
Neural, Parallel, and Scientific Computations 28(2020), No.3, 198 - 222

Received August 20, 2020 1061-5369 $15.00 © Dynamic Publishers, Inc.
www.dynamicpublishers.org; www.dynamicpublishers.com;
https://doi.org/10.46719/npsc20202834

Exploiting the Capabilities of Distributed Multi-Core Intel

Processors for Accelerating Dense Linear Algebra

FATMA S. AHMED AND MOSTAFA I. SOLIMAN

Computer and System Section, Electrical Engineering Department, Faculty of Engineering, Aswan

University, Aswan 81542, Egypt.

fatma.sayed@aswu.edu.eg and mossol@ieee.org/mossol@yahoo.com

Abstract. This paper exploits the capabilities of distributed multi-core Intel processors for

accelerating dense linear algebra used in most calculations of scientific computing. Some

kernels from BLAS (applying Givens rotation, rank-1 update, and matrix multiplication)

and SVD are implemented and evaluated on the target system (cluster of Fujitsu Siemens

CELSIUS R550 multi-core Intel processors). On a quad-core Intel Xeon E5410 processor

running at 2.33 GHz, the maximum performance of applying Givens rotation (Level-1

BLAS) is improved from 2.10 to 8.08, 3.00, and 3.64 GFLOPS using SIMD, multi-

threading, and multi-threading SIMD techniques, respectively. However, the use of MPI

on multiple nodes degrades the performance because the network overhead for

sending/receiving data/results dominates the overall execution time. For the same reason,

the performance of rank-1 update (Level-2 BLAS) due to using multi-threading, SIMD,

and blocking techniques degrades from 2.33 to 4.37×10-2 GFLOPS when eight nodes are

used for parallel processing. The speedups of the traditional matrix-matrix multiplication

(Level-3 BLAS) on a single quad-core Intel Xeon E5410 processor over the sequential

execution when applying SIMD, multi-threading, multi-threading SIMD, and multi-

threading SIMD blocking techniques are 3.76, 3.91, 7.37, and 12.65, respectively.

Moreover, on ten nodes, the performance of traditional matrix-matrix multiplication

reaches 99.73 GFLOPS. Finally, the executions of block Jacobi and hierarchal block Jacobi

on eight nodes with applying SIMD and multi-threading techniques give performances of

206.97 and 515.62 GFLOPS, respectively. The speedups over sequential one-sided Jacobi

are 49.8 and 124, respectively.

Keywords – ILP/DLP/TLP; MPI; SVD; SIMD; multi-threading.

1. INTRODUCTION

Nowadays, it is widely accepted that exploiting all forms of parallelism is the only

way to significantly improve the performance. The three major forms of parallelism on a

modern processor are (1) instruction-level parallelism (ILP), (2) data-level parallelism

mailto:mossol@ieee.org
mailto:mossol@yahoo.com

EXPLOITING THE CAPABILITIES OF DISTRIBUTED MULTI-CORE 199

(DLP), and (3) thread-level parallelism (TLP), which are not mutually exclusive [1].

Therefore, the use of message passing interface (MPI) on a cluster of multi-core processors

can improve the performance of applications by exploiting ILP, DLP, and TLP on a

distributed system. This paper shows how the dense linear algebra used in most

calculations of scientific computing is accelerated by exploiting the capabilities of

distributed multi-core Intel processors.

Some kernels of dense linear algebra are implemented and evaluated on a cluster

of Fujitsu Siemens CELSIUS R550 [2]. In such cluster, each computer has quad-core Intel

Xeon E5410 processor running at 2.33 GHz, L1 data cache of 32 KB and L1 instruction

cache of 32 KB for each core, shared L2 cache of 12 MB, and 4 GB of main memory, as

illustrated in Figure 1 [3]. Moreover, the target processor includes data prefetch logic and

thirty functional execution units in eleven groups (six general-purpose ALUs, two integer

units, one shift unit, four data cache units, six multimedia units, two parallel shift units,

one parallel multiply, two 82-bit floating-point multiply-accumulate units, two SIMD

floating-point multiply-accumulate units, and three branch units).

The Intel Xeon E5410 processor supports streaming SIMD extensions SSE, SSE2,

SSE3, SSE3S, and SSE4.1, see [3] for more details. The floating-point and multimedia

units include sixteen 128-bit wide registers (XMM0 – XMM15) and a separate register for

data movement. It supports Intel-64 architecture, and includes compatibility with IA-32

software. The base data word is 64 bits and byte-addressable memory. The logical address

space is 264 bytes. Intel Xeon E5410 uses a hardware register renaming technique, which

is one of the ways for exploiting ILP [4]. The same technique is also used to permit parallel

execution of loops. The architecture implements eight branch registers. The fetch technique

can read up to two instruction words per clock from the L1 cache into the pipeline. It

includes coarse multithreading hardware by which each processor core maintains context

for two threads of execution [5]. When one thread stalls during memory access, the other

thread can execute. From a software point of view, each computer in the cluster is running

Figure 1: Quad-core Intel Xeon E5410 processor for the target system.

200 FATMA S. AHMED AND MOSTAFA I. SOLIMAN

Microsoft Window 7 operating system, where Microsoft visual studio 2012 and MPICH2-

1.2.1p1 library are used for MPI programming.

Some kernels from BLAS (basic linear algebra subprograms) and SVD (singular

value decomposition as a representative example of dense matrix factorization) are

implemented and evaluated on the target system (cluster of Fujitsu Siemens CELSIUS

R550 multi-core Intel processors). Apply Givens rotation, rank-1 update, and matrix

multiplication are selected from the Level-1 (vector-vector operations) [6], Level-2

(matrix-vector operations) [7], and Level-3 (matrix-matrix operations) BLAS [8],

respectively. Applying Givens rotation is the process of replacement elements of two

vectors x and y with length n to new values according to the following equation:

[
xi

yi
] = [

c s
-s c

]
T

[
xi

yi
] , for i = 0, 1, 2, 3, … … , n-1

where xi = c×xi – s×yi and yi = s×xi + c×yi. Note that c and s are the parameters of

the Givens rotation, which can be calculated by using construct Givens rotation subroutine.

This subroutine has 6n floating-point operations (FLOPs) and performs 2n load/store

operations, where n is the vector length. The ratio of FLOPs to memory references is 3.

 The Rank-1 update is the operation of updating the elements of an n×n matrix A

by multiplying two n vectors x and y. The semantic rank-1 update is:

𝛢(𝑖,𝑗) = 𝛢(𝑖,𝑗) + 𝑥𝑖𝑦𝑗 , 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑖, 𝑗 < 𝑛.

The programming of rank-1 update has two nested loops (i and j), which results in two

variants (ij and ji). These variants take 2n2 FLOPs and have the same number of memory

references (3n2 + n). For either ij or ji variant, n2, n2, n and n2 are for loading matrix A,

loading vector y or x by n times, loading vector x or y, and storing matrix A. Although the

two variants have the same FLOPs and memory references, the performance of the ij

variant is better than that of the ji variant. This difference in the performance because of

their access patterns of memory are different, where ij access the matrix A by row (one

stride), however, by column (n stride) in ji variant. The way in which an array’s elements

are referenced is called a stride; it is equal to the difference of the addresses of successive

elements over the element size.

