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ABSTRACT. In this paper, the role of risk aversion in stochastic reinsurance games is investigated.

The state of diffusion processes in reinsurance games can be fully characterized by probability density

functions (PDFs). Therefore, we derive the associated PDFs by the Fokker-Planck equation (FPE).

General PDFs, adapted to high dimensions and with covariance terms, are given. The Chang-

Cooper scheme is extended to the high dimensions to perform numerical analysis for our problem.

The scheme is validated by an example first to show the accuracy. Then, a procedure based on

the previous scheme is developed to study the relationship between the risk aversion coefficient and

the expected utility of terminal wealth for reinsurance games numerically. With the procedure, we

can show the trend between the two. In our case, a larger risk aversion results in higher terminal

wealth. However, the benefit of raising risk aversion decays significantly after certain thresholds.

For comparison, the Monte-Carlo method is also applied, and the result reveals the same pattern as

before.

AMS (MOS) Subject Classification. 91A15, 37N30.

1. Introduction

Risk aversion consideration plays an essential role in many fields, such as actuarial

science, investment, finance, economics. [8] studied the risk aversion in optimal in-

vestment decision with an expected utility function. The relationship between the risk

aversion and incentive effects was studied in [11] with empirical data. [23] showed

that the elasticity of the intertemporal substitution between the consumption and

stock-market participation is consistent with plausible values of the risk aversion co-

efficient when using a specific preference. Due to the importance of the risk aversion

in real-world applications, multiple ways are developed to measure and estimate it.

[13] derived risk aversion functions implied by option prices and realized returns on

the S&P500 index and estimate the coefficient with a derived function. A dynamic

way to estimate the investor risk aversion from option-implied and realized volatilities
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was developed in [4]. [22] proposed using the Taylor series expansion for inferring risk

aversion coefficients to overcome some challenges in previous estimation methods. [3]

considered two types of utility functions: the exponential and quadratic utility func-

tion. Analytic expressions for the risk aversion coefficient as a function of the VaR

level were given in [3].

The non-cooperative game is not new. Many studies have been done with this

type of structure. [12] proposed an advertising game model for the manufacturer-

retailer supply chain, which covers two cooperative models and one non-cooperative

model. A similar problem was studied in [19]. In the latter paper, a specific market-

ing strategy, vertical cooperative advertising along with price decisions, was consid-

ered. Three non-cooperative games, including the Nash, Stackelberg-manufacturer,

Stackelberg-retailer, and one cooperative game were covered in the study. In these pa-

pers, the constraints of control problems are pretty simple and straightforward. The

equilibriums are not difficult to derive. They focus more on the discussion about what

the results could bring to us. In addition to the two papers, non-cooperative game

models are widely applied in many fields. Nevertheless, what kind of role the risk

aversion factor plays in such games was rarely studied even though the risk aversion

is vital in real-world decision problems.

In [16], we have discussed the stochastic reinsurance differential game, which is

governed by jump-diffusion processes. Now, a little further, we would like to study

the role risk aversion plays in reinsurance games. The state of stochastic processes

can be fully characterized by its statistical distribution, which is represented by the

probability density functions (PDFs). The evolution of the PDFs associated with

the diffusion processes in reinsurance games can be derived from the Fokker-Planck

equation (FPE). With the PDFs, the problem is transformed from stochastic to deter-

ministic. Then, with proper approximations to the FPEs, which are parabolic partial

differential equations, the impacts of different risk aversion levels on the expected

utility of terminal wealth can be explored.

The Fokker-Planck equation was introduced by Adriaan Fokker and Max Planck

to describe the time evolution of the PDF of the position and velocity of a particle,

which is one of the classical widely used equations of statistical physics. FPE is one

of the most fundamental equations in physics and plays an essential role in every

area of science. For example, [20] approximated the chemical master equation with

a continuous FPE using sparser computational grids. Then, the performance of the

numerical solution is compared with the standard Monte Carlo simulation algorithm.

The result shows that the FPE method is well suited for low-dimensional, high-

accuracy desirable problems. [10] studied a bilinear control problem subject to FPEs

where controls depend on time and space. The existence of optimal controls was

proved, and the first-order necessary optimality conditions were derived.
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Despite the importance of the FPE, however, most FPEs do not have an exact

analytic solution, and therefore, approximation and numerical approaches are neces-

sary. The commonly used methods are the adomian decomposition method (ADM),

variational iteration method (VIM), homotopy perturbation method (HPM), method

of lines, finite difference method, Fourier method, operator method, path integral

method, and finite element method.

Assuming that A(x, t), B(x, t) and C(x, t) in the general FPE are all positive

functions, [6] proposed a finite difference scheme for initial value problems of one-

dimension FPEs. This scheme provides non-negative, particle conserving numerical

solutions, which are exact representations of the analytic solution upon equilibrium.

[6] proved that the positiveness of the solution, conservation of particles, and accuracy

of the equilibrium solution could be guaranteed with such choice of δj.

[15] proposed several new numerical methods for solving a general class of linear

and nonlinear one-dimension time-dependent FPE. Built on [6], [15] remedied certain

shortcomings of the Chang-Cooper scheme. [5] shows that for a particular linear FP

operator, the explicit Chang-Cooper scheme is positive and entropy satisfying under

a Courant-Friedrichs-Levy (CFL) criterion when the initial conditions are positive.

Following [6], [18] developed an accurate second-order method that does not impose

any restrictions on the mesh size and is capable of capturing the asymptotic steady

states with arbitrary accuracy.

Combining the Chang-Cooper scheme and receding horizon model predictive con-

trol (RHMPC) scheme, [2] studied an optimal control problem. In the paper, opti-

mization problems are formulated as a sequence of open-loop optimality systems in

a receding-horizon control strategy. Then, the system is discretized by the Chang-

Cooper scheme to guarantee the positivity of the forward solution. The result is

validated with a stochastic Lotka-Volterra model and a noised limit cycle model. [17]

gave more details on the problem and showed that Chang-Cooper scheme combined

with the backward first-order and second-order finite differencing in time provides

stable and accurate solutions.

