t2 j

) , . . . , xn =
tn(

n∑
j=0

t2 j

)
 .

Intersecting γ by a random great circle is equivalent to counting the number of real zeros
of

n∑
j=0

X jt j.

We define |γ⊥| as the area swept out by γ counting multiplicities. If γ is a rectifiable
curve then

|γ⊥|

area ofS n =
|γ|

π
.

This observation leads to
E[Nn(F,R)] =

|γ|

π
.

Using calculus to obtain the integral formula for the length of γ and hence the expected
number of zeros of a random polynomial is derived as in Theorem 2.2.

3 BOUNDS FOR THE NUMBER OF REAL ZEROS

Littlewood and Offord[55] have laid a strong foundation in the field of random
polynomials. They have considered the random coefficients with probability distributions
of the types given below.

(i) Standard Gaussian distribution N (0, 1)
(ii) Uniform over [−1,+1]

(iii) Symmetric Bernoulli P(Xi = +1) = P(Xi = −1) =
1
2

with X0 = 1 a.s.

Theorem 3.1. For the above cases, the lower and upper bounds of the number of real zeros
are respectively, for sufficiently large n,

Nn < 25(log n)2 except for a set of measure at most 12(log n)/n
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and
Nn >

α log n
log log log n

except for a set of measure at most
A

log n
.

Notice that the measure of the exceptional set depends on the degree of the polynomial.
If it is independent of the degree of the polynomial, it is called strong result.

Littlewood and Offord [56], Samal[72], Evans[29], and, Samal and Mishra [73], [74],
[75] have assumed that the coefficients Xi are independent and identically distributed
random variables. For dependent coefficients, Sambandham [81] has considered the upper
bound for Nn in the case when the Xi, i = 0, 1, . . . , n, are normally distributed with mean
zero and joint density function

(3.1) |M|1/2(2π)−(n+1)/2 exp{−(1/2)a′Ma},

where M−1 is the moment matrix with σi = 1, ρi j = ρ, 0 < ρ < 1, (i , j), i, j = 0, 1, . . . , n
and a′ is the transpose of the column vector a. Also, Uno and Negishi [97] obtained the
same result as Sambandham in the case of the moment matrix with σi = 1, ρi j = ρ|i− j|,

(i , j), i, j = 0, 1, . . . , n, where ρ j is a nonnegative decreasing sequence satisfying ρ1 < 1/2
and

∑∞
j=1 ρ j < ∞ in (3.1).

The lower bound for Nn in the case of dependent normally distributed coefficients was
estimated by Renganathan and Sambandham [69], and, Nayak and Mohanty[61] under the
same condition of Sambandham[81]. Uno [97] has corrected results of the above papers
and obtained the result for the lower bound. Additionally, Uno [98] has estimated the strong
result for this particular problem in the sense of Evans[29]. Samal and Mishra [73] have
considered the random algebraic equation

∑n
i=0 Xixi where the Xi’s are independent random

variables with a common characteristic function

φ(t) = exp(−C|t|α), α > 1, and C, a positive constant.

Then for n > n0,

Nn > (µ log n)/(log log n)

outside a set of measure at most µ′/
{
log[(log n0)/(log log n0)]

}α−1 .

Their result is true for all α > 1, but its importance lies in the range 1 < α < 2 when
the variance is infinite. However, when α = 2 one may get the corresponding result of
Evans [29] as a special case, although their exceptional set is larger than Evans[29].

4 POLYNOMIALS WITH SYMMETRIC BERNOULLI COEFFICIENTS

4.1 Zeros Counting Method-4 Erdös and Offord have used the following approximation
N ∗

n (F; [a, b]) to calculate Nn(F; [a, b]) where

N ∗
n (F; [a, b]) =


1 if F(a)F(b) < 0
1
2 if F(a)F(b) = 0

0 if F(a)F(b) > 0.
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Theorem 4.1. (Erdös and Offord [28]) When Xk’s in (1.1) assume +1 and -1 with equal

probabilities, the number of real roots of most of the random equations
n−1∑
k=0

Xktk = 0 is

2
π

log n + o{(log n)2/3 log log n}

and the exceptional set does not exceed a proportion o{(log log n)−1/2} of the total number
of equations.

The analysis used in this paper is very tricky and noteworthy. But in his doctoral
dissertation, Stevens [92] has remarked as a footnote regarding a computational error in
Lemma 14 in [28].

5 POLYNOMIALS WITH BINOMIAL COEFFICIENTS

Nezakatt and Farahmand [63] have derived asymptotic estimate for E(Nn(R) of random
algebraic polynomial F. Let n be separated into two multipliers such that n = k · m, where
k = f (n) is an integer and increasing function of n, such that f (n) = O(log n)2. The
random variables X j, j = 0, 1, 2, . . . , n − 1 are normally distributed with means zero and
var(X j) =

(
k−1
j−ik

)
, j = ik, ik +1, . . . , (i+1)k−1, i = 0, 1, . . . ,m−1. Then the expected number

of real zeros of F is
E[Nn(R] ∼

√
k − 1 as n→ ∞.

Farahmand and Sambandham [35] have studied the behavior of F when the mean and
variance of coefficients are

E[X j] =

(
n
j

)
µ j+1 and V[X j] =

(
n
j

)
σ2 j.

They have obtained the following estimates for average number of real zeros.

Case-(i) E[Nn(F; (−∞, 0)] = E[Nn(F; (0,∞)]

=

√
n

2
when µ = 0 and σ2 > 0

Case-(ii) E[Nn(F; (0,∞)]


= O(1), if µ = σ2 > 1,

∼

( √
n

2

) {
1 − arctan

(
2
√
µ

1 − µ

)}
, if 0 < µ = σ2 < 1.

Case-(iii) E[Nn(F; (−∞, 0)] ∼
√

n
2

if x is negative and for every µ = σ2

6 POLYNOMIALS WITH GAUSSIAN AND NON-GAUSSIAN COEFFICIENTS

We present here some note-worthy results when the coefficients are Gaussian and
non-Gaussian with different moment assumptions in both RAP and RTP.



RANDOM POLYNOMIALS-I 115

Kac’s polynomial: A random algebraic polynomial of the form F(t) =
n−1∑
n=0

Xktk where the

coefficients Xk are IID Gaussian random variables of mean zero and variance one is called
a Kac Polynomial.

Sambandham Algebraic Polynomial(SAP): A random algebraic polynomial of the form

F(t) =
n−1∑
n=0

Xktk where the coefficients Xk are (i) identically distributed dependent Gaussian

random variables of mean zero, variance one, and correlation between any two random
variables ρ and (ii) identically distributed dependent Gaussian random variables of mean
zero, variance one, and correlation between Xi and XJ ρ|i− j| is called a Sambandham
algebraic polynomial.

Sambandham Trigonometric Polynomial(STP): A random trigonometric polynomial

of the form T (t) =
n∑

n=1
Xk cos(kθ) where the coefficients Xk are (i) identically distributed

dependent Gaussian random variables of mean zero, variance one, and correlation between
any two random variables ρ and (ii) identically distributed dependent Gaussian random
variables of mean zero, variance one, and correlation between Xi and XJ ρ

|i− j| is called a
Sambandham trigonometric polynomial.

After computation of Kac’s counting formula gives the asymptotic value when the
coefficients are standard normal random variables as

E[Nn(F,R)] ∼
2
π

log n as n→ ∞.

Kac has also obtained the same result when the coefficients are uniformly distributed.