Matrix-matrix multiplication is a way to combine two matrices and get a third

matrix: 𝐶𝑛×𝑚 = 𝐴𝑛×𝑝 × 𝐵𝑝×𝑚. As the matrix-matrix multiplication is implemented by

using triply nested loops (i, j, and k), there are six variants (ijk, ikj, jik, jki, kij, and kji) for

the multiplication [9]. These six variants differ in their access patterns of memory;

however, they have the same number of FLOPs (2n3). These variants can be calculated by

interchanging the order of i, j, and k loops. The best variant of the conventional matrix

product is ikj because this variant accesses the memory by a unit stride. As all the elements

in a loaded cache line are used, the use of unit stride leads to higher performance. As the

ikj variant is the best one, it is used on all implementations of SIMD, multi-threading, and

MPI discussed in the next sections.

In linear algebra, singular value decomposition (SVD) is an important factorization

of a real matrix. It is used in many applications such as signal processing, data mining,

EXPLOITING THE CAPABILITIES OF DISTRIBUTED MULTI-CORE 201

statistics, etc. [10-11]. SVD problem is a very computationally intensive problem that

needs to exploit the growing availability of parallel hardware. The factorization of a real

matrix Am×n (m ≥ n) into the product of three matrices is called SVD as follows:

Am×n = Um×m∑m×nV
T

n×n,

where, Um×m and Vn×n are orthogonal matrices (i.e., UTU = Im and VTV = In), which contain

m left and n right singular vectors respectively, and ∑m×n is a diagonal matrix diag (σ1, σ2,

σ3,…, σn) on the top of m – n rows of zeros. There are relationships between the singular

values of Am×n (σi) and its singular vectors (ui and vi) as follows:

Avi = σiui and ATui = σivi.

Many researchers have worked on designing efficient techniques to compute SVDs

on parallel to reduce the execution time, especially for real time applications [12, 13].

Soliman [14] presented a block Jacobi algorithm for computing SVD on multiple

processors. This algorithm partitions the rows of the input matrix into 2P blocks (panels of

rows), where P is the parallel processing cores. Each core computes the computation of

two blocks. On large matrix sizes, the performance of the block Jacobi algorithm decreases,

because of increasing the rate of cache misses. For computers with memory hierarchy, it is

preferable to perform the computation on blocks of data instead of vectors to reduce the

impact of memory latency by reusing the loaded data in cache memories. Moreover,

Soliman [15] proposed a new algorithm called hierarchal block Jacobi (HBJ) for parallel

computing SVD on multi-level memory hierarchy architectures by restructuring the well-

known one-sided Jacobi method. HBJ partitions the given matrix into super-rows (panels

of rows) to exploit the memory hierarchy by performing all computations on super-rows

instead of on rows. Each super-row consists of a set of consecutive rows of the input matrix.

To compute HBJ on P parallel processing cores, these super-rows are partitioned into 2P

blocks. The block Jacobi and HBJ algorithms are based on Hestenes one-sided Jacobi

method [16] because it is the best approach for achieving efficient parallel SVD

computation (see [12] for more detail).

The rest of this paper is organized as follows. Section 2 evaluates the performance

of applying Givens rotation (Level-1 BLAS) on a single node and multiple nodes of Intel

Xeon processors. The performance of rank-1 update (Level-2 BLAS) is evaluated in

Section 3. Section 4 analyses in details the performance of matrix-matrix multiplication

(Level-3 BLAS) on a cluster of Intel Xeon processors. Section 5 discusses in details the

performance of SVD based on one-sided Jacobi on a single node and multiple nodes of

Intel Xeon processors. The performance of SVD based on HBJ is evaluated in Section 6.

Section 7 concludes this paper and gives directions for future work.

202 FATMA S. AHMED AND MOSTAFA I. SOLIMAN

2. Performance Evaluation of Applying Givens Rotation (L1 BLAS)

2.1 Superscalar Performance

Applying Givens rotation subroutine is used in many applications including QR

decomposition, solving linear system equations, and singular value decomposition (SVD)

[17]. In this section, applying Givens rotation is implemented and evaluated on vectors

with very small, small, medium, large and very large lengths that ranged (100 – 1000),

(1000 – 10,000), (10,000 – 100,000), (100,000 – 1,000,000), and (1,000,000 – 2,000,000),

respectively. The content of these vectors are generated randomly to have a value in the

interval [1-10]. Figure 2 shows the performances of the superscalar, SIMD, multi-

threading, and multi-threading SIMD implementations of applying Givens rotation in

GFLOPS on out-of-order superscalar (Intel Xeon E5410) processor. For very small, small,

and medium vector lengths fitted in L2 cache, the performance increases as increasing the

vector lengths. It shows the superscalar performance increases from 1.75 GFLOPS to 1.96

GFLOPS when the length of the given vector increases from 100 to 1000 (see Figure 2a).

Moreover, it is continuing to increase reaching 1.98 GFLOPS on vector length of 10,000

elements (see Figure 2b). For medium vector lengths (10,000 – 100,000), the performance

increases until it reaches to 1.99 GFLOPS, as shown in Figure 2c. For large vector lengths

Figure 2: Performance of applying Givens rotation routine on a single node.

 (c) Medium vector lengths

(d) Large vector lengths (e) Very large vector lengths

0

1

2

3

4

5

6

G
Fl

o
p

s/
se

c

Vector Len

SIMD Seq Thrd_SIMD Thrd

0

1

2

3

4

5

6

7

8

G
Fl

o
p

s/
se

c

Vector Len

SIMD Seq Thrd_SIMD Thrd

0

1

2

3

4

5

6

7

8

G
Fl

o
p

s/
se

c

Vector Len

SIMD Seq Thrd_SIMD Thrd

0

1

2

3

4

5

6

7

8

9

G
Fl

o
p

s/
se

c

Vector Len

SIMD Seq Thrd_SIMD Thrd

0

1

2

3

4

5

6

7

8

9

G
Fl

o
p

s/
se

c

Vector Len

SIMD Seq Thrd_SIMD Thrd

 (b) Small vector lengths (a) Very small vector lengths

EXPLOITING THE CAPABILITIES OF DISTRIBUTED MULTI-CORE 203

(100,000 – 1,000,000), the performance increases from 1.99 to 2.03 GFLOPS, as shown in

Figure 2d. For very large vector lengths (1,000,000 – 2,000,000), the performance still

increases until it reaches to 2.1 GFLOPS on vector length 1,500,000. However, when the

vector length increases over 1,500,000, the performance decreases to 1.09 GFLOPS (see

Figure 2e) because the vectors are not fitted in L2 cache (12 MB). L2 can hold up to 1.5

million single-precision elements for two vectors. Therefore, the rate of cache miss

increases and the performance degrades when the vector lengths increase over 1,500,000

elements.

2.2 SIMD Performance

On very small, small, and medium vector lengths fitted in L2 cache, the use of

SIMD technique improves the performance of the apply Givens rotation from 2.59 to 5.33

(see Figure 2a), from 5.33 to 6.89 (see Figure 2b), and from 6.89 to 7.36 GFLOPS (see

Figure 2c), respectively. It achieves speedups from 1.5 to 2.7, from 2.7 to 3.47, and from

3.47 to 3.7, respectively. On large vector lengths that are still fitted in the L2 cache, the

performance improves to reach 7.81 GFLOPS on 1,000,000 elements as shown in Figure

2d, which results in a speedup of 3.84. Increasing the vector length, furthermore, does not

improve the performance drastically. A performance of about 8.08 GFLOPS is achieved

on 1,500,000 elements, which results in a speedup of about 3.84 representing 96% from

the ideal value. However, increasing vector length over 1,500,000 elements, which does

not fit in L2 cache, degrades the performance to 3.63 GFLOPS, as shown in Figure 2e.

Therefore, the speedup decreases to 3.58 on vector length of 2,000,000 elements.