In this study, the main question we are interested in is: what does the role of risk

aversion play in the stochastic differential reinsurance game? Based on our review,

no studies have been done to reveal the exact relationship between the two. The

traditional method on reinsurance games, by the Hamilton-Jacobi-Bellman (HJB)

equation, has been explored in [16]. In this study, we would like to try another way

to tackle our principal problem. One classic stochastic control design is taking the

expectation of some utility functions depending on the path of the stochastic process

as the objective function. However, as pointed out in [14], this could be troublesome

sometimes due to, e.g., computational demand. The PDF can also describe the full

state of the stochastic process, which makes FPE is an excellent alternative to the
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classic method contingent upon the users’ resources. For example, taking expectation

is no longer needed when the Kullbak-Leibler or square distance between the target

and current PDF is applied as the objective function.

Moreover, by a suitable numerical approximation method of the FPE, problems

can get solved efficiently by a discretization scheme based on the approximation

method after target PDFs are chosen by users, as shown in [1]. Consequently, our

target is to develop a FPE-based procedure working for the general stochastic control

problem. The procedure should overcome the limitations, e.g., restraints on the di-

mensionality or covariance matrix, and assumptions based on the physical properties.

The outline of this research is as follows. In section 2, the FPE for diffusion

processes in the stochastic reinsurance game is derived to transform the problem

into a control problem governed by the PDF instead of the stochastic processes. In

section 3, the details of the Chang-Cooper scheme for the high-dimensional FPE

with covariance terms are discussed at the beginning. Then, we validate the accuracy

of our scheme with a numerical example; at last, the relationship between the risk

aversion coefficient b and expected utility of terminal wealth E[J(XT )] is studied to

show the impacts of risk aversion in reinsurance games. Section 4 gives a summary

of our results and concluding remarks.

2. The Fokker-Planck Equation of the Game

Based on [16], a formulation for the duopoly stochastic reinsurance differential
game is:

(2.1)



max
Π1

E[J(XT )]

max
Π2

E[J(YT )]

s.t.

Xt =X0 +

∫ t

0
[r(Xs − (u1

s)2) + (µ1 − r)A1
s + (c1 − δ(q1))(p1u

1
s + η)H

− (c1 − δ(q1))(p1u
1
s + p2u

2
s + 2η)Ms]ds+

∫ t

0
A1

sσ1dW
1
s

+

∫ t

0
(c1 − δ(q1))σmdW

3
s − q1

N1
t∑

i=1

Z1
i ,

Yt =

∫ t

0
[r(Ys − (u2

s)2) + (µ2 − r)A2
s − (c2 − δ(q2))(p1u

1
s + η)H

+ (c2 − δ(q2))(p1u
1
s + p2u

2
s + 2η)Ms]ds+

∫ t

0
A2

sσ2dW
2
s

−
∫ t

0
(c2 − δ(q2))σmdW

3
s − q2

N2
t∑

i=1

Z2
i ,

Mt = M0 +
∫ t
0 [(p1u1

s + η)H − (p1u1
s + p2u2

s + 2η)Ms]ds+
∫ t
0 σmdW

3
s ,

M0 ∈ [0, H].

where Xt, Yt are the wealth of the insurance company A and B at time t; r is the

risk-free rate; uit, A
i
t are the controls over the advertising and investment at time t; pi

is the advertising effectiveness coefficient; η is the market share decay constant; ci is
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the insurance premium rate; H is the maximal market potential; qi is the retention

rate; Mt is the market share of the insurance company A at time t; σ1, σ2, σm are

the constant diffusion coefficients; W 1
t ,W

2
t ,W

3
t are standard Wiener processes; Sit is

a compound Poisson process; J(·) is an utility function depending on the terminal

wealth. In addition, we have E[W 1
t W

3
t ] = ρ1t, E[W 2

t W
3
t ] = ρ2t where ρ1, ρ2 are

correlation coefficients. More details about the formulation can be found in the paper

mentioned above.

First, let us introduce the following theorem:

Theorem 2.1. Suppose we have two diffusion processes:

(2.2)

Xt := X0 +
∫ t

0
b(s,Xs,Ms)ds+

∫ t
0
σ(s,Xs,MS)dBs −

∑Nt

i=1 Yi,

Mt := M0 +
∫ t

0
b1(s,Xs,Ms)ds+

∫ t
0
σ1(s,Xs,Ms)dB

1
s ,

where E[
∫ t

0
σ(s,Xs,Ms)ds] < ∞ and E[

∫ t
0
σ1(s,Xs,Ms)ds] < ∞, Bt and B1

t are two

independent standard Wiener processes, Zt =
∑Nt

i=1 Yi is a compound Poisson process

where Yi is I.I.D., Nt is a Poisson process with the intensity λ. Then, the Fokker-

Planck equation is

(2.3)
∂P (t, x,m)

∂t
= −

[
∂[P (t, x,m)b(t, x,m)]

∂x
− λE[Y ]

∂P (t, x,m)

∂x

]
− ∂[P (t, x,m)b1(t, x,m)]

∂m

+
1

2

[
∂2[P (t, x,m)σ2(t, x,m)]

∂x2
+ λE[Y 2]

∂2P (t, x,m)

∂x2

]
+

1

2

∂2[P (t, x,m)σ2
1(t, x,m)]

∂m2
,

where P (t, x,m) is the joint probability density for (Xt,Mt).

Proof. First, since the compound Poisson process is a Lévy process, then definitely

Xt is a Lévy process which has the Markov property. Then for any continuous state

Markov processes, we have the following Chapman-Kolmogorov equation:

(2.4)

P (Xt3 ,Mt3 , t3|Xt1 ,Mt1 , t1)

=

∫
(Xt2 ,Mt2 )∈Ω

P (Xt3 ,Mt3 , t3|Xt2 ,Mt2 , t2)P (Xt2 ,Mt2 , t2|Xt1 ,Mt1 , t1)dΩ,

where P (·|·) is the transition probability of (Xt,Mt).

