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ABSTRACT. In this paper we consider a portfolio consisting of three types of assets, a bond, a liquid risky
asset, and an illiquid risky asset. Liquid assets can be traded continuously whereas an illiquid asset can only
be traded at specific pre-specified times or randomly. The investor’s liquid and illiquid wealth are modeled
as stochastic differential equations (SDE). We consider a control problem governed by these SDEs. We will
model the rebalancing of the portfolio, transferring between liquid and illiquid wealth, as an impulsive control
problem. Using a dynamic programming approach and a stochastic programming approach we will determine
the the amount to transfer between the liquid and illiquid assets. Numerical examples are given to validate
the correctness for our results.
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1. Introduction

We examine the optimal portfolio rebalancing of an investor able to trade a risky liquid
and illiquid asset as well as a risk-free liquid asset. The illiquid asset can only be traded
at infrequently occurring random times. When a trading opportunity arrives, the investor
chooses the optimal mix of liquid and illiquid assets. We model the arrival of trading
opportunities as random. This captures two key features of real-world markets. First,
certain securities are only periodically marketable, as opposed to always marketable at a
cost reflecting transactions fees or price impact. This illiquidity can arise as a result of
a limited number of market participants, possibly due to the specialized skills or systems
needed to trade these assets. Second, for some illiquid assets, one may want to choose when
to rebalance.

We find that illiquidity causes the investor to behave in a more risk-averse manner with
respect to both liquid and illiquid holdings. Uncertain trading opportunities create an
unhedgeable source of risk, which causes the investor to reduce allocation to the illiquid
asset. A second effect comes from the investor’s immediate obligations (consumption), which
can be financed only through liquid wealth. If the investor’s liquid wealth drops to zero, these
obligations cannot be met until after the next rebalancing opportunity. This matches real
world settings in which investors or investment funds are insolvent, not because their assets
under management have hit zero, but because they cannot fund their immediate obligations.
As a result, the investor alters asset allocation to minimize low liquid wealth states by holding
fewer risky liquid securities. This effect causes the portfolio policy of the liquid risky asset to
be affected by illiquidity even when the liquid and illiquid asset returns are uncorrelated and
when the investor has log utility. The investor’s effective level of risk aversion endogenously
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increases in the fraction of wealth held in illiquid securities [9]. This is because taking offsetting
positions in perfectly correlated liquid and illiquid assets causes the investor’s liquid wealth
to drop to zero with positive probability and only liquid wealth funds current consumption.
In Longstaff and Ang et all [9,15] model rebalancing using jump processes such a compound
poisson process is presented. We will model rebalancing as an impulse control problem.

Our analysis falls into a long literature dealing with asset choice and various aspects of the
investor’s unwillingness or inability to continuously rebalance part of the total endowment.
Longstaff [15] investigates the effects of periodic market closures where the entire market is
closed deterministically. Our portfolio choice is simultaneously done over liquid and illiquid
assets and we are able to trade the illiquid asset at deterministic time as well as random
times. Viewing rebalancing has not been studied to this extent to model rebalancing times.

Many evolution processes are characterized by the fact that at certain moments of time they
experience a change of state abruptly. These processes are subject to short-term perturbation
whose duration is negligible in comparison with the duration of the process. Consequently,
it is natural to assume that these perturbations act instantaneously, that is, in the form
of impulse [8]. For such an idealization, it becomes necessary to study dynamical system
with discontinuous trajectories, and they might be called differential equations with impulses
or impulsive differential equations [7]. Theories involving impulsive control systems have
been widely studied [18]. Impulsive control problems arise in many modeling problems
such as treatment of diseases, production planning and inventory management, pest control,
engineering, economics, finances, management science and the physical sciences

2. Model

Consider an investor who has a portfolio composed of riskless bond, a risky liquid asset and
a risky illiquid assets. Following [9], the first asset is a riskless bond,

dBt

Bt

= rdt

with interest rate r. The second is a liquid risky asset,

dSt

St

= µdt+ σdZ1
t

with drift µ and volatility σ. These two assets are considered liquid assets because they can
be rebalanced continuously. Our third asset is a risky illiquid asset

dPt

Pt

= vdt+ ψρdZ1
t + ψ

√
1− ρ2dZ2

t

with drift v, volatility ψ, and ρ represents the correlation between the return of the two risky
assets. We will assume Z1

t and Z2
t are independent Brownian Motions. The third asset is

considered illiquid because the asset can only be rebalanced at certain times.
Let Wt and Xt be in the investor’s liquid and illiquid wealth respectively and θt be the

fraction of wealth invested in the liquid risky asset and the riskless bond. Since we are
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considering the case when we are not rebalancing our model of our portfolio is,

dWt

Wt

= (1− θt)
dBt

Bt

+ θt
dSt

St

− Ct

Wt

dt

dXt

Xt

=
dPt

Pt

Certain utility functions are commonly used such as quadratic utility function, exponential
utility function and power utility function [Gerber and Pafumi (1999)]. For our purposes we
will use a quadratic utility function. In [Ang 2010] they used a constant relative risk aversion
(CRRA) utility function,