2.3 Multi-threading SIMD Performance

Multi-threading technique does not improve the performance on very small, small,

and medium vector lengths because of the thread creation overhead. The performance

reaches to 0.018, 0.168, and 1.31 GFLOPS on 1000, 10,000, and 100,000 vector lengths,

respectively (see Thrd curve in Figure 2). The performance of multi-threading SIMD

implementation (Thrd_SIMD curve in Figure 2) reaches to 0.019, 0.172, and 1.48 GFLOPS

at 1000, 10,000, and 100,000 vector lengths, respectively. Note that these performances

are worse compared to the sequential (unparallel superscalar) implementation (Seq curve

in Figure 2). When the vector lengths are large enough to overcome the threads creation

overhead, the performance using multi-threading and multi-threading SIMD techniques

improves, as shown in Figures 2d and 2e for large and very large vector lengths,

respectively. The performance of the multi-threading implementation increases to 2.58

GFLOPS (for vector length of 1,000,000), and 3 GFLOPS (for vector length of 1,500,000).

Such performance contributes to gain speedups of 1.27 and 1.42 for large and very large

vector lengths, respectively. For multi-threading SIMD implementation, the performance

improves to 3.45 GFLOPS (speedup of 1.69) and to 3.64 GFLOPS (speedup of 1.73) for

vector lengths of 1,000,000 and 1,500,000, respectively. When the vector lengths are very

large and cannot fit in the L2 cache, the performance begins to decrease because of

204 FATMA S. AHMED AND MOSTAFA I. SOLIMAN

increasing cache misses. Applying multi-threading technique on 2,000,000-element vector

provides performance of 1.33 GFLOPS, while, multi-threading SIMD technique

contributes to a performance of 1.67 GFLOPS for same vector length, as shown in Figure

2e. As the cache miss rate affects the sequential implementation for the very large vector

lengths, the speedup is not drastically decreased. For a vector length of 2,000,000, speedup

decreases to 1.31 and to 1.65 when applying multi-threading and multi-threading SIMD

techniques, respectively. Due to the L2 cache sharing between the four threads, there is a

contention on the cache. Therefore the performance of the Thrd_SIMD is lower compared

to the SIMD implementation, as shown in Figure 2.

2.4 MPI Performance

The MPI implementations of applying Givens rotation are evaluated on a number

of computers ranged from 2 to 10. As each computer does little amount of work (O(n) on

n-element vectors), the processing time is too low compared with the sending/receiving

time. For example, on very large vector length (2,000,000 elements), the time for

sending/receiving data on two nodes is about one second, however, the processing time is

2.15×10-3, 6.89×10-4, 9.42×10-4, and 8.89×10-4 seconds for the sequential, SIMD, multi-

threading, and multi-threading SIMD implementations, respectively. Thus, the

performance of applying Givens rotation decades due to using MPI on distributed system.

Figure 3a shows the performance in GFLOPS of the sequential implementation on

2 to 10 computers. As shown in Figure 2, the maximum performance on one node on vector

Figure 3: Performance of applying Givens rotation on multiple nodes.

(a) Sequential (b) SIMD

(c) Multi-threading (d) Multi-threading SIMD

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

4.00E-02

4.50E-02

5.00E-02

G
FL

O
P

s/
se

c

Vector Len

10nodes 9nodes 8nodes 7nodes 6nodes
5nodes 4nodes 3nodes 2nodes

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

1.00E-01

1.20E-01

1.40E-01

1.60E-01

1.80E-01

2.00E-01

G
FL

O
P

s/
se

c

Vector Len

10nodes 9nodes 8nodes 7nodes 6nodes
5nodes 4nodes 3nodes 2nodes

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

8.00E-02

9.00E-02

1.00E-01

G
FL

O
P

s/
se

c

Vector Len

10nodes 9nodes 8nodes 7nodes 6nodes
5nodes 4nodes 3nodes 2nodes

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

1.00E-01

1.20E-01

G
FL

O
P

s/
se

c

Vector Len

10nodes 9nodes 8nodes 7nodes 6nodes
5nodes 4nodes 3nodes 2nodes

EXPLOITING THE CAPABILITIES OF DISTRIBUTED MULTI-CORE 205

length of 1,500,000 elements is 2.1 GFLOPS. This performance decreases to 1.13×10-2,

1.41×10-2, 1.99×10-2, 2.49×10-2, 2.85×10-2, 3.33×10-2, 3.68×10-2, 3.99×10-2, and 4.38×10-

2 GFLOPS on 2, 3, 4, 5, 6, 7, 8, 9, and 10 nodes, respectively. The performance of the

SIMD implementation on multiple nodes of computers decreases from 8.08 GFLOPS to

3.85×10-2, 4.19×10-2, 5.82×10-2, 9.10×10-2, 1.05×10-1, 1.21×10-1, 1.30×10-1, 1.55×10-1, and

1.72×10-1 GFLOPS, respectively, see Figure 3b. The performance of the multi-threading

implementation on 2 to 10 computers decreases to 1.72×10-2, 2.15×10-2, 3.03×10-2,

3.80×10-2, 4.35×10-2, 5.08×10-2, 5.61×10-2, 6.08×10-2, and 6.68×10-2 GFLOPS,

respectively, see Figure 3c, where the maximum performance on the same vector length

(1,5000,000 elements) on a single node is 3 GFLOPS. Finally, the performance of the

multi-threading SIMD implementation decreases from 3.64 GFLOPS to 2.16×10-2,

2.70×10-2, 3.81×10-2, 4.77×10-2, 5.46×10-2, 6.38×10-2, 7.05×10-2, 7.64×10-2, and 8.39×10-

2, respectively, as shown in Figure 3d.

3. Performance Evaluation of Rank-1 Update (L2 BLAS)

3.1 Superscalar Performance

For small matrix sizes, the performance of rank-1 update enhances with increasing

the matrix size. The performance of the ij variant improves until 1.11 GFLOPS at matrix

size 1000×1000 (see Figure 4a). However, the performance decreases for large matrix sizes

because of the cache miss, see Figure 4b.

3.2 SIMD Performance

Due to using SIMD technique, the performance of the rank-1 update is improved

with increasing matrix sizes fitted in the L2 cache. On small matrix size (1000×1000), the

performance of rank-1 update increases reaching 3.93 GFLOPS (see SIMD curve in Figure

4a). This results in a speedup of 3.54. However, on large matrix sizes, that are too large to

fit in the L2 cache (larger than 2000×2000), the performance of rank-1 update degrades

because of the escalating cache miss rate, as shown in Figure 4b.

The performance can be improved, furthermore, using the blocking technique,

which provides the ability of reusing the loaded vector date many times. It leads to

decreasing the number of memory references. For rank-1 update based on SAXPY (scalar

s times vector x plus vector y), the number of memory references decreases from (3n2 + n)

(the worst case when using the loaded vector data only once) to (2n2 + 2n) (the best case

when reusing the loaded vector data many times, but it is not practical for large vector

lengths). Thus, the number of memory references depends on the number of the temporary

registers that are used to reusing the loaded data. A better performance is achievable with

larger temporary registers number used, because of the higher level of reusing the loaded

vector data.

206 FATMA S. AHMED AND MOSTAFA I. SOLIMAN

Attributable to using the blocking technique, the performance of the rank-1 update

is enhanced even more. On matrix size of 1000×1000 elements, its performance increases

to 4.19 GFLOPS, as shown in Figure 4a (SIMD_Blocking curve). Moreover, the speedup

improves to 3.78. As the performance depends on the size of the cache memory, the

performance decreases at large matrix sizes because of growing penalty of cache miss and

the loaded matrix is used only once, see Figure 4b (SIMD_Blocking curve). In conclusion,

the performance depends on the size of the cache memory and the number of the temporary

SIMD registers, using the higher ones gives better performance.