Recently Edelman and Kostlan [27] have established a nice formula to estimate the
average number of real zeros of RAP with standard Gaussian coefficients.

E[Nn(F,R)] ∼
2
π

log n + C +
2

nπ
+ O(

1
n2 ) as n→ ∞ where C = 0.6257358072 . . . .

On the other hand Ibragimov and Maslova([47],[48]) have improved Erdös and Offord
method for variables with mean zero (and non-zero mean) and belong to the domain of
attraction of normal law and established the asymptotics for the mean (same as Kac’s result
in the zero mean case) and variance of real zeros of RAP.

They have shown that

V(Nn(F,R)) ∼
4
π

(1 −
2
π

) log n as n→ ∞.

Apart of this, they have also established an CLT for the number of real roots of Kac
polynomials.

In 1988, Wilkins[102] has established another interesting result which paves a way for
further investigation in other polynomials.

Theorem 6.1. Let E(Nn) be the expected number of real zeros of a polynomial of degree
n whose coefficients are independent random variables, normally distributed with mean 0
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and variance 1. Then an asymptotic expansion for E(Nn) is of the form

E(Nn) =
2
π

log(n + 1) +

∞∑
p=0

Ap(n + 1)−p,

in which A0 = 0.625735818, Ai = 0, A2 = −0.24261274, A3 = 0, A4 = |0.08794067, A5 = 0.
The numerical values of E(Nn) calculated from this expansion, using only the first four, or
six, coefficients, agree with previously tabulated seven decimal place values (1 < n < 100)
with an error of at most 10−7 when n ≥ 30, or n ≥ 8.

Theorem 6.2. (Ibragimov and Maslova[48]) Let F be an random algebraic polynomial
whose coefficients belonging to the domain of attraction of Gaussian law with E(X j) = a ,
0. Then

E[Nn(F, (−∞, 0))] ∼
1
π

log n, as n→ ∞,

E[Nn(F, (0,∞))] ∼ o(log n), as n→ ∞.

Stevens [92] in 1965 for the first time has obtained an upper bound for the variance of
the number of real zeros of a random algebraic polynomial with IID real-valued standard
Gaussian coefficients. The upper bound is

V[Nn(R)] < 32E[Nn(R)] + 2.5 + (log n)2/
√

n, for n ≥ 32.

Fairly [30] in 1968 has computed the exact variances in this case and in the case with the
coefficients of the random algebraic polynomial take the values ±1 with equal probabilities
for polynomials of degree up to 11. In 1974, Maslova [59] has considered the case
when the random algebraic polynomial has IID real-valued coefficients {Xi} such that
P[Xi = 0] = 0,E[Xi] = 0, and E[|Xi|

2+s| < ∞ for some s > 0. For this case she has
obtained the asymptotic variance as

V[Nn(R)] ∼
4
π

(
1 −

2
π

)
log n, as n→ ∞ and

Nn(R) − E[Nn(R)]
√
V[Nn(R)]

d
→ N (0, 1), as n→ ∞,

where d denotes convergence in distribution. We note that Nguyen and Vu [64] have
recently generalized Maslova’s results to hold under the assumption that the distribution of
coefficients are independent (but not necessarily identically distributed) and have moderate
growth.

Qualls [67] has investigated the only known variance of the number of real roots of a
random trigonometric polynomial of the type

Tn(θ) =

n∑
k=0

(Ai cos(iθ) + Bi sin(iθ))

which is a stationary stochastic process and for which a special theorem has been developed
by Cramer and Leadbetter [15]. Farahmand [33] has derived a nice result of the variance
of the number of real zeros of Tn(θ).
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Theorem 6.3. Let X1, X2, . . . , Xn be the independent random variables following a
Gaussian distribution with mean zero. Then the variance of the number of real roots of

Tn(θ) =
n∑

k=1
Xk cos(kθ) is

V[N ([0, 2π])] = O[n24/13(log n)16/13].

In general terms, random functions of particular interest are random trigonometric
polynomials of the form

Tn =

n∑
k=1

Xk cos(kθ) or
n∑

k=1

Ak cos(kθ) + Yk sin(kθ),

where {Ak}, k = 1, 2, 3, . . . and {Bk}, k = 1, 2, 3, . . . , since the distribution of the zeros of
such polynomials occurs in a wide range of problems in science and engineering.

The asymptotics of the mean number of real zeros of random trigonometric
polynomials with independent standard and centered Gaussian coefficients was first
obtained by Dunnage in [22], where it is shown that this number is asymptotically
proportional to the degree n of the considered polynomial. Since then, the researchers
have engaged in estimating the level sets of random trigonometric polynomials in various
directions.

In literature, the only known results in the case of dependent Gaussian random
variables as in STP have only been derived in Sambandham[82] , Renganathan and
Sambandham [70] which focus on the two particular and somehow “extreme” cases of
a constant correlation E(XiX j) = ρ, 0 < ρ < 1 and a geometric correlation E(XiX j) = ρ|i− j|.

In both cases, it is shown that the expected number of real roots lying in [0, 2π] has the
same value as

lim
n→∞

E[Nn(F, [0, 2π])]
n

=
2
√

3
.

Further it is interesting to note the contribution in Sambandham [76] for many more
such results. Notably, when the coefficients are dependent Gaussian random variables in
SAP with correlation ρ,

E[N (F,R)] ∼
1
π

log n as n→ ∞

and when the correlation between Xi and X j is ρ|i− j|, 0 < ρ < 1/2

E[N (F,R)] ∼
2
π

log n as n→ ∞.

Sambandham et al. [83] have obtained

V(N (Fn,R)) ∼


2
π

(
1 −

2
π

)
log n when correlation is ρ,

4
π

(
1 −

2
π

)
log n when correlation is ρ|i− j|, as n→ ∞.

Thangaraj and Renganathan [95] have shown that the bound the random polynomial
considered by Maslova[59] is 2π−1(1 − π−1) for sufficiently large n.
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7 WEIGHTED RANDOM POLYNOMIALS

Further Sambandham [77] has considered the following weighted random algebraic
polynomial. As a by-product, we get the maxima of random algebraic curves.

Theorem 7.1. Let

(7.1)
n∑

k=0

kpXktk

where {Xk, k = 0, 1, . . .} is a sequence of dependent normal random variables with mean
zero, variance one and the correlation between any two random variables is ρ, (0 < ρ < 1).
Then the average number of real zeros is aymptotic to

(7.2) (2π)−1[1 + (2p + 1)1/2] log n, when 0 ≤ p < ∞ for large n.

This result subsumes many of the known results. When p = 0, that is, for the
polynomial

∑n
k=0 Xktk the average number of real zeros is estimated in Sambandham [78]

and this asymptotic average is π−1 log n. Since the maxima or minima of
∑n

k=0 Xktk is only

half of the average number of real zeros of
n∑

k=0
kXktk by giving p = 1 in Theorem 7.1, we

get the average number of maxima of
∑n

k=0 Xktk. This average has been already estimated
in Sambandham and Bhatt [79] and its value is (4π)−1[1 +

√
3] log n.

When the random variables are independent and normally distributed Das [19] has
estimated the average number of real zeros of (7.1) and the asymptotic average is
π−1[1 + (2p + 1)1/2] log n. Under the same condition the average number of maxima of∑n

k=0 Xktk is (2π)−1[1 +
√

3] log n and the average number of real zeros of
∑n

k=0 Xktk is
(2/π) log n. These two results are respectively in Das [17] and Kac [50]. We note that when
the random variables are independent the average number of zeros and the average number
of maxima is twice that of the case when the random variables are dependent normal with
a constant correlation.