U(C) =

{
C1−γ

1−γ
γ > 1

log(C) γ = 1

Under constant relative risk aversion the fraction of wealth optimally placed in the risky asset
is independent of the level of initial wealth. When using a dynamic programming approach
it’s beneficial to be able to isolate our consumption, ct = Ct/Wt. Using the CRRA utility
function makes it difficult to isolate and derive our Hamilton Jacobi Bellman (HJB) equation.
Therefore, we chose a quadratic utility function,

(2.1) U(Ct) = α3 + α1Ct − α2C
2
t

where α1, α2 and α3 are constants.
Next, we will derive the Hamilton-Jacobi-Bellman Equation (HJB) for our portfolio and

we will find an explicit form for our controls, ct and θt.
First, we will derive our HJB equation. For

dWt

Wt

= rdt+ (µ− r)θtdt− ctdt+ θtσdZ
1
t

dXt

Xt

= vdt+ ψρdZ1
t + ψ

√
1− ρ2dZ2

t

where, ct =
Ct

Wt
is the ratio of consumption to liquid wealth.

Let ϕ(t0,Wt0 , Xt0) = ϕ(t, w, x) = E
[ ∫ τ

t
e−βtU(Ct)dt + K(τ,X(τ),W (τ))

]
, where τ is a

stopping time. Later in this section, we will discuss ϕ(t,Wt, Xt) more fully. Since we’re
considering a finite interval, we will ignore e−βt. As mentioned in the introduction, we will
use a quadratic utility function,

U(Ct) = α1Ct − α2C
2
t + α3

where α1, α2 and α3 are constants.

Proposition 2.1. The Hamilton Jacobi Bellman (HJB) Equation is given by
(2.2)

0 = max
ct,θt

U(ctw)+ϕt+(r+(µ−r)θt−ct)wϕW+vxϕX+
1

2
σ2θ2tw

2ϕWW+σρψθtwxϕWX+
1

2
ψ2x2ϕXX

We consider a value function of the form,

(2.3) ϕ(t, w, x) = A(t) +B(t)w +D(t)x+ E(t)w2 + F (t)x2
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with terminal condition,

(2.4) ϕ(T,w, x) = (k0w + k1)
2 + (k2x+ k3)

2.

Our objective is to look for explicit solution for the value function that is consistent with the
idea of rebalancing.

Proposition 2.2. From the HJB equation the optimal decision variables are

(2.5) ct = − 1

α2

E(t) and θt =
−(µ− r)(α1 + 2E(t)w)

2σ2E(t)w
,

where 0 ≤ ct ≤ 1 and 0 ≤ θt ≤ 1.

Proof. From proposition 2.1 we have the following relationships,

U ′(ctW )− wϕW = 0

U ′(ctW ) = wϕW

w(α1 − 2α2ctw) = w(B(t) + 2E(t)w)

Therefore,

B(t) = α1 and ct = − 1

α2

E(t).

To ensure that, 0 ≤ ct ≤ 1, α2 needs to be large enough to ensure ct is less than 1. Also,
either α2 or E(t) needs to be negative, but not both. Solving for control variable θt we have

(µ− r)wϕW + σ2w2ϕWW θt + σψρwxϕWX = 0

θt =
−(µ− r)ϕW

σ2wϕWW

(ϕWX = 0)

θt =
−(µ− r)(α1 + 2E(t)w)

2σ2E(t)w
(B(t) = α1)

Recall that, 0 ≤ θt ≤ 1. Thus, if E(t) is positive use α1 to ensure that θt is positive and less
than 1.

We now proceed to find explicit solution for the HJB equation. Using Proposition 2.1 our
HJB equation becomes

(2.6) 0 = A′(t)− (µ− r)α2
1

4σ2E(t)
+ α3 +

[
rα1 −

(µ− r)2

σ2
α1

]
w +

[
D′(t) + vD(t)

]
x

+

[
E ′(t) +

1

α2

E(t)2 + 2rE(t)− (µ− r)2

σ2
E(t)

]
w2 +

[
F ′(t) + 2vF (t) + ψ2F (t)

]
x2

Thus we obtain the following system of nonlinear differential equations,

A′(t) =
(µ−r)2α2

1

4σ2E
− α3

0 =
(
r − (µ−r)2

σ2

)
α1

D′(t) = −vD(t)

E ′(t) = (µ−r)2

σ2 E(t)− 2rE(t)− 1
α2
E(t)2

F ′(t) = −2vF (t)− ψ2F (t).
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Using standard methods to solve ordinary differential equations with terminal conditions
(2.4) we have the following solutions,