3.3 Multi-threading SIMD Performance

Figure 4 shows the improvements in the performance when using multi-threading

(Thrd), multi-threading SIMD (Thrd_SIMD), and multi-threading SIMD blocking

(Thrd_SIMDB) techniques. As expected, the performance speeds down for very small

matrix sizes because of the thread creation overhead. With increasing the matrix size, the

performance improves, where the effect of the thread creation overhead is decreased. The

performance keeps the growing trend until matrix size reaches 1000×1000 elements, which

is the maximum size that can fit in the L2 cache. The performance of the multi-threading,

multi-threading SIMD, and multi-threading SIMD blocking reaches 1.41, 1.73, and 2.33

GFLOPS, respectively (Figure 4a). The speedups increase to 1.27, 1.56, and 2.10,

respectively. Because the performance of Level-2 BLAS depends on the size of the cache

memory, it decreases at large matrix size, which is too large to fit in the L2 cache, (for all

the implementations) due to increased cache miss rate, as shown in Figure 4b.

(a) Small matrix sizes (b) Large matrix sizes

Figure 4: Performance of rank-1 update subroutine on a single node.

EXPLOITING THE CAPABILITIES OF DISTRIBUTED MULTI-CORE 207

3.4 MPI Performance

As the amount of transmitted/received data is larger than the number of floating-

point operations that are computed on each node, the sending/receiving time dominates the

overall time. The processing times of sequential, SIMD, multi-threading, and multi-

threading SIMD implementations on 2 nodes for rank-1 update are 1.01×10-1, 2.71×10-2,

5.78×10-2, and 4.36×10-2 seconds, respectively.

As in Level-1, Level-2 BLAS do not gain a speedup in performance on multiple

computers because of the high overhead of sending/receiving time between them. On rank-

1 update, the performance speeds down. Its performance on one node for the sequential,

SIMD, multi-threading, and multi-threading SIMD (on matrix size of 1000×1000) is 1.11,

3.93, 1.41, and 1.73 GFLOPS, respectively. When executing these implementations on

2/5/10 computers, the performance decreases to 5.83×10-3/1.43×10-2/2.59×10-2 for the

sequential implementation, as shown in Figure 5a. For the SIMD implementation, the

performance drops to 2.06×10-2/5.05×10-2/9.13×10-2 GFLOPS, respectively, as shown in

Figure 5b. Moreover, the performance of the multi-threading implementation degrades to

7.26×10-3/1.78×10-2/3.23×10-2 GFLOPS, respectively, as shown in Figure 5c. Finally, the

multi-threading SIMD implementation performance drops to 8.51×10-3/2.09×10-

2/3.78×10-2 GFLOPS, as shown in Figure 5d.

Although, the performance decreases with applying MPI technique on Level-2

BLAS, the performance of the SIMD implementation on multiple nodes is higher than the

multi-threading and multi-threading SIMD implementations. This is because of the threads

(a) Sequential

(b) SIMD

(c) Multi-threading

(d) Multi-threading SIMD

Figure 5: Performance evaluation of rank-1 update on 2 to 10 nodes.

208 FATMA S. AHMED AND MOSTAFA I. SOLIMAN

creation overhead and the fighting for the cache between threads. For example the

performances of the SIMD, multi-threading, and multi-threading SIMD for the rank-1

update subroutine executed on 10 nodes on large matrix size of 10,000×10,000 are 9.92×10-

2, 4×10-2, and 5.3×10-2 GFLOPS, respectively, see Figure 5.

4. Performance Evaluation of Matrix-Matrix Multiplication (L3 BLAS)

4.1 Superscalar Performance

On small matrix sizes (100×100 – 1000×1000), the performance of the best variant

(ikj) of matrix-matrix multiplication reaches to 1.91 GFLOPS at matrix size 1000×1000,

as shown in Figure 6a. However, when the matrix sizes became larger than 1000×1000,

the performance degrades, because larger sizes cannot fit in the L2 cache. The rate of cache

misses increases and the superscalar performance of the traditional matrix-matrix

multiplication degrades with increasing size of matrices over 1000×1000.

4.2 SIMD Performance

To take advantage of the DLP existing in the traditional algorithm of matrix-matrix

multiplication, SIMD technique is applied (see Figure 6) for parallel processing four single-

precision (32-bits) elements using a single instruction. The ikj variant that is based on

SXAPY permits the efficient use of SIMD technique as four elements in the same row from

matrix B are loaded and multiplied by a single element of the matrix A, simultaneously. As

a result of using the SIMD technique, the performance of the traditional algorithm of the

matrix-matrix multiplication improves as follows. On small matrix size (100×100), the

performance is 5.38 GFLOPS, while it reaches to 1.84 GFLOPS for the sequential

superscalar implementation. As the matrix size increases the performance improves to 7.18

GFLOPS on 1000×1000. It shows that applying the SIMD technique achieves a maximum

speedup of 3.76 at the maximum size that can fit in the L2 cache. This speedup represents

94% of the ideal performance. Because of the growing cache miss rate for large matrix

sizes, which cannot fit in the L2 cache, the SIMD performance of matrix-matrix

multiplication begins to decrease, as shown in Figure 6b.

EXPLOITING THE CAPABILITIES OF DISTRIBUTED MULTI-CORE 209

Beside SIMD technique, exploiting the memory hierarchy enhances the

performance even more. Figure 6 (SIMD_Blocking curve) shows the improvement in the

performance due to exploiting the memory hierarchy, where the performance on the small

matrix sizes increases to 8.68 GFLOPS on 100×100 and 10.33 GFLOPS at 1000×1000 (see

Figure 6a SIMD_Blocking curve). This corresponds to a maximum speedup of 5.41 at

1000×1000. Although, the performance decreases for large matrix sizes, it is better

compared to the case using SIMD technique, alone, for the same sizes. This is because of

reusing the loaded data in the cache offered by the matrix blocking technique leading to

reducing the cache miss rate. An average speedup of 3.71 is achieved for large matrix sizes,

which is considered 92.75% of the ideal speedup of the SIMD technique.

4.3 Multi-threading SIMD Performance

On small matrix sizes, the multi-threading performance improves with increasing

the matrix size until it reaches 7.48 GFLOPS on matrix size of 1000×1000 elements,

achieving a speedup of 3.91, which represents 97.75% of the ideal value, see Figure 6a

(Thrd curve). Moreover, each thread can compute its operations in parallel using SIMD

instructions. Figure 6a (Thrd_SIMD curve) shows how the combination of the two

techniques improves the performance. The performance increases to 14.07 GFLOPS on

matrix size 1000×1000. It results in a speedup of 7.37, (46.1% from the ideal value), where

the ideal speedup is 16 in the case of combining the multi-threading and SIMD techniques.

Since the cache memory is shared between the parallel threads, the performance of

the multi-threading and multi-threading SIMD implementations degrades on large matrix

sizes because of increasing the rate of cache misses. Figure 6b (Thrd and Thrd_SIMD

curves) shows the degradation in performance for large matrices that cannot be fitted in the

L2 cache. To improve their performance through reducing the rate of cache miss, each

thread exploits the memory hierarchy using the matrix blocking technique (see Figure 6).

(a) Small matrix sizes (b) Large matrix sizes

Figure 6: Performance of matrix-matrix multiplication on a single node.

