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1. Introduction

Impulsive differential equations can model many real processes and phenomena
studied in mechanics, radio engineering, communication security, control theory, neu-
ral networks, etc. since the states of many evolutionary processes are often subject
to instantaneous perturbations and experience abrupt changes at certain moments of
time. Piecewise continuous almost periodic (p.c.a.p., for short) functions come from
the study of impulsive differential equations and certain problems in real phenomena,
see e.g. [2, 3,6, 7, 13, 14, 17] and [1, 4, 10, 11, 19] respectively for various works
devoted to impulsive differential equations and almost periodic differential equations.

The definition of p.c.a.p. functions is complex and consists of three conditions
(Definition 1.3). The aim of this paper is to present a synthesis property of p.c.a.p.
functions. This property can be used as not only a good characterization of p.c.a.p.
functions, but also a useful tool in the discussion of p.c.a.p. solutions to impulsive
differential equations. Since it is related to Bohr almost periodic functions and se-

quences, recall that

Definition 1.1 ([5, p. 45|, [13, p. 183]). A continuous function f : G — R, where
G =R or Z, is called (Bohr) almost periodic if given any € > 0, the e-almost periodic
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set of f,
T(f,e):={1€G; |f(t+71)— f(t)| <e¢VteG}

is relatively dense, that is, there is a positive number | = I(¢) € G satisfying [a,a +
NNT(f,e) #0for all a € G.

Denote by AP(G,R) the set of all Bohr almost periodic functions from G to R.
AP(G,R) is a Banach space equipped with the norm || f|| = sup,eq | f(2)]-
We call a sequence {7;};ez C R admissible if 7; < 7;4; for all j € Z and

lim;_, 4. 7; = Fo0. Put Tf = Tj+r — Tj, Where j, k € Z.

Definition 1.2 ([13, p. 195]). An admissible sequence {7;};cz is called a Wexler

sequence if infjez le > (0 and the family of sequences
{1} = {rf ez thez

is equi-potentially almost periodic, i.e. for each € > 0 the common e-almost periodic
set of all the sequences {{7}},

T({{T]k}}a 6) = {p S Z; |Tjk+p - T]k| < € for all j7 ke Z}

is relatively dense.

Let PC(R,R) be the set of piecewise continuous functions h : R — R which
have discontinuities of the first kind only at the points of a subset of an admissible

sequence {7; = 7;(h)};ez and are continuous from the left at {7;};ez.

Definition 1.3 ([13, p. 201]). A function h € PC(R,R) is called piecewise continuous

almost periodic (p.c.a.p.) if the following conditions hold.

(i) There is an admissible sequence {7;} ez containing possible discontinuities of h.
The family of sequences {{7}}} is equi-potentially almost periodic.
(ii) For each € > 0 there exists a 6 = d(e) > 0 such that |h(s) — h(t)| < € whenever
s, t € (1, 7j41] for some j € Z and |s — t| < 4.
(iii) For each € > 0, the e-almost periodic set of h,
T(h,e) :={r €R;|h(t+7)—h(t)] <eforalteR
such that |t — ;| > €,5 € Z}

is relatively dense.

Denote by PCAP(R,R) the set of all p.c.a.p. functions. Our main results are

formulated as follows.

Theorem 1.4. Suppose that h € PCAP(R,R) has discontinuities at the points of a

subset of a Wezler sequence {7;},ez and

. . _l’_
(1.1) inf [A(7,)] >0, inf [h(r;7)] > 0.
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If the difference equation

h(r,)
h(7a)
has a bounded solution v with inf,cz [v(n)| > 0, then there exists a unique f €
AP(R,R) and uw € AP(Z,R), up to a nonzero multiplicative constant, such that

(1.2) x(n) = ~x(n—1)

(1.3) h(t) = f(t)-uln), 71, <t<7Thi1,n € Z.

Theorem 1.5. Suppose that f € AP(R,R), v € AP(Z,R) and {7;}jez is a Wexler
sequence. Then the function h defined by (1.3) is p.c.a.p.