σ =

√
µ2

r
− 2µ+ r

A(t) =
( α1

2k0

)2
+ k23 + α3(T − t)− (µ− r)2α2

1

4σ2
( (µ−r)2

σ2 − 2r
)[ (µ−r)2−2r

k20
− 1

α2

2r − (µ−r)2

σ2

(
1− exp((

(µ− r)2

σ2
− 2r)(T − t))

)
+

1

α2

(T − t)

]
B(t) = α1

D(t) = 2k2k3 exp(v(T − t))

E(t) =
(µ−r)2

σ2 − 2r( (µ−r)2

σ2 −2r

k20
− 1

α2

)
exp

(
−

(
(µ−r)2

σ2 − 2r
)
t
)
+ 1

α2

F (t) = k22 exp((2v + ψ2)(T − t))

Note that, the k1 coefficient of the terminal condition has to be specified in order to ensure
B(t) = α1, and from (2.4) there is no need to impose restrictions on k2 and k3.

3. Predetermined Rebalancing Times

We will first, consider the case when we introduce predetermined rebalancing times, and
introduce impulses/jumps, ξi to and from the liquid and illiquid assets. Consider the time
horizon [t0, t3] with impulses at t1 and t2. We will start at the last interval, [t2, t3].

The control problem for this interval

max
c3,t,θ3,t

E[
∫ t3

t

U(c3,sw3,s)ds+
(
k0wt3 +

α3
1

2k0

)2

+ (k2xt3 + k3)
2](3.1)

subject to dW3,t = (r + (µ− r)θ3,t − c3,t)W3,tdt+ θ3,tσW3,tdZ
1
3,t

dX3,t = vX3,tdt+ ψρX3,tdZ
1
3,t + ψ

√
1− ρ2X3,tdZ

2
3,t

(3.2)

Let ϕ3(t, w, x) be the value function for this interval. Then,

ϕ3(t, w, x) = max
c3,t,θ3,t

E[
∫ t3

t

U3(c3,sw3,s)ds+
(
k0wt3 +

α1

2k0

)2

+ (k2xt3 + k3)
2]

The value function, ϕ3(t, w, x) has the form,

ϕ3(t, w3,t, x3,t) = A3(t) + α1,3w3,t +D3(t)x3,t + E3(t)w
2
3,t + F3(t)x

2
3,t.

The utility function for this interval,

(3.3) U3(c3,tw3,t) = −α2,3c
2
3,tw

2
3,t + α1,3c3,tw3,t + α3,3.

Our HJB equation becomes
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0 = A′
3(t)−

(µ− r)2α1,3

4σ2E3(t)
+ α3,3 + [rα1,3 −

(µ− r)2

σ2
α1,3]w3 + [D′

3(t) + vD3(t)]x3

+ [E ′
3(t) +

1

α2,3

E2
3(t)−

(µ− r)2

σ2
E3(t)]w

2
3,t + [F ′

3(t) + 2vF3(t)

+ ψ2F3(t)]x
2
3

Optimal control variables for this interval

(3.4) c3,t = − 1

α2,3

E3(t) and θ3,t =
−(µ− r)(α1,3 + 2E3(t)w3)

2σ2E3(t)w3

.

We now have the following system of nonlinear differential equations,

A′
3(t) =

(µ−r)2(α1,3)2

4σ2E3(t)
− α3,3

0 =
(
r − (µ−r)2

σ2

)
α1,3

D′
3(t) = −vD3(t)

E ′
3(t) =

(µ−r)2

σ2 E3(t)− 2rE3(t)− 1
α2,3

E3(t)
2

F ′
3(t) = −2vF3(t)− ψ2F3(t).

where,

A3(t3) =
( α3

1

2k0

)2

+ k23,

D3(t3) = 2k2k3,

E3(t3) = k20,

F3(t3) = k22.

The coefficients become

σ =

√
µ2

r
− 2µ+ r

A3(t) =
(α1,3

2k0

)2

+ k23 + α3,3(t3 − t)− (µ− r)2(α1,3)
2

4σ2
( (µ−r)2

σ2 − 2r
)[ (µ−r)2−2r

k20
− 1

α2,3

2r − (µ−r)2

σ2

(
1

− exp((
(µ− r)2

σ2
− 2r)(t3 − t))

)
+

1

α2,3

(t3 − t)

]
D3(t) = 2k2k3 exp(v(t3 − t))

E3(t) =
(µ−r)2

σ2 − 2r( (µ−r)2

σ2 −2r

k20
− 1

α2,3

)
exp

((
(µ−r)2

σ2 − 2r
)
(t3 − t)