210 FATMA S. AHMED AND MOSTAFA I. SOLIMAN

As explained earlier, matrix blocking technique reduces the load/store operations from/to

the main memory and reuses the loaded data in the cache memory many times. Therefore,

the combination between the multi-threading, SIMD, and matrix blocking techniques leads

to a huge improvement in the performance of the traditional algorithm of matrix-matrix

multiplication. It reaches to 24.17 GFLOPS on matrix size of 1000×1000 achieving a

speedup of 12.65 (79.1 % of the ideal) over the single threaded sequential implementation.

Moreover, for large matrix size, the performance is enhanced, leading to an average

performance of 11.63 GFLOPS and an average speedup of 12.02 (75.13% of the ideal), as

shown in Figure 6 (Thrd_SIMD_Blocking curve).

4.4 MPI Performance

All forms of parallelism (ILP, DLP, and TLP) can be applied on multiple nodes to

achieve improved performance. Multi-threading, SIMD, and matrix blocking techniques

are used on each node. In contrast to Level-1 and Level-2 BLAS, the total time of

broadcasting, sending, and receiving data is negligible compared to the processing time of

Level-3 BLAS on large matrix sizes.

On small matrix sizes, each node takes a small part from the input matrix A to

multiply by matrix B. For example, if the size of the input matrices (A and B) is 100×100

and the number of nodes is 10, each node receives the whole matrix B (100×100) and a

sub-matrix (10×100 elements) of matrix A. However, on large matrix sizes (like

10,000×10,000); the processing time is very large compared with the time spent in

sending/receiving data through the network. The arithmetic operations done on each node

consume time large enough to hide the overhead time of the network for all

implementations. For example in the sequential (Seq) implementation, the processing times

are 1033, 689, 516, 413, 344, 295, 227, 219, and 206 seconds on 2, 3, 4, 5, 6, 7, 8, 9, and

10 nodes, respectively. Furthermore, applying all parallel processing techniques together

decreases the processing time drastically. On 10 nodes, the processing times are reduced

to 206, 119, 75, 38, and 6 seconds for the sequential, SIMD, multi-threading, multi-

threading SIMD, and multi-threading SIMD blocking implementations, respectively.

Based on the above discussion, the use of MPI technique on small matrix sizes

speeds down the performance of the traditional matrix-matrix multiplication algorithm.

However, on large matrix sizes, a good performance is achievable due to using MPI and

sharing the execution between more than one computer. Figure 7 shows the performances

in GFLOPS of the sequential, SIMD, multi-threading, multi-threading SIMD, and multi-

threading SIMD blocking implementations, respectively on large matrix sizes.

EXPLOITING THE CAPABILITIES OF DISTRIBUTED MULTI-CORE 211

Firstly, for the sequential implementation of matrix size of 10,000×10,000, the

performance increases from 0.96 GFLOPS on one node to 1.82, 2.67, 3.51, 4.31, 5.08,

5.83, 6.65, 7.19, and 7.89 GFLOPS on 2, 3, 4, 5, 6, 7, 8, 9, and 10 nodes, respectively, see

Figure 7a. These improvements provide speedups of 1.89, 2.79, 3.66, 4.49, 5.30, 6.08, 6.94,

7.51, and 8.24, respectively over the sequential implementation on one node. These

(a) Sequential

(b) SIMD

Figure 7: Performance evaluation of matrix multiplication algorithm on 2 to 10 nodes.

(c) Multi-threading

(d) Multi-threading SIMD

(e) Multi-threading SIMD blocking

212 FATMA S. AHMED AND MOSTAFA I. SOLIMAN

speedups represent 94.5%, 93%, 91.5%, 89.8%, 88.3%, 86.8%, 86.7%, 83.4%, and 82.4%,

respectively, of the ideal speedup. Note that as increasing the number of nodes, the speedup

is far away from the ideal value because more network overhead is added when increasing

the number of nodes.

Secondly, for the SIMD implementation, Figure 7b shows how the performance

improves, furthermore, when applying the SIMD technique in addition to the MPI. On

matrix size of 10,000×10,000, the performance reaches to 2.59, 3.86, 4.99, 6.31, 7.35, 8.59,

9.75, 11.03, and 12.79 GFLOPS, respectively, see Figure 7b. However, on one node, the

performance of the SIMD implementation was 1.39 GFLOPS. Using the SIMD technique

in addition to MPI achieve speedups of 1.86, 2.77, 3.58, 4.53, 5.27, 6.15, 6.99, 7.91, and

9.17, respectively, over the SIMD implementation on one node. The speedups over the

sequential implementation on one node improve to 2.71, 4.02, 5.21, 6.59, 7.66, 8.96, 10.18,

11.51, and 13.34, respectively on matrix size 10,000×10,000.

The utilization of the multi-threading technique in addition to the MPI technique

can improve the performance furthermore. Figure 7c shows the performances in GFLOPS

of the multi-threading implementation on 2 to 10 nodes on large matrix sizes. On matrix

size of 10,000×10,000, the performance of the multi-threading on one node improves from

2.11 GFLOPS to 4.13, 6.02, 7.92, 9.59, 11.86, 13.49, 15.70, 17.56, and 19.17 GFLOPS,

respectively. Thus, the speedups gained using the multi-threading technique on many

computers over the performance on a single computer, using same technique, are 1.96,

2.86, 3.76, 4.55, 5.63, 6.41, 7.45, 8.33, and 9.09, respectively. In addition, speedups of

4.31, 6.28, 8.26, 10, 12.37, 14.08, 16.38, 18.32, and 20 are achieved over the sequential

implementation on one node on matrix size 10,000×10,000.

Although multi-threading or SIMD technique improves the performance of the

traditional algorithm of the matrix multiplication, the combination between these two

techniques can accelerate the execution drastically. In this case, the single node with

multiple threads can adopt SIMD instructions inside each one of them. Employing such

combination on matrix size of 10,000×10,000 leads to performance improves to 7.15 (2

nodes), 10.63 (3 nodes), 14.25 (4 nodes), 17.59 (5 nodes), 21.36 (6 nodes), 25.22 (7 nodes),

28.74 (8 nodes), 32.48 (9 nodes), and 36.16 (10 nodes) GFLOPS compared to 4.09

GFLOPS on a single node, see Figure 7d. Based on this, speedups of 1.75, 2.59, 3.48, 4.29,

5.22, 6.16, 7.02, 7.94, and 8.84, respectively, are achieved over the multi-threading SIMD

implementation on a single node. Moreover, speedups over the sequential implementation

on the single node are 7.46, 11.09, 14.86, 18.35, 22.29, 26.30, 29.99, 33.88, and 37.73,

respectively.

Finally, in addition to MPI, multi-threading, and SIMD techniques, the matrix

blocking can be used to exploit the memory hierarchy on each node and reuse the loaded

data in the cache many times. Exploiting all forms of parallelism gives the best

performance, where the performances reach to maximum values for matrix size of

10,000×10,000, which are as follow: 17.49, 26.99, 37.58, 46.99, 58.09, 68.67, 78.99, 86.80,

and 99.73 GFLOPS, respectively, as shown in Figure 7e, while the performance on single

node is 11.51 GFLOPS. The speedups compared to the multi-threading SIMD blocking

implementation on single node are 1.52, 2.35, 3.27, 4.08, 5.05, 5.97, 6.86, 7.54, and 8.67,

respectively. Due to this large improvement in the performances, the speedups over the

EXPLOITING THE CAPABILITIES OF DISTRIBUTED MULTI-CORE 213

sequential implementation on one node increase to 18.25, 28.16, 39.20, 49.03, 60.59,

71.63, 82.41, 90.55, and 104.04, respectively.