Consider a differentiable function f(t,Xt,Mt) = f(x,m, t) with f(t,Xt,Mt) = 0

for t /∈ (0, T ). With Proposition 8.13 of [7], we have:

(2.5)
df(t,Xt,Mt) =

(
∂f

∂t
+
∂f

∂x
b+

∂f

∂m
b1 +

1

2

∂2f

∂x2
σ2 +

1

2

∂2f

∂m2
σ2

1

)
dt

+
∂f

∂x
σdBt +

∂f

∂m
σ1dB

1
t + [f(t,Xt− − Y,Mt)− f(t,Xt−,Mt)] ,

for simplicity, we write b(s,Xs,Ms), σ(s,Xs,MS), b1(s,Xs,Ms), σ1(s,MS) as b, b1, σ, σ1.
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Hence, from (2.5), we have:

(2.6)

f(T,XT ,MT )− f(0, X0,M0) =

∫ T

0

(
∂f

∂t
+
∂f

∂x
b+

∂f

∂m
b1 +

1

2

∂2f

∂x2
σ2 +

1

2

∂2f

∂m2
σ2

1

)
dt

+

∫ T

0

∂f

∂x
σdBt +

∫ T

0

∂f

∂m
σ1dB

1
t

+

∫ T

0

∫
R
f(t,Xt− − y,Mt)− f(t,Xt−,Mt)JX(dydt),

where JX is the Poisson random measure defined as in Section 2.6 of [7] and with the

intensity µ(dtdy) = λdtF (dy).

Take expectation on both sides of (2.6), then:

(2.7)

E[f(T,XT ,MT )]− f(0, X0,M0) = E[

∫ T

0

(
∂f

∂t
+
∂f

∂x
b+

∂f

∂m
b1 +

1

2

∂2f

∂x2
σ2 +

1

2

∂2f

∂m2
σ2

1

)
dt]

+ E[

∫ T

0

∫
R
f(t,Xt− − y,Mt)− f(t,Xt−,Mt)JX(dtdy)]

= E[

∫ T

0

(
∂f

∂t
+
∂f

∂x
b+

∂f

∂m
b1 +

1

2

∂2f

∂x2
σ2 +

1

2

∂2f

∂m2
σ2

1

)
dt]

+ E[

∫ T

0
λ

∫
R
f(t,Xt− − y,Mt)− f(t,Xt−,Mt)F (dy)dt].

Considering the second term on the right first, since f(·) is a differentiable function,

then we take Taylor’s expansion:

(2.8)

E[

∫ T

0

λ

∫
R
f(t,Xt− − y,Mt)− f(t,Xt−,Mt)F (dy)dt]

= E[

∫ T

0

λ

∫
R

1

n!

∞∑
n=1

∂nf

∂xn
(−y)nF (dy)dt]

= E[

∫ T

0

λ
1

n!

∞∑
n=1

∂nf

∂xn

∫
R
(−y)nF (dy)dt]

= E[

∫ T

0

λ
1

n!

∞∑
n=1

∂nf

∂xn
E[(−Y )n]dt].

Assuming ∂nf
∂xn

is negligible when n > 2, then:

(2.9)

E[

∫ T

0

λ

∫
R
f(t,Xt− + y,Mt)− f(t,Xt−,Mt)F (dy)dt]

u E[

∫ T

0

λ

(
−∂f
∂x
E[Y ] +

1

2

∂2f

∂x2
E[Y 2]

)
dt].



RISK AVERSION IN STOCHASTIC REINSURANCE GAMES 229

Therefore, (2.7) can be written as:

(2.10)
E[f(T,XT ,MT )]− f(0, X0,M0)

= E[

∫ T

0

(
∂f

∂t
+
∂f

∂x
(b− λE[Y ]) +

∂f

∂m
b1 +

1

2

∂2f

∂x2
(σ2 + λE[Y 2]) +

1

2

∂2f

∂m2
σ2

1

)
dt]

=

∫
R

∫
R

[∫ T

0

(
∂f

∂t
+
∂f

∂x
(b− λE[Y ]) +

∂f

∂m
b1 +

1

2

∂2f

∂x2
(σ2 + λE[Y 2]) +

1

2

∂2f

∂m2
σ2

1

)]
P (t, x,m|0, X0,M0)dtdxdm.

Evaluate the right side term by term, then for the first term:

(2.11)

∫
R

∫
R

∫ T

0

∂f

∂t
Pdtdxdm =

∫
R

∫
R
[f · P |T0 −

∫ T

0

∂P

∂t
fdt]dxdm

= −
∫
R

∫
R

∫ T

0

∂P

∂t
fdtdxdm.

For simplicity, we write f(t,Xt,Mt), P (t, x,m|0, X0,M0) as f and P .

The second term:

(2.12)

∫
R

∫
R

∫ T

0

∂f

∂x
(b− λE[Y ])Pdtdxdm

=

∫
R

∫ T

0

∫
R

∂f

∂x
(b− λE[Y ])Pdxdtdm

=

∫
R

∫ T

0

[
f · (b− λE[Y ]) · P |R −

∫
R

∂(Pb)

∂x
fdx+

∫
R

∂P

∂x
λE[Y ]fdx

]
dtdm

= −
∫
R

∫
R

∫ T

0
(
∂(Pb)

∂x
− λE[Y ]

∂P

∂x
)fdtdxdm.