Theorems 1.4 and 1.5 give us a different understanding of p.c.a.p. functions by
characterizing them as the synthesis of Bohr almost periodic functions and sequences.
So it is convenient to generate new p.c.a.p. functions and investigate their properties
from Bohr functions and sequences. In addition, (1.3) shows that p.c.a.p. functions

have a delicate structure which deserves more study.

As for impulsive differential equations, Theorems 1.4 and 1.5 indicate the direc-
tion of looking for solutions in the factorization form and provide an answer to the
almost periodicity of the functions in an assumption of some literature (see (A1) be-
low). Changing variables is an important tool in dynamics. To simplify the analysis

of the following impulsive dynamical system in R?,

yg:gi(:ylw"?yd?t)a t7é7—7M

(1.4)
vi(rh) =[1+b;(n)|yi(m), neZyi=1,...,d,

where {g;}{_, are continuous functions and 0 < 7 < 75 < -+, it is convenient to

make the following change of variables

, yi(t)
(1.5) wlt) = pi(t)’

SOz(t) = H0<7—k<t[1 + bz<t)]7 L= 17 s 7d7

which transforms (1.4) to the following system

t >0,

, giler Dy, - - 0a(t)ya, t)
yz’ - 9
@)
so that (¢1,...,dq) is a solution to (1.4) if and only if (¢1/¢1, - .., da/pa) is a solution
to (1.6). In order to obtain p.c.a.p. solutions to (1.4), [8, 9, 15, 16, 20, 21] make the

assumption

(1.6)

t#Tn,NEZ_HZ':l,...,d,

(A1) The functions {p;}&, are bounded and p.c.a.p.

However, there exists no theoretical reason for the almost periodicity of the func-

tions in (1.5) in literature. Our Theorems 1.4 and 1.5 can solve this problem. To
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show this, we first need a modification of the functions in (1.5) since they are only
defined for t > 0. Fort =1, ..., d, let

[ [+ b:i(k)], n>0;

(1.7) ui(n) =4 b : n=1
HZ:n-{—l Tbi(lﬁ)? n < 0.
and
HTO<Tk<t[1 +0i(k)], t>m;
<
(18) o=y o eTIEm

T0-

— t <
HtSTkST() 14+ bz(k)v =
=u;(n), 7, <t<T1,nE€Z,
then u; is a solution to
(1.9) z(n)=[14+b(n)x(n—-1), neZ,
and
bi(ry) = [L+0(n)[Yi(ra), n € L.
Instead of (A1), we propose the assumption

(A2) For every integer ¢ € [1, d], the sequence b; is almost periodic, inf, ¢z [1+b;(n)| >
0, and (1.9) admits a bounded solution v; with inf,,cz |v;(n)| > 0.

Although (A1) looks simpler than (A2), (A1) is fruition rather than source and
has no theoretical basis. (A2) concerns the essence and will be shown crucial in The-
orem 2.7. Our answer to the almost periodicity of the functions in the transformation
yi(t)
ei(t)’

associated with impulsive differential equations reads as follows.

(1.10) yi(t) —

teRi=1,...,d

Theorem 1.6. Suppose that {7;}jez is a Wezler sequence and (A2) holds.

(i) If (¢1,...,0q) is a p.c.a.p. solution to

y;:gi(ylv'”?ydat)7 t%Tna

(1.11)
yi(mh) =1+ bi(n)yi(m), neZ,i=1,...,d,

and ¢;(1,) # 0 foralln € Z andi =1, ..., d, then (¢1/¢n, ..., ¢a/1a) is a Bohr
almost periodic solution to
(1.12) ) — gi(1Dys, - - >¢d<t)yd7t)’
' i(t)
(ii) If (o1 /91, - -, Ga/ta) is a Bohr almost periodic solution to (1.12), then
(¢1,...,0q) is a p.c.a.p. solution to (1.11).

t#m,neZi=1,...,d.



FACTORIZATION OF SCALAR PCAP FUNCTIONS 1425

We shall study in Section 2 almost periodic solutions to homogeneous difference
equations, which is crucial in proving our main results. In Section 3 we prove Theo-
rems 1.4-1.6.