5. Performance Evaluation of SVD based on One-Sided Jacobi

5.1 Superscalar Performance

The one-sided Jacobi algorithm is implemented and evaluated on matrices with

small matrix sizes (200×200, 500×500, and 1000×1000) that can fit in the L2 cache, and

the large matrix sizes (2000×2000, 5000×5000, and 10,000×10,000) that cannot fit in the

L2 cache. These matrices hold single-precision floating-point (SP-FLOP) numbers, and

their content is generated randomly to have a value in the interval [1, 10]. Besides, the

norm of the input matrix times 10-7 is used as the convergence condition for single-

precision data. Figure 8 shows the superscalar performance of the sequential

implementation of one-sided Jacobi algorithm for SP-FLOP numbers. An average

performance of 5.93 GFLOPS is achieved on the target processor through the only

exploitation of ILP using superscalar execution, for the small matrix sizes. However, for

Figure 8: Superscalar performance in GFLOPS of the unparallel one-sided Jacobi algorithm.

(a) Performance in GFLOPS

(b) Speedup over OSJ Sequential implementation

Figure 9: SIMD performance of one-sided Jacobi algorithm.

214 FATMA S. AHMED AND MOSTAFA I. SOLIMAN

the large matrix sizes, the average performance decreases to 4.21 GFLOPS because these

matrices are too large to fit in the L2 cache, and so that the rate of cache misses increases

(3 million single-precision data can hold in L2 cache).

5.2 SIMD Performance

Figure 9 shows the SIMD performance of one-sided Jacobi algorithm. Applying

SIMD technique improves the performance of the sequential superscalar implementation,

and the performance increases with increasing the matrix size of single-precision data. At

small matrix sizes, the average performance improves to 20.93 GFLOPS (see SIMD curve)

that achieve an average speedup of 3.52 as shown in Figure 9b, which is considered 88%

of the ideal speedup. Because of the high cache miss rate at large matrix sizes, which cannot

fit in the L2 cache, the performance begins to decrease for the single-precision data, but it

is still better than the sequential implementation due to using the SIMD technique.

5.3 Multi-threading SIMD Performance

Figure 10 (BJ_Thrd curve) shows the performance of the multi-threading block

Jacobi algorithm on quad-core Intel Xeon E5410 processor, where the average

performance improves to 20.15 GFLOPS. It leads to an average speedup of 3.36 over the

OSJ sequential implementation (around 84% from the ideal) at small matrix sizes. Because

of the cache misses overhead at large matrix sizes, which are so large to fit in the L2 cache,

the performance degrades, where the average performance decreases to 14.77 GFLOPS.

Besides using multi-threading technique, to improve the performance of the block

Jacobi, DLP can be exploited to achieve more improvement using SIMD instructions. In

our implementation, each thread executes its task (calculating and applying the rotation

parameters (c, s)) using SIMD technology. Figure 10 (BJ_Thrd_SIMD curve) shows the

performance of the multi-threading SIMD implementation. For single-precision data,

processing four elements in the same time using single SIMD instruction enhances the

performance for small matrix sizes to an average of about 36.11 GFLOPS. It achieves an

average speedup of 6.03 over single threaded OSJ, that represents 37.69% from the ideal

Figure 10: Performance of the multi-threading block Jacobi algorithm.

(b) Speedup over OSJ_Seq

(a) Performance in GFLOPS

EXPLOITING THE CAPABILITIES OF DISTRIBUTED MULTI-CORE 215

value (ideal speedup is 16 due to using multi-threading SIMD for the single-precision data).

Moreover, for large matrix sizes, not only increasing the rate of cache misses affects the

performance of the multi-threading SIMD implementation, but also the time that each

thread has to wait for working on the 128-bit registers as the target processor has only

sixteen 128-bit registers for SIMD operations while there is four threads run in parallel.

These reasons cause the performance to degrade for such large sizes.

5.4 MPI Performance

Processing matrices with large sizes can diminish the overhead of the network and

can gain better performance on multiple nodes. When using one computer, the performance

of the sequential implementation of the block Jacobi is close to the performance of the OSJ

algorithm. That is because when the whole matrix is processed by a single computer, the

better performance is gained at the maximum size that can fit in the cache, and then the

performance degrades because of the cache miss penalty. When using a single computer,

the sequential implementation’s performance is 6.29 GFLOPS on matrix size 1000×1000,

and when the matrix size increases to 10,000×10,000, the performance decreases to 4.18

GFLOPS for the single-precision data. On large matrix sizes (10,000×10,000), using 2, 4,

8 computers lead to improvements in the performance of the sequential implementation of

the block Jacobi algorithm to 7.49, 15.84, and 31.18 GFLOPS, respectively, see Figure

11a. These performances achieve speedups of 1.80, 3.81, and 7.50, respectively, over the

performance of the sequential implementation of the OSJ algorithm. These speedups are

considered to be 90%, 95.25%, and 93.75% of the ideal value.

Due to using SIMD, the performance on single computer of matrix size of

1000×1000 increases to 23.24 GFLOPS, which achieve speedup of 3.73 over the sequential

implementation of OSJ, this speedup represents 93.25% of the ideal value. On 2, 4, and 8

computers, applying the SIMD technique in addition to MPI enhances the performance of

the block Jacobi algorithm on large matrix size of 10,000×10,000 to 27.47, 54.96 and

100.95 GFLOPS, respectively, see Figure 11b. Thus, speedups of 6.61, 13.22, and 24.28,

respectively, are achieved over the performance of the OSJ algorithm.

Figure 11c shows how the performance of the block Jacobi algorithm is improved

using multi-threading technique on each multi-core processor in the cluster. Because of the

cache miss, the performance on one node reaches 23.25 GFLOPS, which is the maximum

performance that can be achieved on matrix size of 1000×1000. 1000×1000 is the largest

matrix size can fit in the L2 cache. Increasing the matrix size furthermore results in

degrading the performance. However, the performance improves on large matrix sizes on

2, 4, and 8 computers, each applies the multi-threading technique. On matrix size of

10,000×10,000, the performance increases to 24.86, 54.12, and 106.97 GFLOPS,

respectively. As a result of this improvement, the speedups over the OSJ algorithm enhance

to 5.98, 13.02, and 25.73, respectively.

216 FATMA S. AHMED AND MOSTAFA I. SOLIMAN

Moreover, using the SIMD technique in addition to the multi-threading technique

on each computer of the cluster enhances the performance even more, because of three

forms of parallel processing techniques being combined together. Using this combination

improves the performance on one node to 45.55 GFLOPS on matrix size 1000×1000, which

achieve speedup of 7.30 (45.6% of the ideal value). When the matrix size increases more

(cannot fit in the L2 cache), the performance on one node decreases as increasing the rate

of cache miss. The performance degrades to 27.67 GFLOPS on large matrix size of

10,000×10,000.

Partitioning the input matrix into blocks and distributed these blocks among the

computers omits the effect of cache miss on large matrix sizes. Thus, employing multi-

threading and SIMD techniques on 2, 4, and 8 computers accelerates the execution of the

block Jacobi algorithm on large matrix sizes. On matrix size of 10,000×10,000, the

performance increases to 50.49, 103.26, and 206.97 GFLOPS, as shown in Figure 11d.

Therefore, the speedup over the OSJ algorithm enhances to 12.15, 24.84, and 49.79,

respectively.

(b) SIMD performance

Figure 11: Performance of the parallel block Jacobi algorithm on a cluster of 2, 4, and 8 nodes.