It is also pertinent to note that Maslova[59] has also obtained the maxima and minima
of the number of real zeros of random algebraic polynomial with IID coefficients.

Theorem 7.2. (Maslova[59]) Let {X j} be an IID sequence of random variables with
P(X j = 0) = 0,E(X j) = 0, and E(X2

j ) < ∞. Let E(Mn) and E(mn) be the average number of
maxima and minima of F(t) =

∑n
j=0 X jt j. Then

E[Mn] ∼ E[mn] ∼ (2π)−1{
√

3 + 1} log n, as n→ ∞.

Sambandham and Maruthachalam [80] have considered a trigonometric polynomial of
the type with constantly correlated Gaussian random variables Xk,

(7.3) Tn(θ, ω) =

n∑
k=1

kpXk(ω) cos kθ.

and obtained the following asymptotic estimate.
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Theorem 7.3. (Sambandham and Maruthachalam[80]) The probable number of real zeros
in the interval 0 ≤ θ ≤ 2π all except an exceptional set of functions (7.3) with a probability
measure in Ω does not exceed n−2ε1 , where 0 < ε1 <

1
13 is asymptotically equal to

2n
(
2p + 1
2p + 3

)1/2

+ O(n(11/13)+ε1)

when n is large.

When p = 0, one gets Sambandham’s result for dependent case in [82] and
independent case by Dunnage’s classical paper, and obtains the following asymptotic
estimate for the probable number of real zeros.

Theorem 7.4. (Dunnage[22]) The probable number of real zeros in the interval 0 ≤ θ ≤ 2π
all except an exceptional set of functions (7.3)(p = 0) with a measure does not exceed
(log n)−1, is asymptotically equal to

2n
√

3
+ O(n11/13(log n)3/13)

when n is large.

Das [20] has discussed random trigonometric polynomials
n∑

k=1

kp(X2k−1(ω) cos kθ + X2k sin kθ), p > −
1
2

and Xk’s are independent standard Gaussian random variables and Qualls [67] has discussed
similar polynomials.

In a series of papers Wilkins [99],[100], [101], and [102] have established a new way
of thinking in the derivation of average number of real zeros of random polynomials. He
has obtained a convergent series representation for the average number of real zeros for
algebraic, trigonometric, hyperbolic polynomials with weights. We just state some of his
results to think beyond the box.

Theorem 7.5. Suppose that Xi(i = 1, 2, . . . , n) are independent, normally distributed
random variables with mean 0 and variance 1, and that Nnp is the mean value of the
number of zeros on the interval (0, 2π) of the random trigonometric polynomial

Tn(x) =

n∑
i=1

ipXi cos(ix)

in which p is a nonnegative real number. If p is a nonnegative integer, there exist constants
D0p = 1,D1p,D2p, and D3p such that
(7.4)

E[Nnp] = (2n + 1)µp

3∑
r=0

(2n + 1)−rDrp + O((2n + 1)−3) where µp = (2p + 1)/(2p + 3)1/2.
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Das [16] has shown that, for large n,

E[Nnp] = 2µpn + O(nl/2), where µp = {(2p + 1)/(2p + 3)}1/2.

When p = 0, Wilkins[99] has shown that the error term O(n1/2) is actually O(1). Moreover,
the error term is also O(1) when p is a positive integer [100]. Wilkins and Souter [101] have
also derived a relation of the form (7.4) when p = 1/2. He has shown that (7.4) remains
valid when p = (2s + 1)/2, in which s is a positive integer. In combination with the earlier
results, this implies that a relation of the form (7.4) is valid when 2p is any nonnegative
integer, although he could not construct a unified derivation that covers the various cases in
[99],[100],[101] including the above result. He could not extend his own techniques to the
case in which 2p is not a nonnegative integer.

Recently the work of Flasche and Kabluchko [38], [39] are worth mentioning. In [37],
the following result has been proved.

Theorem 7.6. (Flasche [37]) The asymptotic estimate of the expected number of real zeros
of random trigonometric polynomial

Gn(t) = u +
1
√

n

n∑
k=1

(Ak cos(kt) + Bk sin(kt)), t ∈ [0, 2π], u ∈ R

whose coefficients Ak, Bk, k ∈ N are IID random variables with mean zero and unit
variance. Then

lim
n→∞

E[Nn[a, b]]
n

=
b − a

π
√

3
exp

(
−

u2

2

)
, where [a, b] ⊆ [0, 2π].

The references therein give more information about the latest developments.

Brania et al.[11] have proved the following result.

Theorem 7.7. (Brania et al. [11]) The asymptotic average number of real zeros of a class
of trigonometric polynomials of the form

T (θ) =

n∑
k=1

bkXk cos(kθ)

where the Xk’s are independent standard normally distributed random variables and the
bk’s are binomial coefficients

(
n
k

)1/2
is n for large n.

For the trigonometric random polynomials, i.e. Tn(x) =
n∑

i=0
ηi cos(ix), we note that

asymptotics for the variance of the number of real zeros in [0, 2π] has been well studied (cf.
Bogomolny, Bohigas, Leboeuf [9], Farahmand[33], Grandville and Wigman [46], and, Su
and Shao [93]). Similarly we mention the works of Forrester and Honner[40], Hannay[42],
Shiffman and Zeldtich [90], Bleher and Di[2], that respective asymptotics for variance of
the number of zeros for weighted random polynomials, i.e. random polynomials of the

form Pn =
∑n

i=0 ηicizi where either ci =

√(
n
i

)
, or ci = 1/i!.
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In 2019, Yeager[105] has studied mean and the variance of the number of zeros in
Ω ⊂ C for

Pn(z) =

n∑
i=0

ηiφi(z)

where {ηk} are complex-valued random variables, and {φi} are orthogonal polynomials on
the unit circle (OPUC).

Important Observation: The phenomenon of obtaining half of the existing results is
noticed by Sambandham [77] because when the random variables are dependent with a
constant correlation ρ, most of the random variables have a tendency to be of the same
sign as they are interdependent. As the most of the random variables preserve the same
sign

∑n
k=0 Xkkptk has a tendency of behaving like ±

∑n
k=0 Xkkptk. Under this condition when

t > 0, the consecutive terms have a tendency to cancel each other and when t < 0 the
cancellation does not become possible. This fact reduces the average number of real zeros
for t > 0 to o(log n).

Remark 7.8. The conditions on moments have some influence in the average and variance
of the number of real zeros of random algebraic polynomials. For instance, consult the
works of Ibragimov and Maslova [48] for non-zero mean, Sambandham, Samal, Farahmand
and their co-workers for non-zero mean cases as well as constant correlation cases, and
Logan and Shepp [57][58] for Cauchy and infinite variance cases to infer how the moment
assumption has the influence on the asymptotic value.

Shenker Polynomials This is an another branch of activity initiated in the theory of
random polynomials. Shenker [87] has obtained an asymptotic value for average number
of real zeros of random algebraic polynomial. We now call such polynomials Shenker
Polynomials.

Theorem 7.9. (Shenker[87]) Let {X j}, j = 0, 1, . . . be a Gaussian stationary sequence
of random variables with mean zero and variance one. For any n, the distribution of
{X0, X1, . . . , Xn} is non-singular. Let ρ j = E(X0X j) and Nn(a, b) be the number of real
zeros of

∑n
j=0 X jzk in the interval (a, b). If

∑∞
j=0 ρ j < 1/2 then

E[Nn(0, 1)] ∼
1

2π
log n

and
E[Nn(−∞,+∞)] ∼

2
π

log n

as n→ ∞.