The third term:

(2.13)

∫
R

∫
R

∫ T

0

∂f

∂m
b1Pdtdxdm =

∫
R

∫ T

0

∫
R

∂f

∂m
b1Pdmdtdx

=

∫
R

∫ T

0

[
f · b1 · P |R −

∫
R

∂(Pb1)

∂m
fdm

]
dtdx

= −
∫
R

∫
R

∫ T

0

∂(Pb1)

∂m
fdtdxdm.
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The fourth term:

(2.14)∫
R

∫
R

∫ T

0

1

2

∂2f

∂x2
(σ2 + λE[Y 2])Pdtdxdm

=

∫
R

∫ T

0

∫
R

1

2

∂2f

∂x2
(σ2 + λE[Y 2])Pdxdtdm

=
1

2

∫
R

∫ T

0

[
∂f

∂x
· (σ2 + λE[Y 2]) · P |R −

∫
R

∂(Pσ2)

∂x

∂f

∂x
dx−

∫
R

∂P

∂x
λE[Y 2]

∂f

∂x
dx

]
dtdm

=
1

2

∫
R

∫ T

0

[
−f · (∂(Pσ2)

∂x
+ λE[Y 2]

∂P

∂x
)|R +

∫
R

∂2(Pσ2)

∂x2
fdx+

∫
R

∂2P

∂x2
λE[Y 2]fdx

]
dtdm

=

∫
R

∫
R

∫ T

0

1

2
(
∂2(Pσ2)

∂x2
+ λE[Y 2]

∂2P

∂x2
)fdtdxdm.

The fifth term:

(2.15)

∫
R

∫
R

∫ T

0

1

2

∂2f

∂m2
σ2

1Pdtdxdm =

∫
R

∫ T

0

∫
R

1

2

∂2f

∂m2
σ2

1Pdmdtdx

=
1

2

∫
R

∫ T

0

[
∂f

∂m
σ2

1P |R −
∫
R

∂(Pσ2
1)

∂m

∂f

∂m
dm

]
dtdx

=
1

2

∫
R

∫ T

0

[
−f ∂(Pσ2

1)

∂m
|R +

∫
R

∂2(Pσ2
1)

∂m2
fdm

]
dtdx

=

∫
R

∫
R

∫ T

0

1

2

∂2(Pσ2
1)

∂m2
fdtdmdx.

In conclusion, we get the following equation:

(2.16)

E[f(t,XT ,MT )]− f(0, X0,M0) =∫
R

∫
R

∫ T

0

[−∂P
∂t
− (

∂(Pb)

∂x
+ λE[Y ]

∂P

∂x
)− ∂(Pb1)

∂m

+
1

2
(
∂2(Pσ2)

∂x2
+ λE[Y 2]

∂2P

∂x2
) +

1

2

∂2(Pσ2
1)

∂m2
]fdtdxdm.

We knowE[f(T,XT ,MT )]−f(0, X0,M0) = 0 since f(T,XT ,MT ) = f(0, X0,M0) =

0 which implies

− ∂P

∂t
− (

∂(Pb)

∂x
− λE[Y ]

∂P

∂x
)− ∂(Pb1)

∂m

+
1

2
(
∂2(Pσ2)

∂x2
+ λE[Y 2]

∂2P

∂x2
) +

1

2

∂2(Pσ2
1)

∂m2
= 0,

then

(2.17)

∂P

∂t
= −(

∂(Pb)

∂x
− λE[Y ]

∂P

∂x
)− ∂(Pb1)

∂m
+

1

2
(
∂2(Pσ2)

∂x2

+ λE[Y 2]
∂2P

∂x2
) +

1

2

∂2(Pσ2
1)

∂m2
.
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By Proposition 8.14 of [7], for the following two diffusion processes:

(2.18)Xt := X0 +
∫ t

0 b(s,Xs,Ms)ds+
∫ t

0 σ(s,Xs,MS)dBs +
∫ t

0 σ1(s,Xs,MS)dB1
s −

∑Nt
i=1 Yi,

Mt := M0 +
∫ t

0 b1(s,Xs,Ms)ds+
∫ t

0 σ2(s,Xs,Ms)dB
1
s ,

where E[BtB
1
t ] = ρt, we have

(2.19)

df =
(∂f
∂t

+
∂f

∂x
b+

∂f

∂m
b1 +

1

2

∂2f

∂x2
(σ2 + σ2

1 + 2σσ1ρ)

+
∂2f

∂x∂m
(σ1σ2 + σσ2ρ) +

1

2

∂2f

∂m2
σ2

2

)
dt

+
∂f

∂x
σdBt +

∂f

∂m
σ2dB

1
t + [f(t,Xt− − Y,Mt)− f(t,Xt−,Mt)] .

Therefore, with Theorem 2.1, we can easily derive the Fokker-Planck equation

for Xt,Mt in (2.18). P (t,Xt,Mt) is the joint distribution denoted by P :

(2.20)

∂P

∂t
= −(

∂(Pb)

∂x
− λE[Y ]

∂P

∂x
)− ∂(Pb1)

∂m

+
1

2
(
∂2[P (σ2 + σ2

1 + 2σσ1ρ)]

∂x2
+ λE[Y 2]

∂2P

∂x2
)

+
1

2

∂2(Pσ2
2)

∂m2
+
∂2[P (σ1σ2 + σσ2ρ)]

∂x∂m
.

3. Numerical Examples

3.1. A Brief of the High-Dimensional Chang-Cooper Scheme. Suppose we

have the following FP equation:

(3.1)
∂tf(x, t)−

d∑
i,j=1

∂2
xi,xj

(aij(x, t)f(x, t)) +
d∑
i=1

∂xi(bi(x, t)f(x, t)) = 0,

f(x, , 0) = f0(x),

where (x, t) ∈ Ω× (0, T ), Ω ⊂ Rd and f0(x) is the chosen initial distribution, and

f = f(x, t), ∂tf =
∂f(x, t)

∂t
, ∂xif =

∂f(x, t)

∂xi
, ∂2

xi,xj
f =

∂2f(x, t)

∂xi∂xj
.

Define the flux at the i-th direction as

(3.2) F i(x, t) =
d∑
j=1

aij(x, t)∂xjf(x, t) +

[
d∑
j=1

∂xjaij(x, t)− bi(x, t)

]
f(x, t),

and denote Cij = aij(x, t), B
i =

∑d
j=1 ∂xjaij(x, t)− bi(x, t), then (3.2) can be written

as

(3.3) F i(x, t) =
d∑
j=1

Cij∂xjf +Bif,
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and we assume that Cij is a positive continuous scalar function for all i, j and Bi

satisfies the Lipschitz continuity for all i.