)
+ 1

α2,3

F3(t) = k22 exp((2v − ψ2)(t3 − t))
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Going back to the second interval, [t1, t2],

max
c2,t,θ2,t

E[
∫ t2

t

U2(c2,sw2,s)ds+ ϕ3(t2, w2,t2 − ξ2, x2,t2 + ξ2)](3.5)

subject to dW2,t = (r + (µ− r)θ2,t − c2,t)W2,tdt+ θ2,tσW2,tdZ
1
2,t

dX2,t = vX2,tdt+ ψρX2,tdZ
1
2,t + ψ

√
1− ρ2X2,tdZ

2
2,t

(3.6)

Let ϕ2(t, w2,t, x2,t) be the value function for this interval. Then,

ϕ2(t, w2,t, x2,t) = max
c2,t,θ2,t

E[
∫ t2

t

U2(c2,sw2,s)dt+ ϕ3(t2, w2,t2 − ξ2, x2,t2 + ξ2)]

The value function, ϕ2(t, w, x) has the form,

ϕ2(t, w2, x2) = A2(t) + α1,2w2 +D2(t)x2 + E2(t)w
2
2 + F2(t)x

2
2.

The utility function for this interval,

(3.7) U2(c2,tw2,t) = −α2,2c
2
2,tw

2
2,t + α1,2c2,tw2,t + α3,2.

Optimal decision variables for this interval are

(3.8) c2,t = − 1

α2,2

E2(t) and θ2,t =
−(µ− r)(α1,2 + 2E2(t)w2)

2σ2E2(t)w2

.

Then our HJB equation for this interval becomes

0 = A′
2(t)−

(µ− r)2α1,2(t)

4σ2E2(t)
+ α3,2 + [rα1,2 −

(µ− r)2

σ2
α1,2]w2 + [D′

2(t) + vD2(t)]x2

+ [E ′
2(t) +

1

α2,2

E2
2(t)−

(µ− r)2

σ2
E2(t)]w

2
2 + [F ′

2(t) + 2vF2(t) + ψ2F2(t)]x
2
2

We have the following system of nonlinear differential equations,

A′
2(t) =

(µ−r)2(α1,2)2

4σ2E2(t)
− α3,2

0 =
(
r − (µ−r)2

σ2

)
(α1,2)

D′
2(t) = −vD2(t)

E ′
2(t) =

(µ−r)2

σ2 E2(t)− 2rE2(t)− 1
α2,2

E2(t)
2

F ′
2(t) = −2vF2(t)− ψ2F2(t).

where,

A2(t2) = Ā3,

D2(t2) = D̄3,

E2(t2) = Ē3,

F2(t2) = F̄3.

We will determine, Ā3, D̄3, Ē3, and F̄3. Recall, w3,t(t
+
2 ) = w2(t2−) − ξ2 and x3(t

+
2 ) =

x2(t
−
2 ) + ξ2. Then,
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ϕ3(t2, w2,t2 − ξ2, x2,t2 + ξ2) = ϕ3(t2, w2,t(t
−
2 )− ξ2, x2,t(t

−
2 ) + ξ2)

= [A3(t2)− α1,3ξ2 +D3(t2)ξ2 + E3(t2)ξ
2
2 + F3(t2)ξ

2] + [α1,3 − 2E3(t2)ξ2]w2(t2)

+ [D3(t2) + 2F3(t2)ξ2]x2(t2) + E3(t2)w
2
2(t2) + F3(t2)x

2
2(t2)

Therefore our terminal conditions are

Ā3 = A3(t2)− α1,3ξ2 +D3(t2)ξ2 + E3(t2)ξ
2
2 + F3(t2)ξ

2
2 ,

D̄3 = D3(t2) + 2F3(t2)ξ2,

Ē3 = E3(t2),

F̄3 = F3(t2),

α1,2 = α1,3 − 2E3(t2)ξ2.

Therefore the nonlinear differential equations have the following solutions,

A2(t) = A3(t2)− α1,3ξ2 +D3(t2)ξ2 + E3(t2)ξ
2
2 + F3(t2)ξ

2
2 + α3,2(t2 − t)

− a1

[
a2

(
1− exp

((µ− r)2

σ2
− 2r

)
(t2 − t)

)
+

1

α2,2

(t2 − t)

]
D2(t) = (D3(t2) + 2F3(t2)ξ2) exp(v(t2 − t))

E2(t) =
(µ−r)2

σ2 − 2r( (µ−r)2

σ2 −2r

E3(t2)
− 1

α2,2

)
exp

((
(µ−r)2

σ2 − 2r
)
(t2 − t)

)
+ 1

α2,2

F2(t) = F3(t2) exp((2v − ψ2)(t2 − t))

where

a1 =
(µ− r)2(α1,3 − 2E3(t2)ξ2)

2

4σ2
( (µ−r)2

σ2 − 2r
) ,

a2 =

(µ−r)2−2r
E3(t2)2

− 1
α2,2

2r − (µ−r)2

σ2

.