Let Nn be the number of real zeros of Fn(t) =
∑n

i=0 Xiti,−∞ < t < ∞. Logan and
Shepp[57] have shown that if the coefficients Xi are independent random variables with a
common Cauchy distribution with characteristic function exp{−|z|}, then, as n→ ∞,

(7.5) E[Nn] ∼ c log n, c =
8
π2

∞∫
0

xex

x − 1 + 2e−x dx.
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Stevens[92] has extended the work of Kac and others by showing that if the coefficients
are independent with mean zero and variance one and satisfy some additional general

conditions, in place of (7.5) he has obtained ENn ∼
2
π

log n. We notice that c ≈ 0.7413
and 2/π ≈ 0.6366. But the order of growth is same and we infer that there are more real
zeros in the Cauchy case. Further Logan and Shepp [58] have considered the case where
the coefficients are independent random variables with common characteristic function
exp(−|z|α), 0 < α ≤ 2 and obtained

E[Nn] ∼ c log n,

where the constant c depends on α and is given by

c = c(α) =
4

π2α2

+∞∫
−∞

dx log

∞∫
0

[|x − y|α/|x − 1|α] exp{−y}dy.

Hence c(2) = 2/π and c(0+) = 1. Note that c(α) decreases in α which leads to the tight
bounds (2/π) ≤ c(α) < 1.

8 CORRELATION FUNCTION STUDY OF THE ZEROS OF RANDOM
POLYNOMIALS

The study of correlation function of real zeros has opened a new chapter in the Theory
of Random Polynomials. To start with, consider the random polynomial F ≡ Fn(t) =

n∑
k=0

Xitk where Xk are independent random variables. We make a legitimate assumption that

all zeros of F are simple with probability one. Denote by N the empirical measure counting
the real zeros of F.

N =
∑

{t:F(t)=0}

δt

where δt is the unit point mass at t. The distribution of N can be described by its correlation
function. We know from Hough et. al. [43] that the correlation functions of N are
function ρk : Rk → R+ for k = 1, 2, . . . , n such that for any family of disjoint Borel subsets
B1, B2, . . . , Bk ⊂ R,

(8.1) E

 k∏
i=1

N (Bi)

 =

∫
B1

∫
B2

· · ·

∫
Bk

ρk(t1, t2, . . . , tk)dt1dt2 · · · dtk.

To evaluate this integral, we need the following extension of the Kac-Rice formula (cf. [6],
[7]):

ρk(t1, t2, . . . , tk) =

∫
Rk
|s1s2 · · · sk|Dk(0, s, t1, t2, . . . , tk)ds1ds2 · · · dsk,

where s = (s1, s2, . . . , sk) and Dk(‘.′, t1, t2, . . . , tk) is the joint density function of the random
vectors

(F(t1), F(t2) . . . , F(tk)) and (F′(t1), (F′(t2) . . . , F′(tk)).

A key to evaluate this integral is Coarea Formula which is stated below.
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Theorem 8.1. (Coarea Formula) Let B ⊂ Rk be a region. Let g : B → Rk be a Lipschitz
function and h : Rk → R be an L1−function. Then∫

Rk

#{x ∈ B : g(x) = ydy =

∫
B

|det Jg(x)|h(g(x)dx

where Jg(x) is the Jacobian matrix of g(x).

When the random coefficients are independent random variables, using the idea of
Schur functions, Götze et al. [45] have evaluated the integral (8.1) and obtained average
number of real zeros in the following cases: (1) Coefficients are uniformly distributed over
[−1, 1], (2) Gaussian random variables N (0, σ2

i ), and (3) Exponential random variables
e−t, t > 0.

9 FROM KAC’S MATRIX TO KAC’S POLYNOMIALS

Beresford Parlett has introduced Kac matrix to Edelman and Kostlan while going up
on a staircase in Evans Hall at UC Berkeley. Without this fortuitous discussion, they would
never have known that the matrix that they were studying in the context of Kac’s polynomial
also was named for Kac.

Definition 9.1. (Kac matrix) Kac matrix is defined as an (n+1)× (n+1) tridiagonal matrix.

Kn+1 =



0 n · · · · · · · · ·

1 0 n − 1 · · · · · ·

· · · 2 0 n − 2 · · ·
...

. . .
. . .

. . .
...

· · · · · · n − 1 0 1
· · · · · · · · · n 0


It is also known as Clement matrix. It is the matrix that describes a random walk

on a hypercube as well as the Ehrenfest urn model of diffusion. The first interesting and
surprising result is its eigenvalues. The eigenvalues of Kn+1 are integers! i.e. {2k − n : k =

0, 1, 2, . . . , n}. Here, we note the link between the Kostlan’s random polynomial

F(t) =

n∑
k=0

(
n
k

)
Xktk,where Xk ∼ N (0, 1) are IID random variables

and the Kac matrix and Kostlan [54] has proved that the expected number of real roots of
F(t) = 0 is exactly

√
n. For details of the proof, one may refer to [54].

10 OTHER RANDOM POLYNOMIALS

Flasche and kabluchko [38] have established a nice result.
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Theorem 10.1. (Flasche and Kabluchko [38]) Let {Xk, k = 0, 1, . . .} be IID random
variables with zero mean and unit variance. Consider a random Taylor series of the form

f (z) =

∞∑
k=0

ckXkzk,

where {ck, k = 0, 1, . . .} is a real sequence such that c2
n is regularly varying with index γ− 1,

where γ > 0. Then

E[N [0, 1 − ε]] ∼
√
γ

2π
| log ε|, as ε ↓ 0,

where N [0, r] denotes the number of real zeroes of f in the interval [0, r].

Flasche and Kabluchko [39] have considered the following four families of random
analytic functions. Let

(10.1) Pn(z) =

∞∑
k=0

fn,kXkzk,

where z ∈ C is a complex variable, { fn,k}(n=1,2,...),(k=0,1,2,...) is a sequence of real deterministic
coefficients to be specified below and Xk’s IID real-valued random variables. Now the four
cases are as given below.

(10.2) fn,k =



√(
n
k

)
1{k≤n}, binomial, elliptic, or spherical(SP) or SU(2)√

nk

k!
, flat random analytic function (FAF) or ISO(2)√(

n+k+1
n

)
, hyperbolic random analytic function(HAF) or SU(1,1)√

nk

k!
1{k≤n} Weyl polynomials (WP)

Let {Xk, k = 0, 1, . . .} have zero mean and unit variance, and vn(z) denote the variance of Pn.

Let D be a open and connected subset of C. Then the variances of four cases are taken as

(10.3) vn(z) =



(1 + z2)n, SP case,z ∈ C

exp(nz2), FAF case,z ∈ C

(1 − z2)−n, HAF case,|z| < 1
n∑

k=0

(nz2)k

k!
, WP case,z ∈ C.

All four families of random polynomials fulfill a condition that is sufficient for proving
almost everything what follows. Namely, there exists an open, connected set D ⊆ C and an
analytic function p : D → C such that

lim
n→∞

vn(z)
enp(z) = 1.