Suppose the time-step size is defined by ∆t = T
Tupper

where Tupper is a positive

number, then n∆t, n = 0, 1, · · · , Tupper are the time steps. Considering Ω = (0, L)d,

an uniform mesh size is applied: h = L
Lupper

where Lupper is another positive number.

The following system is used to represent the spatial position

Ωh = {xm ∈ Rd : xm = mh,m ∈ Zd} ∩ Ω.

We denote the unit vector by 1i:

1i = (0, · · · , 0, 1, 0, · · · , 0)T , i = 1, 2, · · · , d,

where 1 is the i-th element in the vector.

We consider the following backward first-order time-difference scheme:

(3.4)
∂f(xm, n∆t)

∂t
=

1

∆t
(fn+1

m − fnm),

where fnm = f(xm, n∆t). Denote ∂f(xm,n∆t)
∂t

by ∂tf
n
m for simplicity.

Moreover, with the zero-flux boundary condition F−1
2

= FLupper+
1
2

= 0, the fol-

lowing discretization scheme is applied:

(3.5) ∂tf
n
m =

1

h

d∑
i=1

(F i,n

m+ 1
2
·1i
− F i,n

m− 1
2
·1i

),

and the details of F i,n

m+ 1
2
·1i

and F i,n

m− 1
2
·1i

are given later.

Combining (3.4) and (3.5), the full picture of our scheme is as follows:

(3.6)
fn+1
m − fnm

∆t
=

1

h

d∑
i=1

(F i,n

m+ 1
2
·1i
− F i,n

m− 1
2
·1i

).

By [6], we want to find the δi,nm ∈ [0, 1
2
] for

(3.7) fn
m+ 1

2
·1i

= (1− δi,nm )fnm+1i
+ δi,nm fnm,

which is capable to guarantee the positivity of the scheme. Here, fnm+1i
= f(xm +

h1i, n∆t).

Therefore, from the definition (3.2), we have

(3.8) F i,n

m+ 1
2
·1i

=
d∑
j=1

(Cij,n∂xjf
n)m+ 1

2
·1i

+ (Bi,nfn)m+ 1
2
·1i
,

where

Bi,n

m+ 1
2
·1i

=
1

2
(Bi,n

m +Bi,n
m+1i

), Bi,n
m = Bi(xm, n∆t) and Bi,n

m+1i
= Bi(xm + h1i, n∆t),

and

Cij,n

m+ 1
2
·1i

=
1

2
(Cij,n

m +Cij,n
m+1i

), Cij,n
m = Cij(xm, n∆t) and Cij,n

m+1i
= Cij(xm + h1i, n∆t).
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From (3.7), we have

(3.9) ∂xjf
n
m+ 1

2
·1i

= (1− δi,nm )∂xjf
n
m+1i

+ δi,nm ∂xjf
n
m.

We approximate ∂xjf
n
m+1i

and ∂xjf
n
m:

(3.10) ∂xjf
n
m+1i

u
1

h
(fnm+1i+1j

− fnm+1i
),

and

(3.11) ∂xjf
n
m u

1

h
(fnm+1j

− fnm).

Plugging (3.9), (3.10) and (3.11) back into (3.8), we have

(3.12)

F i,n
m+ 1

2
·1i

=

d∑
j=1

[
Cij,n
m+ 1

2
·1i

[
(1− δi,nm )

h
(fnm+1i+1j

− fnm+1i
) +

δi,nm
h

(fnm+1j
− fnm)]

]
+Bi,n

m+ 1
2
·1i

[(1− δi,nm )fnm+1i
+ δi,nm fnm]

=
(1− δi,nm )

h

d∑
j=1

(Cij,n
m+ 1

2
·1i
fnm+1i+1j

)

+ (1− δi,nm )(Bi,n

m+ 1
2
·1i
− 1

h

d∑
j=1

Cij,n
m+ 1

2
·1i

)fnm+1i

+
δi,nm
h

d∑
j=1

(Cij,n
m+ 1

2
·1i
fnm+1j

) + δi,nm (Bi,n

m+ 1
2
·1i
− 1

h

d∑
j=1

Cij,n
m+ 1

2
·1i

)fnm.

With the similar notations, we have:

(3.13)

F i,n

m− 1
2
·1i

=
(1− δi,nm )

h

d∑
j=1

(Cij,n

m− 1
2
·1i
fnm−1i+1j

)

+ (1− δi,nm )(Bi,n

m− 1
2
·1i
− 1

h

d∑
j=1

Cij,n

m− 1
2
·1i

)fnm−1i

+
δi,nm
h

d∑
j=1

(Cij,n

m− 1
2
·1i
fnm+1j

)

+ δi,nm (Bi,n

m− 1
2
·1i
− 1

h

d∑
j=1

Cij,n

m− 1
2
·1i

)fnm.
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By ∂tf = ∇ · F and (3.3), following [6], we want to find the equilibrium solution

∂tf = 0⇔ F = 0. Considering F i,n

m+ 1
2
·1i

= 0, then (3.12) is equivalent to

(3.14)

[
(1− δi,nm )

h

d∑
j=1

(Cij,n

m+ 1
2
·1i

fnm+1i+1j

fnm+1i

)

+(1− δi,nm )(Bi,n

m+ 1
2
·1i
− 1

h

d∑
j=1

Cij,n

m+ 1
2
·1i

)

]
fnm+1i

fnm

+
δi,nm
h

d∑
j=1

(Cij,n

m+ 1
2
·1i

fnm+1j

fnm
) + δi,nm (Bi,n

m+ 1
2
·1i
− 1

h

d∑
j=1

Cij,n

m+ 1
2
·1i

) = 0.

[2] and [17] applied the following approximation by assuming that the stochastic

process has a diagonal diffusion matrix:

fnm+1i

fnm
= exp(−

Bi,n

m+ 1
2
·1i

Cii,n

m+ 1
2
·1i

h).