Going back to the first and final interval, [t0, t1].

max
c1,t,θ1,t

E[
∫ t1

t

U1(c1,sw1,s)ds+ ϕ2(t1, w1(t1)− ξ1, x1(t1) + ξ1)](3.9)

subject to dW1 = (r + (µ− r)θ1,t − c1,t)W1,tdt+ θ1,tσW1,tdZ
1
1,t

dX1,t = vX1,tdt+ ψρX1,tdZ
1
1,t + ψ

√
1− ρ2X1,tdZ

2
1,t

(3.10)

Let ϕ1(t, w1, x1) be the value function for this interval. Then,

ϕ1(t, w1, x1) = max
c1,t,θ1,t

E[
∫ t1

t

U1(c1,sw1,s)ds+ ϕ2(t1, w1(t1)− ξ1, x1(t1) + ξ1)]

The value function, ϕ1(t, w1, x1) has the form,

ϕ1(t, w1, x1) = A1(t) + α1,1w1 +D1(t)x1 + E1(t)w
2
1 + F1(t)x

2
1.
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The utility function for this interval,

(3.11) U1(c1,tw1,t) = −α2,1c
2
1,tw

2
1,2 + α1,1c1,tw1,t + α3,1.

Optimal control variables for this interval

(3.12) c1,t = − 1

α2,1

E1(t) and θ1,t =
−(µ− r)(α1,1 + 2E1(t)w1)

2σ2E1(t)w1

.

Then our HJB equation for this interval becomes

0 = A′
1(t)−

(µ− r)2(α1,1)
2

4σ2E1(t)
+ α3,1 + [rα1,1 −

(µ− r)2

σ2
α1,1]w1 + [D′

1(t) + vD1(t)]x1

+ [E ′
1(t) +

1

α2,1

E2
1(t)−

(µ− r)2

σ2
E1(t)]w

2
1 + [F ′

1(t) + 2vF1(t) + ψ2F1(t)]x
2
1

We have the following system of nonlinear differential equations,

A′
1(t) =

(µ−r)2(α1,1)2

4σ2E1(t)
− α3,1

0 =
(
r − (µ−r)2

σ2

)
α1,1

D′
1(t) = −vD1(t)

E ′
1(t) =

(µ−r)2

σ2 E1(t)− 2rE1(t)− 1
α2,1

E1(t)
2

F ′
1(t) = −2vF1(t)− ψ2F1(t).

where,

A1(t1) = Ā2,

D1(t1) = D̄2,

E1(t1) = Ē2,

F1(t1) = F̄2.

We will determine, Ā2, D̄2, Ē2, and F̄2. Recall, w2,t(t
+
1 ) = w1,t(t

−
1 ) − ξ1 and x2,t(t

+
1 ) =

x1,t(t
−
1 ) + ξ1. Then,

ϕ2(t1, w1(t1)− ξ1, x1(t1) + ξ1) = ϕ2(t1, w1(t
−
1 )− ξ1, x1(t

−
1 ) + ξ1)

= [A2(t1)− α1,1ξ1 +D2(t1)ξ1 + E2(t1)ξ
2
1 + F2(t1)ξ1]

+ [α1,1 − 2E2(t1)ξ1]w1(t1) + [D2(t1) + 2F2(t1)ξ1]x1(t1)

+ E2(t1)w
2
1(t1) + F2(t1)x

2
1(t1)

Then our terminal conditions are

Ā2 = A2(t1)− α1,2ξ1 +D2(t1)ξ1 + E2(t1)ξ
2
1 + F2(t1)ξ

2
1 ,

D̄2 = D2(t1) + 2F2(t1)ξ1,

Ē2 = E2(t1),

F̄2 = F2(t1),

α1,1 = α1,2 − 2E2(t1)ξ1.

Therefore the nonlinear differential equations have the following solutions,
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A1(t) = A2(t1)− α1,2ξ1 +D2(t1)ξ1 + E2(t1)ξ
2
1 + F2(t1)ξ

2
1 + α3,1(t1 − t)

− a1

[
a2

(
1− exp

((µ− r)2

σ2
− 2r

)
(t1 − t)

)
+

1

α2,1

(t1 − t)

]
D1(t) = (D2(t1) + 2F2(t1)ξ1) exp(v(t1 − t))

E1(t) =
(µ−r)2

σ2 − 2r( (µ−r)2

σ2 −2r

E2(t1)
− 1

α2,1

)
exp

((
(µ−r)2

σ2 − 2r
)
(t1 − t)

)
+ 1

α2,1

F1(t) = F2(t1) exp((2v − ψ2)(t1 − t))

where

a1 =
(µ− r)2(α1,2 − 2E2(t1)ξ1)

2

4σ2
( (µ−r)2

σ2 − 2r
) ,

a2 =

(µ−r)2−2r
E2(t1)2

− 1
α2,1

2r − (µ−r)2

σ2

.