So we have to choose p(z) properly. Flasche and Kabluchko [39] have proved the following
very interesting result.
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Theorem 10.2. Let {Xk} be IID. real-valued random variables with zero mean and unit
variance. Let Pn be one of the four random analytic functions defined in (10.1) and (10.2),
and choose proper p : D → C. If N [a, b] denotes the number of real zeroes of Pn in the
interval [a, b] ⊆ D (R {0}), then

(10.4) lim
n→∞

E[N [a, b]]
√

n
=

1
2π

b∫
a

√
p′(t)

t
+ p′′(t)dt

For proof and other delicate ideas, one may refer to [39]

What happens when the random trigonometric polynomials have symmetric
long-tailed coefficients. This is answered by Shepp and Farahmand [88] in the following
result.

Theorem 10.3. The expected number of real zeros of the n−th degree polynomial with
real independent identically distributed coefficients with common characteristic function
φ(z) = e−A(log |1/z|)−a

for 0 < |z| < 1 and φ(0) = 1, φ(z) ≡ 0 for 1 ≤ |z| < ∞, with 1 < a and
A ≥ a(a − 1), is (a − 1)/(a − (1/2)) log(n) asymptotically as n→ ∞.

The important contributions on random hyperbolic polynomials and orthogonal
polynomials by Das [18], Sambandham [76], Faramand [32], Farahmand and Girigorash
[34], Pritsker and Xie [66], and others are worth mentioning. Farahmand et al. [36]
and Sambandham et al.[84] have introduced a new field activity in the theory of random
polynomials viz. the study of number of points of inflection of random polynomials. The
literature shows that the upto third moment assumption, the studies have been carried over.
The question of less moment assumption has been investigated by Logan and Shepp [57],
[58] in the case of random algebraic polynomials and Jamron [49] in the case of random
hyperbolic polynomials (proof is not available).

One knows that Das [18] first calculated the expected number of real zeros of Qn(t) =
n∑

k=1
Xk cosh(kt) where {Xk}, k = 1, 2, . . . is a centered Gaussian random coefficients and he

has obtained the asymptotic value

E[Nn] ∼
1
π

log n as n→ ∞.

Wilkins[104] has determined the asymptotic value of average number of real zeros
when zero mean and variance of Xk as kp.

Theorem 10.4. Let n and p be integers such that n ≥ 2 and p ≥ 0. We suppose that
Xk(k = 1, 2, ..., n) are independent, normally distributed random variables, each with mean
0 and variance 1, and define the random hyperbolic polynomial

Qn(x) =

n∑
k=1

kpXk cosh(kx).
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If E[Nnp] denotes the mean number of real zeros of Qn(x), then

E[Nnp] =
1
π

log n + O(log n)1/2), as n→ ∞.

This weighted polynomial makes the difference with weighted algebraic polynomial
as the principal part is independent of p.

Edelman and Kostlan [27] have found out that the expected number of real zeros of
random algebraic polynomials increases significantly if the variance of the coefficients

changes from unity to
√(

n
k

)
. Therefore, it forces to examine what effect this new

assumption on variance of the coefficients has on the number of oscillations of Qn(x) with
different weights.

11 UNIVERSALITY OF ZEROS OF RANDOM POLYNOMIALS

Tao and Vu [94] have established some local universality results concerning the
correlation functions of the zeroes of random polynomials with independent coefficients.
Their analysis relies on a general replacement principle, motivated by some recent work in
random matrix theory. This principle enables one to compare the correlation functions
of two random functions F and F̃ if their log magnitudes log |F|, log |F̃| are close in
distribution, and if some non-concentration bounds are obeyed.

Universality phenomenon: As per the arguments of Tao and Vu [94], in the case when
the distribution Xi is a real or complex Gaussian, the correlation functions ρ(k, 1) (in the
real case) or ρ(k) (in the complex case) can be computed explicitly using tools such as
the Kac-Rice formula; see Hough et al [43]. When the distribution is not Gaussian,
the Kac-Rice formula is still available, but is considerably less tractable. Nevertheless,
it has been widely believed that the asymptotic behavior of the correlation functions in
the non-Gaussian case should match that of the Gaussian case once one has performed
appropriate normalizations, at least if the distribution Xi is sufficiently short-tailed. This
type of meta-conjecture is commonly referred to as the universality phenomenon.

They have established the local universality phenomenon in three cases

(1) Flat polynomials :
n∑

i=0

1
√

i!
Xizi,

(2) Elliptic polynomials :
n∑

i=0

√(
n
i

)
Xizi, and

(3) Kac polynomials :
n∑

i=0
Xizi.

For results and proofs, one may consult Tao and Vu [94].

12 LARGE DEVIATION PRINCIPLE (LDP) AND RANDOM POLYNOMIALS

Consider a sequence {Xi, i = 0, 1, . . .} of random variables with mean µ and variance
σ2. Take {Xi} as IID r.v’s with mean µ and variance 1. Then the law of large numbers says
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that
S n

n
p
−−→
a.s.

µ as n→ ∞ if E|Xi| < ∞ (
WLLN
−−−−→
S LLN

resp.).

Next, take {Xi} as IID r.v’s. with mean µ and variance 1. As n→ ∞,

lim
n→∞

P
(
S n − nµ
√

n

)
= Φ(x).

In the case of Law of Large Numbers, S n deviates from µ in the order of n (LLN for typical
events) whereas in the Central Limit Theorem, S n deviates from µ in the order of

√
n (CLT

for typical events). We want to probe the situation where S n deviates from a > µ in the
order of n beyond

√
n (LDP for rare events). This is well explained by the Large Deviation

Principle.

Definition 12.1. A sequence of random variables {Xi, i = 1, 2, . . .} with values in a metric
space is said to satisfy a large deviation principle with

• speed an → ∞ and
• rate function I,

if, for all Borel sets A ⊂M (Metric space),

lim sup
an→∞

1
an

log P(Xn ∈ A) ≤ − inf
x∈clA

I(x)

lim inf
an→∞

1
an

log P(Xn ∈ A) ≥ − inf
x∈intA

I(x)

Let us walk on the known territory. Start with a coin tossing experiment.

Xi =

 1 w.p. 1
2

0 w.p. 1
2 .

All Xi’s are IID with E(Xi) =
1
2
. Fix a > E(Xi) =

1
2
. Now we want to study the behaviour

of P
(S n

n
≥ a

)
large n. To proceed, we first look at

P(S n ≥ na) =
∑
k≥na

(
1
2

)n

.

After simplification, it leads to

log P(S n ≥ na) = −[log 2 + a log a + (1 − a) log(1 − a)] + lower order.
1
n

log P(S n ≥ na) = −I(a) where I(a) = log 2 + a log a + (1 − a) log(1 − a).

This function I(a) has unique root at a = 1
2 . It is indeed a good catch for the law of large

numbers!

Now, let us take Xi ∼N (0, 1) and Φ(x) = 1
√

2π

x∫
−∞

e−
y2
2 dy, x ∈ R.

(12.1) P
(∣∣∣∣∣S n

n

∣∣∣∣∣ > a
)

= 2[1 − Φ(a
√

n)].



128 V. THANGARAJ AND M. SAMBANDHAM

For any y > 0, (1 − 3
y4 )φ(y) < φ(y) < (1 + 1

y2 )φ(y). Integrating over [z,∞), z > 0, we get

(12.2)
(
1
z
−

1
z3

)
φ(z) < [1 − Φ(z)] <

1
z
φ(z).

Equations (12.1) and (12.2) give

lim
n→∞

1
n

log P
(∣∣∣∣∣S n

n

∣∣∣∣∣ > a
)

= I(a) = −
a2

2
.

Thus the ‘rare event’
{∣∣∣∣∣S n

n

∣∣∣∣∣ > a
}

has probability of order e−
na2

2 .