In [9], the same approximation was used. However, with a different reasoning: follow-

ing the Goodman’s prescription, the cross terms are neglected because the strongest

variation fo the distribution function is in the energy direction when modeling the

dynamical evolution of star clusters with the FPE. [21] developed a similar but not

identical method. In our case, the following approximation is used to account for the

impacts of the cross terms:

(3.15)
fnm+1i

fnm
= exp(−1

d

d∑
j=1

Bi,n

m+ 1
2
·1i

Cij,n

m+ 1
2
·1i

h).

Moreover, consider

F i,n
m+1i

=
d∑
j=1

(Cij,n∂xjf
n)m+1i

+ (Bi,nfn)m+1i
= 0,

which implies

(3.16) ∂xjf
n
m+1i

= −
Bi,n

m+1i
/d

Cij,n
m+1i

fnm+1i
.

Using the same approximation for the partial derivatives as above, we get

fm+1i+1j
− fm+1i

h
= −

Bi,n
m+1i

/d

Cij,n
m+1i

fm+1i
,

which gives us

(3.17)
fm+1i+1j

fm+1i

= −h
d

Bi,n
m+1i

Cij,n
m+1i

+ 1.

Combining (3.14), (3.15), and (3.17) yields δi,nm .
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In our case, d = 2, therefore, by (3.14), (3.15) and (3.17), we have:

(3.18) Ã(1− δi,nm ) + B̃δi,nm + C̃δi,nm = 0 =⇒ δi,nm =
Ã

Ã− B̃ − C̃
,

where

(3.19)

Ã = [Bi,n

m+ 1
2
·1i
−
Bi,n

m+1i

4
(2 +

Ci1,nm

Ci1,nm+1i

+
Ci2,nm

Ci2,nm+1i

)]D̃,

B̃ =
1

h

Ci1,n
m+ 1

2
·1i
exp(−h

2

2∑
j=1

B1,n

m+ 1
2
·11

C1j,n

m+ 1
2
·11

) + Ci2,n
m+ 1

2
·1i
exp(−h

2

2∑
j=1

B2,n

m+ 1
2
·12

C2j,n

m+ 1
2
·12

)

 ,
C̃ = Bi,n

m+ 1
2
·1i
− 1

h

2∑
j=1

Cij,n
m+ 1

2
·1i
,

D̃ = exp(−h
2

2∑
j=1

Bi,n

m+ 1
2
·1i

Cij,n
m+ 1

2
·1i

).

For the diagonal diffusion matrix case, such as in [2] and [17], they have

δi,nm =
Cii,n

m+ 1
2
·1i

hBi,n

m+ 1
2
·1i

− 1

exp[(hBi,n

m+ 1
2
·1i

)/(Cii,n

m+ 1
2
·1i

)]− 1
,

which is quite different from us.

Above is the sketch of the high-dimensional Chang-Cooper scheme for diffusion

processes with a non-diagonal covariance matrix. Refer to [6], [15], [2] and [17] for

more discussions on the stability, convergence and truncation error for the case with

a diagonal diffusion matrix.

3.2. The Validation of Accuracy. To illustrate the accuracy of the previous algo-

rithm, we consider the following stochastic process:

(3.20) dXt = dWt : Xt = (xt, yt)
T .

It is easy to derive the FPE for Xt:

(3.21)
∂P (x, y, t)

∂t
=

1

2

∂2P (x, y, t)

∂x2
+

1

2

∂2P (x, y, t)

∂y2
.

For the multidimensional heat equation:

(3.22)

ut = k∆u, x ∈ Rn, t > 0,

u(x, 0) = φ(x).

The solution is

(3.23) u(x, t) =

∫
Rn

φ(Y )u(X − Y )dY,

which is a convolution operation.
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Suppose the initial distribution is P (x, y, 0) = 1
2π
exp(−x2+y2

2
), then the solution

for (3.21) can be seen as the convolution between the following two random variables:

(3.24) X1 ∼ N(µ1,Σ1) : µ1 = [0, 0], Σ1 =

[
1 0

0 1

]
,

(3.25) X2 ∼ N(µ2,Σ2) : µ1 = [0, 0], Σ1 =

[
t 0

0 t

]
.

Both random variables follow the bivariate normal distribution, then the convo-

lution between the two is:

(3.26) X ∼ N(µ,Σ) : µ := µ1 + µ2 = [0, 0], Σ = Σ1 + Σ2 =

[
1 + t 0

0 1 + t

]
.

Therefore, the analytic solution to (3.21) with the initial distribution P (x, y, 0) =
1

2π
exp(−x2+y2

2
) is:

(3.27) P (x, y, t) =
1

2π(1 + t)
exp(− x

2 + y2

2(1 + t)
).

Applying our scheme for numerical approximation and comparing it with the

analytic solution yields Figure 1.

Figure 1. The PDFs at different time points of the numerical and

exact results

The top subfigure of Figure 1 is the Chang-Cooper scheme numerical approxima-

tion for (3.21), and the bottom one is the exact results from (3.27). The distributions

at four different time points t = 0, t = 0.93103, t = 1.9655, t = 3 are plotted.
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In addition to Figure 1, we validate the accuracy of our scheme with the Norm

of Error (NOE). The NOE is defined as

(3.28) ||e|| =
√

1

N
(
∑

(P num
i,j − P exact

i,j )2).

Figure 2. The norm of error

Based on Figure 2, the NOE stays at a low level, and it keeps decreasing with

time-evolving, which indicate the scheme works well.

3.3. Impacts of Risk Aversion in the Game. Combining contents discussed

above, we have:
B1 = b− λE[Y ],

B2 = b1,

C11 =
1

2
(σ2 + σ2

1 + 2σσ1 + λE[Y 2]),

C12 = C21 =
1

2
(σ1σ2 + σσ2ρ),

C22 =
1

2
σ2

2.