(c) Multi-threading performance (d) Multi-threading SIMD performance

(a) Sequential performance

EXPLOITING THE CAPABILITIES OF DISTRIBUTED MULTI-CORE 217

6. Performance Evaluation of SVD based on Hierarchal Block Jacobi

6.1 Superscalar Performance

Because of exploiting the memory hierarchy, reusing the data been hold in the

cache many times, and processing blocks of data instead of vectors, improve the

performance of the OSJ algorithm. Moreover, the performance does not decrease on large

matrices because the rate of cache misses decreases. Figure 12 shows the performance of

the HBJ algorithm on the Intel Xeon processor for single-precision data. On large matrix

size, 10,000×10,000, the performance increases to 10.06 GFLOPS that achieves a speedup

of 2.42 over the OSJ sequential implementation (OSJ_Seq) (see Figure 12 HBJ_Seq

curves).

6.2 SIMD Performance

Applying the SIMD technique on the HBJ for processing multiple elements in

parallel improves the performance furthermore. The performance increases to 33.69

GFLOPS that achieves speedup of 8.11 over the OSJ_Seq, and 3.35 over the HBJ_Seq.

This represents 83.75% of the ideal performance (see Figure 12 HBJ_SIMD curves).

(a) Performance in GFLOPS

Figure 12: Performance of the multi-threading hierarchal block Jacobi algorithm.

(b) Speedup over OSJ_Seq

(c) Speedup over HBJ_Seq

218 FATMA S. AHMED AND MOSTAFA I. SOLIMAN

6.3 Multi-threading SIMD Performance

Exploiting TLP on quad-core processor by creating four threads to run in parallel

on the four cores, where each thread orthogonalizes the super-rows of two blocks of the

parallel HBJ algorithm, enhances the performance of the HBJ. At large matrix size

10,000×10,000, using the multi-threading technique increases the performance to 37.85

GFLOPS. Therefore, speedups of 9.11 over the OSJ_Seq, and 3.76 over HBJ_Seq are

achievable. It represents 94% of the ideal performance (see Figure 12 HBJ_Thrd curves).

Moreover, the performance can be enhanced more when combining the multi-threading

and SIMD techniques, where each thread apply the SIMD technique individually. Thus,

the performance in GFLOPS increases to 73.91, which achieve speedups of 17.78 over the

OSJ_Seq, and 7.35 over HBJ_Seq (see Figure 12 HBJ_Thrd_SIMD curves).

6.4 MPI Performance

The performance evaluation of MPI implementations of HBJ on a cluster of 2, 4,

and 8 computers is presented in Figure 13 for single-precision data. For the sequential

implementation of the HBJ algorithm on clusters of 2, 4, and 8 computers, the performance,

for large matrix size of 10,000×10,000 increases from 10.11 on one node to 17.71, 36.41,

and 76.54 GFLOPS respectively, (see Figure 13a). As a result of this improvement, the

speedup over the OSJ increases from 2.43 to 4.26, 8.76, and 18.41 respectively. Measuring

the speedups of the performance relative to the sequential implementation on a single

computer (HBJ_Seq_1node), on 2, 4, and 8 computers the speedups are 1.75, 3.60, and

7.57, which represent 87.5%, 90%, and 94.6%, respectively, of the ideal performance.

To further improve performance of HBJ on a cluster of Xeon processors, SIMD

instructions are applied on HBJ. The performance of our implementation of HBJ algorithm

using SIMD in addition to MPI techniques on clusters with 2, 4, and 8 computers improves

from 33.79 on one node to 60.19, 118.65, and 259.97 GFLOPS, respectively, on large

matrix size of 10,000×10,000, as shown in Figure 13b. Thus, the speedups over the

performance of the OSJ_Seq improve from 8.13 to 14.48, 28.54, and 62.54, respectively.

While the performance on 2, 4, and 8 computers achieve a speedup of 1.78, 3.51, and 7.69

respectively over the HBJ_SIMD on single computer, which represents 89%, 87.75%, and

96.12% respectively, from the ideal speedup.

In addition to partition the blocks of the parallel HBJ algorithm between more than

one computer, each computer can divide its blocks into sub-blocks and processes them in

parallel by creating four threads, each thread run on a core of the Intel Xeon quad-core

processor. As a result of this combination between the MPI and multi-threading techniques,

a good performance of the parallel HBJ is achieved. On large matrix size of 10,000×10,000,

applying multi-threading technique achieves high performance of about 37.98 GFLOPS on

one node, and it increases to 67.33, 139.99, and 295.16 single-precision GFLOPS on

clusters with 2, 4, and 8 computers, respectively (see Figure 13c). Moreover, the speedups

over unparalleled OSJ increase from 9.13 to 16.19, 33.68, and 71, respectively. The

EXPLOITING THE CAPABILITIES OF DISTRIBUTED MULTI-CORE 219

speedups over HBJ_Thrd_1node are 1.77, 3.69, and 7.77 on 2, 4, and 8 computers

respectively.

Obviously, the best performance can be achieved by combining all forms of parallel

processing techniques (MPI, SIMD, and multi-threading). As Figure 13d shows, on large

matrix size of 10,000×10,000, the performance in single-precision GFLOPS of HBJ

improves from 73.98 GFLOPS on one node to 116.57, 255.76, and 515.62 GFLOPS on

clusters with 2, 4, and 8 computers, respectively. As a result of this huge improvement in

the performance, the speedups over the unparalleled OSJ algorithm are improved from

17.79 to 28.04, 61.52, and 124.03, respectively. While the speedups over the

HBJ_Thrd_SIMD_1node are 1.58, 3.46, and 6.97 on 2, 4, and 8 computers, respectively.

7. CONCLUSION AND FUTURE WORK

This paper discussed and evaluated the parallel implementations of applying

Givens rotation (Level-1 BLAS), rank-1 update (Level-2 BLAS), and matrix multiplication

(Level-3 BLAS) and the singular value decomposition algorithms on a cluster of Fujitsu

Siemens CELSIUS R550 multi-core Intel processors. It applied parallel processing

techniques to improve their performances by decreasing their execution times to run faster.

(a) Sequential performance

(b) SIMD Performance

Figure 13: Performance of the parallel HBJ on a cluster of 2, 4, and 8 nodes.

(c) Multi-threading Performance

(d) Multi-threading SIMD Performance

220 FATMA S. AHMED AND MOSTAFA I. SOLIMAN

Table 1 summarizes the maximum performances in GFLOPS on one, two, four, and eight

nodes. Applying Givens rotation (Level-1 BLAS) did not gain a performance due to using

the multi-threading and MPI techniques because of the overhead of the threads creation

and send/receive operations, respectively. However, they achieved a good performance

when using the SIMD technique at large vector lengths that can fit in the cache. A

performance of 8.08 GFLOPS was achieved for the apply Givens rotation by processing

four elements using a single SIMD instruction. Therefore, a speedup of 3.84 over the

sequential implementation could be achieved. It represented 96% from the ideal value,

which equals four.

Moreover, using the multi-threading and MPI techniques did not improve the

performance of the rank-1 update (Level-2 BLAS) because of the amount of data that each

thread or each computer works on was still small. Besides, the number of floating-point

operations was not enough to cancel the effect of the thread creation overhead or the

network overhead. On the other hand, using the SIMD technique improved the

performance of rank-1 update subroutine. The performance was enhanced to 3.93

GFLOPS, which achieved speedup of 3.54 over the sequential implementation.

Furthermore, the performance improved by exploiting the memory hierarchy by reusing

the loaded data in the cache memory many times by applying the blocking technique. The

performance increased to 4.19 GFLOPS. Therefore, the speedup increased to 3.78 that

represented 94.5% from the ideal.