4. Determine the Size of the Impulses/Jumps

First, we will consider when the time of the impulse is known but the size of the impulse
needs to be determined. There are two ways we can do this. One way is by finding the optimal
size of the jump by solving a small nonlinear optimization problem after each interval using
the value function of the previous interval. For every impulse there’s one mini optimization
problem. The other way is by setting up one nonlinear optimization problem to determine
the size of the jump only using the value function from the first interval. In the following
subsections, we outline both methods and provide numerical examples for both.

5. Determine ξ1 and ξ2

The optimal ξ2 is determined by

max
ξ2

E
[
ϕ3(t2, w2,t2 − ξ2, x2,t2 + ξ2)

]
(5.1)

The optimal ξ1 is determined by

max
ξ1

E
[
ϕ2(t1, w1,t1 − ξ1, x1,t1 + ξ1)

]
subject to

ϕ2(t2, w2,t2 , x2,t2) = ϕ3(t2, w2,t2 − ξ2, x2,t2 + ξ2)

(5.2)

Since ξ1 is based on ξ2 we can determine ξ1 and ξ2 using one optimization problem at the
end of the first interval. So, we have
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max
ξ1ξ2

E
[
ϕ2(t1, w1,t1 − ξ1, x1,t1 + ξ1)

]
subject to

ϕ2(t2, w2,t2 , x2,t2) = ϕ3(t2, w2,t2 − ξ2, x2,t2 + ξ2)

(5.3)

where ξ1 and ξ2 appear in E
[
ϕ2(t1, w1,t1 − ξ1, x1,t1 + ξ1)

]
, which can be seen below.

E
[
ϕ2(t1, w1,t1 − ξ1, x1,t1 + ξ1)

]
= A2(t1)− α1,2ξ1 +D2(t1)ξ1 + E2(t1)ξ

2
1 + F2(t1)ξ

2
1

+
(
α1,2 − 2E2(t1)ξ1

)
E
[
W1(t1)

]
+
(
D2(t1) + 2F2(t1)ξ1

)
E
[
X1(t1)

]
+ E2(t1)E

[
W 2

1 (t1)
]
+ F2(t1)E

[
X2

1 (t1)
]

(5.4)

Note, ξ2 is present in (5.3) and (5.4) by the following.

A2(t1) = A3(t2)− α1,3ξ2 +D3(t2)ξ2 + E3(t2)ξ
2
2 + F3(t2)ξ

2
2 + α3,2(t2 − t1)

− a1

[
a2

(
1− exp

((µ− r)2

σ2
− 2r

)
(t2 − t1)

)
+

1

α2,2

(t2 − t1)

]
α1,2 = α1,3 − 2E3(t2)ξ2

D2(t1) = (D3(t2) + 2F3(t2)ξ2) exp(v(t2 − t1))

E2(t1) =
(µ−r)2

σ2 − 2r( (µ−r)2

σ2 −2r

E3(t2)
− 1

α2,2

)
exp

((
(µ−r)2

σ2 − 2r
)
(t2 − t1)

)
+ 1

α2,2

F2(t1) = F3(t2) exp((2v − ψ2)(t2 − t1))

Also, recall, our optimal control variable 0 ≤ θt ≤ 1. So our optimization problem becomes.

max
ξ1ξ2

E
[
ϕ2(t1, w1,t1 − ξ1, x1,t1 + ξ1)

]
subject to

0 ≤ θ1,t ≤ 1

0 ≤ θ2,t ≤ 1

0 ≤ θ3,t ≤ 1

ϕ2(t2, w2,t2 , x2,t2) = ϕ3(t2, w2,t2 − ξ2, x2,t2 + ξ2)

(5.5)

Using (3.3), (3.7), and (3.11) we have
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max
ξ1ξ2

E
[
ϕ2(t1, w1,t1 − ξ1, x1,t1 + ξ1)

]
subject to

0 ≤
−(µ− r)(α1,1 + 2E1(t)E

[
W1,t

]
)

2σ2E1(t)E
[
W1,t

] ≤ 1

0 ≤
−(µ− r)(α1,2 + 2E2(t)E

[
W2,t

]
)

2σ2E2(t)E
[
W2,t

] ≤ 1

0 ≤
−(µ− r)(α1,3 + 2E3(t)E

[
W3,t

]
)

2σ2E3(t)E
[
W3,t

] ≤ 1

ϕ2(t2, w2,t2 , x2,t2) = ϕ3(t2, w2,t2 − ξ2, x2,t2 + ξ2)

(5.6)

We can rewrite α1
1 and α2

1 explicitly using ξ1 and ξ2.

max
ξ1ξ2

E
[
ϕ2(t1, w1,t1 − ξ1, x1,t1 + ξ1)

]
subject to

0 ≤
−(µ− r)(α1,3 − 2E3(t2)ξ2 − 2E2(t1)ξ1 + 2E1(t)E

[
W1,t

]
)