Hence, based on (2.1), for the insurance company A we have:

(3.29)

B1 = r(Xt − (u1
t )

2) + (µ1 − r)A1
t + (c1 − δ(q1))(p1u

1
t + η)H

− (c1 − δ(q1))(p1u
1
t + p2u

2
t + 2η)Mt − λE[Z1],

B2 = (p1u
1
t + η)H − (p1u

1
t + p2u

2
t + 2η)Mt,

C11 =
1

2
{(A1

tσ1)2 + [(c1 − δ(q1))σm]2 + 2A1
tσ1(c1 − δ(q1))σm + λE[(Z1)2]},

C12 = C21 =
1

2
[A1

tσ1σmρ1 + (c1 − δ(q1))σ2
m],

C22 =
1

2
σ2
m.
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For the insurance company B, we have:

(3.30)

B1 = r(Yt − (u2
t )

2) + (µ2 − r)A2
t + (c2 − δ(q2))(p1u

1
t + η)H

− (c2 − δ(q2))(p1u
1
t + p2u

2
t + 2η)Mt − λE[Z2],

B2 = (p1u
1
t + η)H − (p1u

1
t + p2u

2
t + 2η)Mt,

C11 =
1

2
{(A2

tσ2)2 + [(c2 − δ(q2))σm]2 + 2A2
tσ2(c2 − δ(q2))σm + λE[(Z2)2]},

C12 = C21 =
1

2
[A2

tσ2σmρ2 + (c2 − δ(q2))σ2
m],

C22 =
1

2
σ2
m.

In [16], the exponential utility function J(x) = γ− a
b
e−bx is applied. In the utility

function, γ is a desired level determined by experts whom insurance companies hire;

a is a coefficient controlling the shape; b is the risk aversion coefficient of insurance

companies. Then, the two-control-variables optimal strategies for (2.1) are:

(3.31) (A∗1, u
∗
1) = (

(µ1 − r)− ρ1σ1σm∆1b

σ2
1be

r(T−t) ,
p1(H −m)∆1

2rer(T−t)
),

and

(3.32) (A∗2, u
∗
2) = (

(µ2 − r) + ρ2σ2σm∆2b

σ2
2be

r(T−t) ,
p2m∆2

2rer(T−t)
),

where ∆1 = c1 − δ(q1) > 0 and ∆2 = c2 − δ(q2) > 0.

To study the relationship between b and the expected utility of terminal wealth

E[J(XT )] the following procedure is developed:

1. Generate wealth paths forXt, Yt,Mt and record the states ofXt, Yt, u
1
t , u

2
t , A

1
t , A

2
t ,mt

at each time point;

2. Plug the values getting from Step 1 into (3.29) and (3.30) to approximate the

joint distribution P (x,m, T );

3. Run steps 1 and 2N times and take average of P (x,m, T ), the averaged P (x,m, T )

is the desired result;

4. Calculate the marginal distribution PX(x, T ) based on the averaged joint PDF,

then estimate the parameters for the marginal PDF;

5. Calculate the expectation for the terminal utility function: E[J(XT )] = γ −
a
b
E[e−bXT ] with the distribution parameters getting from the previous step.

In our case, the previous procedure is modified a little due to the time-saving

consideration:

1. GenerateN wealth paths forXt, Yt,Mt and take the mean forXt, Yt, u
1
t , u

2
t , A

1
t , A

2
t ,mt

at each time point;

2. Plug the means getting from Step 1 into (3.29) and (3.30) to approximate the

joint distribution P (x,m, T );
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3. Calculate the marginal distribution PX(x, T ) based on P (x,m, T ), then estimate

the parameters for the marginal PDF;

4. Calculate the expectation for the terminal utility function: E[J(XT )] = γ −
a
b
E[e−bXT ] with the distribution parameters getting from the previous step.

The following parameter values are used to generate numerical examples:

Table 1. Values of parameters

r 0.02 µ1 0.04 µ2 0.06 η 0.01 σ1 0.08 σ2 0.13

H 2.00 ∆1 0.15 ∆2 0.20 σM 0.05 p1 0.05 p2 0.04

a 1 q1 0.6 q2 0.6 γ 1 λ1 1.0 λ2 2.0

Z1 exp(12) Z2 exp(16) ρ1 0.10 ρ2 0.05

In our case, it is assumed that we have the following initial distribution function:

(3.33) P (x,m, 0) =
1

2π
√
V ar(XT )V ar(MT )

exp(− (x− X̄T )2

2V ar(XT )
− (y − M̄T )2

2V ar(MT )
),

which is a bivariate normal distribution which has no interactions between variables

at time 0. Besides, we assume that x ∈ [X̄T − 6
√
V ar(X̄T ), X̄T + 3

√
V ar(X̄T )],m ∈

[M̄T − 5
√
V ar(M̄T ), M̄T + 5

√
V ar(M̄T )]. Moreover, due to the similarity between

the insurance company A and B, the analysis for company B is skipped here.

To get an accurate approximation of E[J(XT )], first, we need to figure out the

best mesh size. The marginal distributions for XT and MT are plotted under various

grid settings to observe the difference.

Figure 3. The marginal distribution of Xt with different grid settings

The legends of Figure 3 and Figure 4 indicate the number of steps (NOS) for

Xt,Mt, t, which is the size of the mesh. The default NOS of t is 50. In this test, the

risk aversion coefficient b = 2.

From Figure 3 and Figure 4, we can see that the marginal distribution of XT

is more unstable than MT . In the real case, due to the time consideration, we have
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Figure 4. The marginal distribution of Mt with different grid settings

to make a trade-off between accuracy and efficiency. Eventually, we believe that the

best balance is acquired when the size of the mesh is 300 ∗ 300 ∗ 150.

By our scheme, we can record the full evolution of the FPE. Hence, we can

visually check the joint PDF P (x,m, t) at different time points in Figure 5:

Figure 5. The evolution of the joint PDF P (x,m, t)

In Figure 5, the joint PDF is more concentrated at the beginning and gets diluted

toward the end due to the interaction between Xt and Mt during the evolution. One

more thing we can see directly is: starting from a bivariate normal distribution, it

seems like the same distribution remains at T = 1 by eyes. This claim gets double-

checked later with another method.