Matrix-matrix multiplication (Level-3 BLAS) and singular value decomposition

are important dense linear algebra algorithms, where exploiting all forms of parallelism

improved their performance. On a single computer the performance of the traditional

algorithm of the matrix-matrix multiplication achieved speedups of 3.76, 3.91, 5.40, 7.37,

and 12.65 due to applying SIMD, multi-threading, SIMD-blocking, multi-threading SIMD,

and multi-threading SIMD blocking techniques, respectively, over the sequential

implementation on large matrix size (1000×1000) that can fit in the L2 cache. Furthermore,

the performance improved when more than one computer are used for distributed

processing. On ten computers at large matrix size of 10,000×10,000, the speedup of the

traditional algorithm over the sequential implementation increased to 8.24, 13.34, 20.00,

37.73, and 104.04 when applying the MPI, SIMD MPI, multi-threading MPI, multi-

threading-SIMD MPI, and multi-threading-SIMD-blocking MPI, respectively.

Finally, exploiting the SIMD, multi-threading, and multi-threading SIMD

techniques speeded up the performances of the parallel block Jacobi (BJ) and hierarchal

block Jacobi (HBJ) algorithms. For single-precision data, speedups of 3.73, 3.88, and 7.49

were achieved over the single threaded one-sided Jacobi (OSJ) algorithm for the block

Jacobi algorithm at matrix size of 1000×1000 (the maximum size that can fit in the cache).

However, for the HBJ algorithm the speedup increased to 8.10, 9.10, and 17.78

respectively, for single-precision data. Exploiting the capabilities of eight computers to

execute the BJ and HBJ algorithms enhanced the performance furthermore. On matrix size

10,000×10,000 of single-precision data, the speedup of the BJ algorithm over the single

EXPLOITING THE CAPABILITIES OF DISTRIBUTED MULTI-CORE 221

threaded OSJ increased to 7.50, 24.28, 25.73, and 49.79 for the MPI, SIMD MPI, multi-

threading MPI, and multi-threading-SIMD MPI techniques, respectively. In addition, the

speedup of the HBJ improved to 18.41, 62.54, 71.00, and 124.04 respectively.

Although we have discussed and evaluated parallel implementations of matrix-

matrix multiplication and singular value decomposition algorithms that exploited the

different forms of parallelism to improve their performance, a lot of work remains to be

done. The following are some key areas for future research:

• Implement and evaluate the performance of dense linear algebra algorithms on

advanced architectures like Intel Xeon Phi.

• Restructure dense linear algebra algorithms to exploit all forms of parallelism and

memory hierarchy.

• Re-implement and evaluate the BJ and HBJ algorithms after replacing round-robin

method by another to exploit memory hierarchy furthermore.

• Using the graphical processing units (GPUs) as another form of computer

parallelism to improve the performance of the parallel algorithms on cluster of

computers.

• Exploiting the cloud computing technology to execute and evaluate new

implementations of parallel algorithms.

REFERENCES

[1] J. Hennessay and D. Patterson. Computer Architecture A Quantitative Approach, Morgan

Kaufmann, 5th Edition, September 2011.

[2] Fujitsu, “data sheet of CELSIUS R550”, November 2009.

[3] Intel, Intel® Xeon® Processor 5400 Series, 2008.

Table 1: Maximum performance (GFLOPS) on 1, 2, 4, and 8 node

 Sequential SIMD Multi-threading Multi-threading SIMD
Multi-threading

SIMD blocking
 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Apply Givens
rotation

2.1 0.01 0.02 0.04 8.1 0.04 0.06 0.14 3.0 0.02 0.04 0.08 3.64 0.03 0.05 0.08 -- -- -- --

Rank-1 update 1.1 0.01 0.01 0.02 3.9 0.02 0.04 0.08 1.4 0.01 0.02 0.03 1.73 0.01 0.02 0.04 2.3 -- -- --

Matrix

multiplication
1.9 1.8 3.5 6.7 7.2 2.6 5.0 9.8 7.5 4.1 7.9 15.7 14.07 7.2 14.3 28.7 24.2 17.5 37.58 79

One-sided

Jacobi
6.2 -- -- -- 23.3 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

Block Jacobi 6.3 7.5 15.8 31.2 23.2 27.5 55.0 101.0 23.6 24.9 54.1 107.0 45.6 50.5 103.3 207.0 -- -- -- --

Hierarchal
block Jacobi

10.1 17.7 36.4 76.5 33.8 60.2 118.6 260.0 38.0 67.3 140 295.2 74.0 116.6 255.8 515.6 -- -- -- --

222 FATMA S. AHMED AND MOSTAFA I. SOLIMAN

[4] J. Ayala, M. López-Vallejo, and A. Veidenbaum, “Energy-efficient register renaming in high-

performance processors,” Proceedings of WASP, pp. 56-61, December 2003.

[5] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way multithreaded SPARC

processor,” Micro, IEEE, Vol. 25, No. 2, pp. 21-29, 2005.

[6] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, “Basic Linear Algebra Subprograms for

Fortran Usage,” ACM Transactions on Mathematical Software, Vol. 5, No. 3, pp. 308-323,

September 1979.

[7] J. Dongarra, J. Croz, S. Hammarling, and R. Hanson, “An Extended Set of Fortran Basic

Linear Algebra Subprograms,” ACM Transactions on Mathematical Software, Vol. 14, No. 1, pp.

1-17, March 1988.

[8] J. Dongarra, J. Croz, S. Hammarling, and I. Duff, “A Set of Level 3 Basic Linear Algebra

Subprograms,” ACM Transactions on Mathematical Software, Vol. 16, No. 1, pp. 1-17, March

1990.

[9] M. Soliman, “Performance Evaluation of Multi-Core Intel Xeon Processors on Basic Linear

Algebra Subprograms”, Parallel Processing Letter (PPL), World Scientific Publishing Company,

ISSN: 0129-6264, Vol. 19, No. 1, pp. 159-174, March 2009.

[10] G. Golub and F. Luk, “Singular Value Decomposition: Applications and Computations,”

Transactions of the Twenty-Second Conference of Army Mathematicians, Vol. 577, pp. 577-605,

1977.

[11] G. Golub and C. Van Loan, Matrix Computations, John Hopkins University Press, Baltimore

and London, 2nd edition, 1993.

[12] R. Brent and F. Luk, “The solution of singular-value and symmetric eigenvalue problems on

multiprocessor arrays,” SIAM Journal on Scientific and Statistical Computing, Vol. 6, No. 1, pp.

69-84, 1985.

[13] S. Rajasekaran and M. Song, “A relaxation scheme for increasing the parallelism in Jacobi-

SVD,” Journal of Parallel and Distributed Computing, Vol. 68, No. 6, pp. 769-777, 2008.

[14] M. Soliman, “Exploiting ILP, TLP, and DLP to Improve Multi-Core Performance of One-

Sided Jacobi SVD,” Parallel Processing Letters, World Scientific Publishing Company, Vol. 19,

No. 2, pp. 355-375, March 2009.

[15] M. Soliman, “Memory hierarchy exploration for accelerating the parallel computation of

SVDs,” Neural, Parallel & Scientific Computations, Vol. 16, No. 4, pp. 543-561, 2008.

[16] M. Hestenes, “Inversion of matrices by biorthogonalization and related results,” Journal of

the Society for Industrial and Applied Mathematics, Vol. 6, No. 1, pp. 51-90, 1958.

[17] F. Van Zee, R. van de Geijn, and G. Quintana, “Restructuring the QR Algorithm for High-

Performance Application of Givens Rotations,” FLAME Working Note #60, October 2011.