This is the LDP for Gaussian random variables with rate function I(a) = −a2

2 .

Now, let us study the set of zeros {t1, t2, . . . , tn} of the random polynomial Fn(t) =
n∑

k=0
Xktk. where Xk’s are IID random variables. Let us define an empirical measure

µn =
1
n

n∑
k=0

δtk .

Let M1(X) denote the space of probability measures on X, equipped with the topology
of weak convergence which makes it into a Polish space. Let pol+ denote the collection of
polynomials (over C) with coefficients that are real positive. For F ∈ pol+, let µF ∈M1(C)
denote the empirical measure of zeros of F.Note that µF depends on the set of zeros and not
on a particular labeling of the zeros, that µF is symmetric with respect to the transformation
z → z∗, and that µF(R+) = 0. (Here and in the sequel, we use R+ to denote the interval
(0,∞).) Finally, for any space X and subset ⊂ X, we let Ac denote the complement of A in
X.

LDP for zeros of Kac Polynomial: Let Fn denote a random polynomial, with IID standard
complex Gaussian random coefficients {Xi} and associated empirical measure of zeros Ln.

Zeitouni and Zelditch [106] have proved that the sequence of empirical measures of zeros
denoted by µCn for this model satisfies the large deviations principle (LDP) in M1(C) with
speed n2 and good rate function IC defined by

IC(µ) =

" (
log(|z − w| −

1
2

log(1 + |z|2) −
1
2

log(1 + |z|2)
)

dµ(z)dµ(z)

+ sup
z∈S 1

∫ (
log |z − w|2 − log(1 + |w|2)

)
dµ(w)

When
∫

log(1 + |z|2)dµ(z) is finite, it simplicfies to

IC(µ) − −
" (

log(|z − w|dµ(z)
)

dµ(w) + sup
z∈S 1

∫ (
log |z − w|2

)
dµ(w).

This has been extended by Butez [12] to the case of real-valued IID standard Gaussians
random variables {Xi}. The empirical measure of zeros, denoted µRn for that model, satisfies
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the LDP in M1(C) with speed n2 and good rate function IR+
defined by

IR+
(µ) =


1
2

IC(µ) if µ ∈ P ,

∞ otherwise.

where P is the set of empirical measures of zeros of polynomials with positive coefficients
and P is its closure for the weak topology.

LDP for zeros of Polynomial with exponential random coefficients:

Let Fn denote a random polynomial, with IID exponential (of parameter 1) coefficients
{Xi} and associated empirical measure of zeros Ln. We introduce the closure of the
collection of empirical measures of polynomials with positive coefficients

P = {µF : F ∈ pol+} ⊂M1(C).

Obviously, Ln ∈ P . In order to record the result, we need the following definitions.

Definition 12.2. For any measure µ ∈M1(C), define the logarithmic potential function to
be

LF(z) =

∫
log |(z − w)|dµ(w),

and the logarithmic energy to be∑
(µ) =

∫ ∫
log(|z − w|)µ(z)µ(w).

Definition 12.3. Define the function I : M1(C)→ R+ by

I(µ) =


∫

log |(1 − z)|dµ(z) −
1
2

∫ ∫
log |(z − w)|dµzdµ(w) if µ ∈ P ,

∞ if µ < P .

The Large Deviation Principle for zeros of random polynomial with IID exponential
coefficients is given below.

Theorem 12.4. The random measures Ln satisfy a large deviation principle in the space
M1(C) with speed n2 and good rate function I. Explicitly, we have:

(i) The function I : M1(C) → [0, 1] has compact level sets, i.e. the sets {µ : I(µ) ≤ M}
are compact subsets of M1(C)→ [0, 1] for each M ∈ R.

(ii) For each open set O ∈M1(C)→ [0, 1], we have

lim inf
n→∞

1
n2 logPn(Ln ∈ O) ≥ − inf

µ∈O
I(µ),

(iii) For each closed set F ∈M1(C), we have

lim sup
n→∞

1
n2 logPn(Ln ∈ F) ≤ − inf

µ∈F
I(µ)

Remark 12.5. We infer that in spite of the fact that we are dealing with zeros of random
polynomials, the rate function is closer to a random matrix theory rate function than to the
one appearing in the Gaussian case.
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13 APPLICATIONS IN CRYPTOGRAPHY

Now we give some basic concepts to trace the connection between random
polynomials and Cryptography. In Cryptography, a message is encrypted with a key. To
give mathematical description of the key, we define the following.

Definition 13.1. Let m be a positive integer and q = 2m. A Boolean function with m
variables is a map from {0, 1}m → {0, 1]} i.e. Vm = Fm

2 → F.

Definition 13.2. A Boolean function is linear if it is a linear form on the vector space Fm
2 .

Definition 13.3. It is affine if it is equal to a linear function up to a constant.

The key uses Boolean functions. In Cryptography, one develops cryptography
algorithms to resist attacks for which one seeks functions that are with mixing as much as
possible, and cannot be recovered by some spy. Hence one need the functions most distinct
from linear functions. i.e. non-linear functions. In order to resist modern cryptographic
attacks one uses highly nonlinear Boolean functions.

Definition 13.4. We define non-linearity of a boolean function f : Vm → F2, the distance
from f to the set of affine functions with m variables, as

nl( f ) = min
h affine

d( f , h)

where d is the Hamming distance.

The non-linearity is equal to

nl( f ) = 2m−1 −
1
2
|| f̂ ||∞

where

|| f̂ ||∞ = sup
v∈Vm

∣∣∣∣∣∣∣∑x∈Vm

(−1) f (x)+v·x

∣∣∣∣∣∣∣
and f̂ denotes the Fourier transform of (−1) f on Vm and || f̂ ||∞ is the spectral amplitude of
the Boolean function f .

Now we will trace the analogy between Boolean functions f and random polynomials

Fn(t) =
n∑

k=0
Xktk.

|| f̂ ||∞ = sup
v∈Vm

∣∣∣∣∣∣∣∑x∈Vm

(−1) f (x)+v·x

∣∣∣∣∣∣∣ with (−1) f (x) = ±1

and

||Fn(t)||∞ = sup
x∈R/Z

∣∣∣∣∣∣∣
n∑

k=0

Xke2πikx

∣∣∣∣∣∣∣ with Xk = ±1.
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Erdös (1957) has conjectured that there exists δ > 1 such as for any integer n there exists a
complex number z of modulus 1 such that |Fn(t)| ≥ δ

√
n + 1. Littlewood (1966) has raised

a question on the contrary if there were polynomials Fn with coefficients Xk such that

|Fn(t)| =
√

n + 1 = o(n).

for every k ∈ T = R/Z and with Xk = ±1 or with |Xk| = 1. Kahane (1980) has solved the
problem for complex coefficients Xk of modulus 1. For |Xk| = 1, he has established that

lim
m

inf
f∈Vm

||Fn(t)||∞
√

n
= 1.

but the initial problem Xk = ±1 case is still not solved.

In 1983, Patterson and Wiedemann[62] have shown that one can do better for m ≥ 15.
They have produced a boolean function f such that

|| f̂ ||∞ =
27
32

√
21 if m ≥ 15, odd.

They have conjectured that
inf
f∈Vm
|| f̂ ||∞ ∼

√
q.

Theorem 13.5. If f is a boolean function on Vm, we have

lim
m→∞

|| f̂ ||∞√
2q log q

= 1

with probability one.

Notice that
√

q = || f̂ ||2 ≤ || f̂ ||4 ≤ || f̂ ||∞.