At last, let us see what impacts the risk aversion coefficient b brings to the

expected utility of terminal wealth E[J(XT )]:

Ten different b values with the corresponding E[J(XT )] are shown in the figure.

The larger b value brings larger terminal utility, and the terminal utility is more

stable with the growth of b. When b is large enough, based on (3.31), we would have
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Figure 6. The relationship between the risk aversion b and the ex-

pected utility of terminal wealth E[J(XT )]

(A∗1, u
∗
1) → (0, p1(H−m)∆1

2rer(T−t) ). We may conclude that due to the stronger risk aversion

attitude of player 1, he would choose to allocate more resources on the advertising

and leave less money on the investment since the investment directly involving risky

assets would be more volatile and risky than the daily business, in our case, which

is the periodical collection of insurance premiums and payments of insurance claims.

When A∗1 is small enough, the (2.1) is dominated by the market competition and

insurance claims, which is a compound Poisson process. Since σ1 > σM , the terminal

utility should be more stable when b is large. Moreover, since the exponential utility

function is applied in our game, there should be a ceiling for terminal utility due to

the nature of the exponential function. The ceiling is around b = 2 in the figure.

When b gets closer to two, insurance companies approach the pre-set performance

target γ = 1, which agrees with the definition of γ in actuarial science.

We claim that the joint PDF p(x,m, t) at t = 1 is still a bivariate normal distri-

bution by a visual check from Figure 5. Here, more evidences are given to support

the statement from a statistics perspective. The next table shows how good the fit

of the bivariate normal distribution is:

We have a pretty good fit since for all b values, the SSE and RMSE are small, and

the adjusted R Square are quite close to 1. The best fit appears in the region around

b = 0.5. Ten fits have the same DFE (Degree of Freedom in the Error): 90, 596.

After validating the goodness of our fit, let us see how the parameters evolve for

the bivariate normal distribution:
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Table 2. The goodness of the bivariate normal distribution fit

b SSE R Square Adj. R Square RMSE

0.05 31.3931 0.9227 0.9227 0.0186

0.1 152.9850 0.9054 0.9054 0.0411

0.2 164.3679 0.9743 0.9743 0.0426

0.3 90.5360 0.9936 0.9936 0.0316

0.5 0.6706 1.0000 1.0000 0.0027

0.7 1.3890 1.0000 1.0000 0.0039

1.0 2.9999 1.0000 1.0000 0.0058

1.3 5.2888 1.0000 1.0000 0.0076

1.5 7.1824 1.0000 1.0000 0.0089

2.0 13.0339 1.0000 1.0000 0.0120

Table 3. The parameter evolution of the bivariate normal distribution

t = 0

µX = 6.2359 σX = 5.1200
ρX,M = 0

µM = 1.0024 σM = 0.0459

t = 1

b = 0.05

µX = 4.976

[4.899, 5.053]

σX = 1

[0.9907, 1.0090]
ρX,M = −9.03× 10−5

[−0.05887, 0.05869]
µM = 0

Fixed at bound

σM = 0.7203

[0.7135, 0.7270]

b = 1.00

µX = 4.995

[4.995, 4.995]

σX = 0.4209

[0.4209, 0.4210]
ρX,M = −9.03× 10−5

[−1.057× 10−4,−7.485× 10−6]
µM = 1.001

[1.001, 1.001]

σM = 0.07382

[0.07382, 0.07382]

b = 2.00

µX = 4.993

[4.993, 4.993]

σX = 0.2524

[0.2524, 0.2524]
ρX,M = −4.432× 10−5

[−1.057× 10−4, 1.707× 10−5]
µM = 1.001

[1.001, 1.001]

σM = 0.07426

[0.07425, 0.07426]

In 3, the interval under each parameter is the 95% Confidence Interval (C.I.). We

have the same initial distribution for all risk aversions. All C.I.s are pretty narrow,

which is another indicator of a good fit. Moreover, we can see that the C.I.s of small

b are relatively wider comparing with larger b, which is consistent with 2.

Same as in [20], a Monte-Carlo simulation is carried out for E[J(XT )] to compare

the results between the simulation and numerical method. In the simulation, N paths

of Xt, Yt,Mt under different risk aversions are generated to get XT , YT ,MT . Then we
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approximate E[J(XT )] by taking average of γ− a
b
e−bXT . In the simulation, N = 5, 000

and the NOS of t is 1, 000. The result is presented in Figure 7.

Figure 7. The relationship between the risk aversion b and the ex-

pected utility of terminal wealth E[J(XT )] (By the Monte-Carlo simu-

lation)

Figure 7 entirely agrees with Figure 6 except for minor disturbances on numbers.

It validates the correctness of our scheme again.

4. Conclusion

In this paper, we tried to analyze the role of risk aversion coefficient b in the

stochastic reinsurance game. Since PDFs can fully characterize the state of diffusion

processes, we derive the associated PDF using the FPE. A more general FPE ap-

plicable to high dimensions and with covariance terms is given. The Chang-Cooper

scheme is chosen to perform the analysis due to it is easy to understand and imple-

ment. Expansions of the scheme are discussed to make it applicable to our problem.

A simple example is used to illustrate the accuracy of our scheme. Moreover, a pro-

cedure is developed to carry out numerical analysis between the risk aversion b and

the expected utility of terminal wealth E[J(XT )]. With the procedure, the exact

pattern of the relationship between b and E[J(XT )] is revealed. In the scenario we

gave, a more significant risk aversion coefficient brings more terminal wealth, but the

marginal utility of b is subject to the exponential decay. The Monte-Carlo method is

also applied to compare the results. The result from the Monte-Carlo method further

prove the correctness of our procedure. Further explorations on this research include:
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improving the procedure to eliminate the simulation work, incorporating the optimal

control derivation into the structure, and adding the multi-player situation.
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