2σ2E1(t)E
[
W1,t

] ≤ 1

0 ≤
−(µ− r)(α1,3 − 2E3(t2)ξ2 + 2E2(t)E

[
W2,t2

]
)

2σ2E2(t)E
[
W2,t

] ≤ 1

0 ≤
−(µ− r)(α1,3 + 2E3(t)E

[
W3,t

]
)

2σ2E3(t)E
[
W3,t

] ≤ 1

ϕ2(t2, w2,t2 , x2,t2) = ϕ3(t2, w2,t2 − ξ2, x2,t2 + ξ2)

(5.7)

Assume E1(t)W1,t, E2(t)W2,t, and E3(t)W3,t are all bounded by γ. Then our constraints
become

max
ξ1ξ2

E
[
ϕ2(t1, w1,t1 − ξ1, x1,t1 + ξ1)

]
subject to

0 ≤−(µ− r)(α1,3 − 2E3(t2)ξ2 − 2E2(t1)ξ1 + 2γ)

2σ2γ
≤ 1

0 ≤−(µ− r)(α1,3 − 2E3(t2)ξ2 + 2γ)

2σ2γ
≤ 1

0 ≤−(µ− r)(α1,3 + 2γ)

2σ2γ
≤ 1

ϕ2(t2, w2,t2 , x2,t2) = ϕ3(t2, w2,t2 − ξ2, x2,t2 + ξ2)

(5.8)

Lastly, we want to ensure that we do not transfer more than our liquid wealth at the end
of each interval. So, our optimization problem to determine the size of the jumps is stated
below
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max
ξ1ξ2

E
[
ϕ2(t1, w1,t1 − ξ1, x1,t1 + ξ1)

]
subject to

0 ≤−(µ− r)(α1,3 − 2E3(t2)ξ2 − 2E2(t1)ξ1 + 2γ)

2σ2γ
≤ 1

0 ≤−(µ− r)(α1,3 − 2E3(t2)ξ2 + 2γ)

2σ2γ
≤ 1

0 ≤−(µ− r)(α1,3 + 2γ)

2σ2γ
≤ 1

ξ1 <E
[
W1,t1

]
ξ2 <E

[
W2,t2

]
ϕ2(t2, w2,t2 , x2,t2) = ϕ3(t2, w2,t2 − ξ2, x2,t2 + ξ2)

(5.9)

6. Numerical Examples

6.1. Procedure for Numerical Examples.

1. Solve the objective function (5.9) to determine the size of the jumps ξ1 and ξ2 using
fmincon in MATLAB. [Using syms for ξ1 and ξ2.]

2. Simulate the following N times.
(a) For the first interval, t ∈ [t0, t1], determine A1(t), α

1
1(t), D1(t), E1(t), and F1(t) for

this interval. Generate wealth paths for W1,t and X1,t for this interval. Use (3.11)
to determine optimal control variables, θ1,t and c1,t.

(b) For the second interval, t ∈ [t1, t2], determine A2(t), α
2
1(t), D2(t), E2(t), and F2(t)

for this interval. Generate wealth paths for W2,t and X2,t for this interval. Use (3.7)
to determine optimal control variables, θ2,t and c2,t.

(c) For the last interval, t ∈ [t2, t3], determine A3(t), α
3
1(t), D3(t), E3(t), and F3(t) for

this interval. Generate wealth paths for W3,t and X3,t for this interval. Use (3.3) to
determine optimal control variables, θ3,t and c3,t.

6.1.1. Two Impulses. On the interval [0, 1] we will assume the following:

• Riskless Bond : r = 0.05

• Liquid Asset: µ = 0.12 and σ =
√

µ2

r
− 2µ+ r = 0.313

• Illiquid Asset: v = 0.12, ψ = 0.313, and ρ = 0

• Initial Investment: w0 = 1 and x0 = 1
• For the final interval:

– Utility Function: U(C3
t ) = 2(C3

t )
2 − 4C3

t + 20

– Terminal Condition: ϕ3(1, w, x) = (1.41w − 1.4184)2 + (x+ 1)2
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On the interval [0, 1] two impulses ξ1 and ξ2 occur when t1 = 0.3333 and t2 = 0.6667. With
γ = 1 optimal ξ1 and ξ2 determined by (5.9) are

(6.1) ξ1 = 0.0798 and ξ2 = −0.0185.

The following results are after N = 100 simulations. Using (3.3), (3.7), and (3.11) our
optimal θt and ct are determined.
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The value of the value function is,

ϕ1(0, 1, 1) = 23.9903.