A weaker conjecture is stated as follows.
Conjecture: For f a Boolean function, it has been conjectured as

lim
m

inf
f∈Vm

|| f̂ ||4
√

q
= 1.

14 APPLICATIONS IN STRING AND M-THEORY

A polynomial of degreenN in one complex variable is

F(z) =

n∑
j=1

X jz j, X j ∈ C

is specified by its coefficients {X j}.A random polynomial is short for a probability measure
P on the coefficients. Let

P (1)
n =

 n∑
j=0

X jzJ, (X1, X2, . . . , Xn) ∈ Cn


' Cn.
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Endow Cn with probability measure dP. We call (P (1)
n , P) an ensemble of random

polynomials.

In the case of random algebraic polynomials with real random coefficients, how are
zeros or critical points distributed? Analogously, random complex geometry generalizes
polynomials to holomorphic sections of line bundles.

Counting universes in string and M-theory refers to ‘Universes’(i.e. ‘vacua’ of
string and M-theory) which are critical points of ‘superpotentials’ on the moduli space
of Calabi-Yau manifolds. This leads to investigate how many vacua are there and how are
they distributed.

Complex zeros of random algebraic polynomials concentrate in small annuli around
the unit circle S 1. In the limit as the degree n → ∞, the zeros asymptotically concentrate
exactly on S 1.

When the Gaussian random polynomials adapted to domains, we orthonormalize
polynomials on the boundary δΩ of any simply connected, bounded domain Ω ⊂ C, the
zeros of the associated random polynomials concentrate on ∂Ω.

i.e. define the inner product on P (1)
n by

〈 f , g〉∂Ω =

∫
∂Ω

f (z)g(z)|dz|

Let γn
∂Ω

be the Gaussian measure induced by 〈 f , g〉∂Ω and say that the Gaussian measure
is adapted to Ω. How do zeros of random polynomials adapted to Ω concentrate?

Denote the expectation relative to the ensemble (P (1)
n , γn) by En

∂Ω
.

Theorem 14.1. En
∂Ω

[Zn
f ] = νΩ + O(1/n)

where νΩ is the equilibrium measure of Ω. The equilibrium measure of a compact set K is
the unique probability measure dνK which minimizes the energy

E[µ] = −

∫
K

∫
K

log |z − w|dµ(z)dµ(w).

Thus, in the limit as the degree n → ∞, random polynomials adapted to Ω act like electric
charges in Ω.

Algebraic geometers are interested in zeros of holomorphic sections. Now we focus
on critical points ∇F(z) = 0, where ∇ is a metric connection.

Critical points of Gaussian random functions come up in many areas of physics:

• as peak points of signals (Rice [71]);
• as vacua in compactifications of string and M-theory on Calabi-Yau manifolds with

flux (Giddings-Kachru-Polchinski, Gukov-Vafa-Witten);
• as extremal black holes (Strominger, Ferrara-Gibbons-Kallosh) , peak points of

galaxy distributions (Szalay et al. , Zeldovich), etc.
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The vacuum selection problem: Which X forms the ‘small’ or ‘extra’ dimensions of our
universe? How to select the right vacuum?

The vacuum selection problem in string and M-theory has applications to string and
M-theory. According to string and M-theory, our universe is 10- (or 11-) dimensional. In
the simplest model, it has the form M3,1×X where X is a complex 3-dimensional Calabi-Yau
manifold.

Finally, counting candidate universes in string theory amounts to counting critical
points of integral superpotentials, which form a lattice in the hyperbolic shell.

15 APPLICATIONS IN STATISTICAL PHYSICS

The zeros of complex Gaussian random polynomials, with coefficients such that the
density in the underlying complex space is uniform, are known to have the same statistical
properties as the zeros of the coherent state representation of one dimensional chaotic
quantum systems. It is to be noted that these polynomials arise as the wave functions
for quantum particles in a magnetic field constructed from a random superposition of states
in the lowest Landau level. A study of the statistical properties of the zeros has been
undertaken by Forrester and Honner [40] using exact formulae for the one and two point
distribution functions. They have analysed the moments of the two-point correlation in the
bulk, the variance of a linear statistic, and the asymptotic form of the two-point correlation
at the boundary. They have made a comparative study with the same quantities for the
eigenvalues of complex Gaussian random matrices.( see [40] for results and proofs.)

An important field of study in theoretical statistical physics concerns the properties of
the roots of random polynomials (see Bogomolny et al. [10]). Of particular interest is the
so-called Weyl polynomial for the complex variable where the X′ks are independent random
complex numbers with the same Gaussian probability distribution. The roots of F in the
complex plane can be mapped to a two-dimensional (2D) gas of particles with repulsive
interactions. They are spatially antibunched, and have a uniform mean density for the large
value of n. The statistical properties of the roots of the Weyl polynomial have been well
studied theoretically without any physical system to observe them directly.

Castin[13] has shown that a 2D rotating ideal Bose gas is a well suited system for this
observation. The positions of the vortices appearing in the gas are mapped to the zeroes of
the random polynomial describing the atomic state.

16 FINGERPRINTING BY RANDOM POLYNOMIAL

Prime numbers are used in several contexts to yield efficient randomized algorithm for
many problems. In these applications a randomly chosen prime p is used to fingerprint a
long character-string by computing the residue of that string, viewed as a large integer
modulo p. This method requires performing fixed -point arithmetic on k−bit integers,
where k = dlog2 pe, or atleast addition/subtraction on such integers. Rabin [68] has
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proposed a randomly chosen irreducible (prime) polynomial p(t) = Z2[t] of an appropriate
small degree k instead of the prime integer p. It turns out that it is very easy to effect a
random choice of an irreducible polynomial. The implementation of mod p(t) arithmetic
requires just length−k shift registers and the exclusive-or operation on k−bit vectors. These
operations are fast, involve simple circuit, and in VLSI require little chip area.

By randomizing the choice of the irreducible polynomial p(t), he has obtained a
provably highly dependable and efficient algorithm for every instance of the string matching
problem to be solved and protect every file against any deliberate modification, etc. For
further details one may refer to [68].

17 APPLICATIONS IN WIRELESS COMMUNICATIONS

We now focus on a problem concerning the GSM (Global System for Mobile
Communications)/ EDGE (Enhanced Data Rates for GSM Evolution) standard for mobile
phones. When designing digital receivers for such a system, the properties of the so-called
discrete-time overall channel impulse response becomes important. Specifically, the
location of the zeros of the z−transform of the discrete-time overall channel impulse
response determines the receiver’s performance. The randomness inherent in mobile
communications results in such a z−transform being a random polynomial. For wireless
communications in urban areas it is common for the coefficients of F to be mean zero
complex Gaussians, with exponentially increasing or decreasing variances. Under these
assumptions, Schober and Gerstacker [85] have derived explicit results for the location
of the zeros when the coefficients are independent. This assumption of independence,
however, was made to facilitate the computations. In practice, they state that the coefficients
are approximately uncorrelated.

With that in mind, a study the behavior of the complex zeros when the coefficients
are dependent mean zero complex Gaussians with exponentially increasing or decreasing
variances has been initiated. Using a result from Hughes and Nikeghbali [44], it is shown
that in the limit, the roots accumulate around a circle in the complex plane, uniformly
in the angle, where the radius is determined by the coefficient variances. This behavior
holds without any restrictions on the covariance function of the coefficients and corresponds
with the behavior observed by Schober and Gerstacker [85] in the independent case. The
drawback is that this result applies only to the limiting behavior, and it fails to give any
detail as to how fast this occurs or how close to the circle the zeros accumulate. Thus, to
get a more detailed analysis we need the techniques developed by Shepp and Vanderbei[89].
In order to apply these techniques when the coefficients are dependent, some concessions
must be made. Namely, it will be necessary to assume that the covariance function of the
coefficients is absolutely summable and that the spectral density does not vanish. Another
way to interpret these conditions is that it is required for the covariance of the coefficients
to decay fast.
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We state a result from Hughes and Nikeghbali [44]. Let F(z) be of the random
polynomial, and let νn(Ω) be the number of zeros of Fn(z) in the set C. Also, for 0 < r < 1
define the annulus a(r) = {z ∈ C : 1 − r ≤ |z| ≤ 1/(1 − r)}, and for 0 ≤ θ1 < θ2 ≤ 2π, let
C(θ1, θ2) be the cone in the complex plane consisting of all points with arguments between
θ1 and θ2.

Theorem 17.1. (Hughes and Nikeghbali) Assume the coefficients of F are complex
Gaussians with mean zero and unit variance. Then there exists a deterministic positive
sequence (αn), subject to 0 < αn ≤ n for all n and αn = o(n) as n→ ∞, such that

lim
n→∞

1
n
νn

(
a
(
αn

n

))
= 1, a.s.

lim
n→∞

1
n
νn (C(θ1, θ2)) =

θ2 − θ1

2π
, a.s.

In other words, we infer from the above theorem that for mean zero complex Gaussian
coefficients with unit variance, the zeros will accumulate around the unit circle in the limit,
uniformly in the angle.

Matayoshi[60] has succeeded in showing that, for the Chebyshev polynomials of the
first kind, the zeros of F converge to the equilibrium distribution. It leads to believe that
similar results should hold for the Legendre polynomials, as well as the Jacobi polynomials.

18 APPLICATIONS IN GAME THEORY

Random polynomials are indispensable in the modelling and analysis of complex
systems in which very limited information is available or where the environment changes
so rapidly. The statistical science of equilibria in large random systems provides important
insight into the understanding of the underlying physical, biological and social system such
as the complexity-stability relationship in ecosystems, bio-diversity and maintenance of
polymorphism in multi-player multi-strategy games, and the learning dynamics.

A key challenge in such study is due to the large (but finite) size of the population in
an ecological system, the number of players and strategies in an evolutionary game and the
number of nodes and connections in a social network. It is well-known that the behaviour
of the system at finite size or characterizing its asymptotic behaviour when the size tends
to infinity are of both theoretical and practical interest.

Consider the number of internal equilibria in (n + 1)−player two strategy random
evolutionary games. We consider an infinitely large population that consists of individuals
using two strategies, A and B. We denote by y, 0 ≤ y ≤ 1, the frequency of strategy A in the
population. The frequency of strategy B is thus (1− y). The interaction of the individuals in
the population is in randomly selected groups of (n + 1)−participants, that is, they interact
and obtain their fitness from (n + 1)−player games. Consider symmetric games where the
payoffs do not depend on the ordering of the players. Suppose that ai (respectively, bi) is
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the payoff that an A−strategist (respectively, B) achieves when interacting with a group of
n other players consisting i(0 ≤ i ≤ n)A strategists and (n − i)B strategists.

The average payoffs (fitnesses) of strategies A and B are respectively given by

πA =

n∑
i=0

ai

(
n
i

)
yi(1 − y)n−i and πB =

n∑
i=0

bi

(
n
i

)
yi(1 − y)n−i

Internal equilibria in (n + 1)−player two-strategy games can be derived using the definition
of an evolutionary stable strategy. They are those points 0 < y < 1 (note that y = 0 and
y = 1 are trivial equilibria in the replicator dynamics) such that the fitnesses of the two
strategies are the same πA = πB, that is

n∑
i=0

ξi

(
n
i

)
yi(1 − y)n−i = 0 where ξi = ai − bi.

In the literature, the sequence of the difference of payoffs {ξi}i is called the gain
sequence. Dividing the above equation by (1−y)n and using the transformation x = y/(1−y),
we obtain the following polynomial equation for x(x > 0)

F(x) =

n∑
i=0

ξi

(
n
i

)
xi = 0.

In random games, the payoff entries {ai}i and {bi}i are random variables, thus so are the gain
sequence {ξi}i. Therefore, the expected number of internal equilibria in a (n + 1)−player
two-strategy random game is the same as the expected number of positive roots of the
random polynomial F. The interesting and amazing fact is that it is half of the expected
number of the real roots of F due to the symmetry of the distributions (cf. [14]). This
connection between evolutionary game theory and random polynomial theory has been
revealed and exploited in recent series of papers [23].[24],[25], [26],

19 DIRECTIONS FOR FUTURE RESEARCH

We have already stated some further investigation problems in the above sections.
In addition, this is a compilation (by Sethuraman[86]) of the open problems posed by
the participants of the AIM Workshop on Random Analytic functions. For the sake
convenience, we reproduce the list of problems as stated in [86].

1. Question 1: (Wenbo Li) Consider random polynomials in one variable (real or
complex). Find the asymptotic of the norm of the largest zero as the degree of the
random polynomials tends to infinity.

2. Question 2: (Yan Fyodorov) What is the mean density of permanental polynomials ?
This is unknown for random matrices of size greater than 5 × 5.

3. Question 3: (Ashkan Nikeghbali) What can one tell about the distribution of the zeros
of the derivative of characteristic polynomial of random unitary matrix, especially near
the boundary of the unit circle.Also what can one tell about E[|F′n|s] as s tends to zero ?
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4. Question 4: (Maurice Rojas) Investigate the connections between random sparse
polygons and Newton polytopes. This should be extended to the case of random Viro
diagrams.

5. Question 5: (Balint Virag) Find a Gaussian entire function with negatively correlated
zeros. We know that there exists such a function on the unit disc. This is related to the
repulsion properties of random polynomials.

6. Question 6: (Bernard Shiffman) Does the Fubini-Study metric on P1 minimize the
expected number of critical points? There are reasons to conjecture that the answer is
Yes.

7. Question 7: (Steven Evans) Is there a necessary and sufficient condition for a given
correlation function to be the correlation function of an enire Gaussian function?

8. Question 8: (Maurice Rojas) What is the probability that a random Viro diagram
contains no sphere?

9. Question 9: (Ashkan Nikeghbali) What are the natural physical examples of random
functions with GUE zeros on the real line?

10. Question 10: (Scott Sheffield) Consider a function who Fourier transform is white
noise on the unit circle. We aim to understand the web like appearance, that is the zero
level lines of the Gaussian free field. Zelditch and Schramm make the above question
more precise.

11. Question 11: (Yan Fyodorov) Given a random entire function on order 1, real on real
line with given distribution of real zeros, what is the distribution of zeros of Fn ?

20 CONCLUSION

The purpose of this brief review is bring out a bird’s eye view of basic techniques
and possible applications in pure and applied mathematics, statistical physics, algebraic
geometry, wireless communications, and mathematical cryptography. An attempt has
been made here from quadratic equation to polynomial of general degree n with
coefficients follow different probability laws. The degree of difficulty increases when
moving from Gaussian to non-Gaussian random coefficients. In our next article, we
propose to summarise the results on some more polynomials, system of polynomials,
polynomials with several variables, irreducibility of random polynomials, polynomials
whose coefficients from some algebraic structures, polynomials with complex coefficients,
moments of number of complex zeros, etc.
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