6.1.2. Four Impulses. On the interval [0, 1] we will assume the following:

• Riskless Bond : r = 0.05

• Liquid Asset: µ = 0.12 and σ =
√

µ2

r
− 2µ+ r = 0.313

• Illiquid Asset: v = 0.12, ψ = 0.313, and ρ = 0

• Initial Investment: w0 = 1 and x0 = 1
• For the final interval:

– Utility Function: U(C3
t ) = 2(C3

t )
2 − 3.5C3

t + 20

– Terminal Condition: ϕ3(1, w, x) = (1.41w − 1.4184)2 + (x+ 1)2

On the interval [0, 1] four impulses ξ1, ξ2, ξ3, and ξ4 occur when t1 = 0.2, t2 = 0.4, t3 =
0.6, and t4 = 0.8. With γ = 1 optimal ξ1, ξ2, ξ3, and ξ4 determined by applying (5.9) to four
impulses are

(6.2) ξ1 = 0.0858, ξ2 = 0.0, ξ3 = 0.0, and ξ4 = −0.0272.

The following results are after N = 100 simulations. Using (3.3), (3.7), and (3.11) our
optimal θt and ct are determined.

The value of the value function is,

ϕ1(0, 1, 1) = 24.0264.

7. Determine Size of Impulses and their Occurrences

Now, we will consider, if the number of rebalancing times is known, but when they occur
and and size of the impulse is random.

Let t1 = 0.333 + a and t2 = 0.6667 + b. The optimal t1, t2, ξ1 and ξ2 are determined by
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max
ξ1,ξ2,a,b

E
[
ϕ2(t1, w1,t1 − ξ1, x1,t1 + ξ1)

]
subject to

0 ≤−(µ− r)(α3
1 − 2E3(t2)ξ2 − 2E2(t1)ξ1 + 2γ)

2σ2γ
≤ 1

0 ≤−(µ− r)(α3
1 − 2E3(t2)ξ2 + 2γ)

2σ2γ
≤ 1

0 ≤−(µ− r)(α3
1 + 2γ)

2σ2γ
≤ 1

ξ1 <E
[
W1,t1

]
ξ2 <E

[
W2,t2

]
ϕ2(t2, w2,t2 , x2,t2) = ϕ3(t2, w2,t2 − ξ2, x2,t2 + ξ2)

−0.3333 < a < 0.3333

−0.3333 < b < 0.3333

(7.1)

See the derivation for (5.9) on how to determine γ.
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7.0.1. Two Impulses. On the interval [0, 1] we will assume the following:

• Riskless Bond : r = 0.05

• Liquid Asset: µ = 0.12 and σ =
√

µ2

r
− 2µ+ r = 0.313

• Illiquid Asset: v = 0.12, ψ = 0.313, and ρ = 0

• Initial Investment: w0 = 1 and x0 = 1
• For the final interval:

– Utility Function: U(C3
t ) = 2(C3

t )
2 − 4C3

t + 20

– Terminal Condition: ϕ3(1, w, x) = (1.41w − 1.4184)2 + (x+ 1)2

On the interval [0, 1] two impulses ξ1 and ξ2 occur at t1 and t2. With γ = 1 optimal
ξ1, ξ2, t1, and t2 determined by (7.1) are

(7.2) ξ1 = 0.0946 and ξ2 = −0.0141

and

(7.3) t1 = 0.0010 and t2 = 0.9990.

The following results are after N = 100 simulations. Using (3.3), (3.7), and (3.11) our
optimal θt and ct are determined.

The value of the value function is,

ϕ1(0, 1, 1) = 24.1845.

7.0.2. Four Impulses. On the interval [0, 1] we will assume the following:

• Riskless Bond : r = 0.05

• Liquid Asset: µ = 0.12 and σ =
√

µ2

r
− 2µ+ r = 0.313

• Illiquid Asset: v = 0.12, ψ = 0.313, and ρ = 0
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• Initial Investment: w0 = 1 and x0 = 1
• For the final interval:

– Utility Function: U(C3
t ) = 2(C3

t )
2 − 3.5C3

t + 20

– Terminal Condition: ϕ3(1, w, x) = (1.41w − 1.4184)2 + (x+ 1)2

On the interval [0, 1] four impulses ξ1, ξ2, ξ3, and ξ4 occur at t1, t2, t3, and t4. With γ = 1
optimal ξ1, ξ2, ξ3, ξ4, t1, t2, t3, and t4 are determined by applying (7.1) to four impulses are

(7.4) ξ1 = 0.0945, ξ2 = −0.0015, ξ3 = 0.0015, and ξ4 = −0.0229

and

(7.5) t1 = 0.0010, t2 = 0.4896, t3 = 0.4929, and t4 = 0.9977.

The following results are after N = 100 simulations. Using (3.3), (3.7), and (3.11) our
optimal θt and ct are determined.

The value of the value function is,

ϕ1(0, 1, 1) = 24.1393.
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8. Conclusion

We note that illiquid wealth increases in each numerical example as desired. The consumption
also increases in each case. These are two desired features. These features are desirable goals
of the rebalancing problem.
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