2. Homogeneous difference equations

To prove Theorems 1.4 and 1.5 we need some results on difference equations. We
shall give an equivalent condition on the existence of almost periodic solutions to the

following difference equation in R,
(2.1) z(n) =a(n)x(n—1), né€Z,
where a(n) # 0. It is easy to check that for each xy € R the initial value problem

z(n)=a(n)x(n—1), n € Z,
) (n) = aln)aln — 1)

x(ng) = xg
admits on Z a unique solution ¢ given by

[szn0+l a(k)} “To, T > Ng;
(2.3) p(n) = ¢ 20 n = No;

I To, M<n
k=n+1 CL(IC) 0 0-

which is trivial (identically zero) if and only if it attains zero value at any point.
Define a function, which is essentially the Cauchy matrix of (2.1), by

HZ:mH a(k), n>m;

(2.4) Vin,m)={ b . n=m
H;":nﬂ )’ n < m.

where m, n € Z. It is easy to see that

V(n,m)=a(n) -V(in—1,m)=V(n,m—1) - a(jn)
1
= Vi) V(n,)V(l,m)

for all I, m, n € Z. Therefore, ¢p(n) =V (n,ng) - zo.

The following result is obvious from the homogeneity.

Lemma 2.1. Suppose that v and v are two nontrivial (not identically zero) solutions
to (2.1), then there exists a constant ¢ € R, ¢ # 0 such that u = cv.

We are interested in almost periodic solutions to (2.1). The following lemma

provides a necessary condition.

Lemma 2.2. Suppose that a € AP(Z,R) and 0 < 9 := inf,cz |a(n)| < |lal|. If (2.1)

has a nontrivial almost periodic solution, then ¥ < 1 < ||al|.
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Proof. Assume the contrary that ||a|| < 1. It follows that

a(n)| < 1, —

~ la(n)]

If w e AP(Z,R) is a nontrivial solution to (2.1), then

>1, nelZ.

u(n)] < [u(0)], n =05 fu(n)] = |u(0)], n <0.

Since ¥ < |la||, (2.1) admits no nontrivial constant solution. Therefore, u is not
constant on Z, and there is an [ € Z, such that |u(l)| < |u(0)]. Given € € (0, |u(0)| —
|u(l)]), the set T'(u,€) is relatively dense from the almost periodicity of u. Let p €
T(u,€), p+1<0. A direct calculation implies the contradiction

[u(0)] < fu(p + D] < [u(l)] + € < |u(0)].
The proof for the case of ¥ > 1 is similar. So we omit it. O]

The following lemma rules out the possibility that inf,cz |u(n)| = 0 for a desired

solution .

Lemma 2.3. Suppose that a € AP(Z,R), inf,cz |a(n)| = 0 > 0, and u is a nontrivial
bounded solution to (2.1), inf,cz |u(n)| = 0. Then u ¢ AA(Z,R), the space of real
almost automorphic sequences v such that from any sequence {n}}3>, C Z we can
extract a subsequence {ng >, C {n}}22, with

lim v(n + ng) = w(n), im w(n —ng) =v(n), n€Z,
k—o0 k—o0

for some sequence w.

Proof. Since u is nontrivial, u(n) # 0 for all n € Z. Let {n}}2, C Z be a
sequence such that limy . u(n}) = 0. Using the diagonal procedure, it follows
from the boundedness of w that there exists a subsequence {n;}p>, C {n.},
with limy e u(n + ng) = a(n) for all n € Z and some sequence 4. In particu-
lar, 4(0) = 0 by assumption. Because a € AP(Z,R), we may assume further that
limy oo a(n + ng) = a(n) uniformly for all n € Z and some a € AP(Z,R). Conse-
quently, the equality

u(n +ng) = a(n + ng)u(n +n, — 1)
implies
u(n) = a(n)u(n —1)

for all n € Z. Moreover, from 9 < |a(n + ng)| < ||a|| it follows that ¢ < |a(n)| < ||al|
for all n € Z. So, u(n) = 0 for all n € Z. Hence limy_, @(n — ng) = 0 # u(n) for all
n € Z. Thus u ¢ AA(Z,R). O
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Remark 2.4. Lemma 4.7 in [18] proves that an almost periodic solution ¢ to z(n +
1) = C(n)x(n), n € Z, where C € AP(Z,R%), d € Z,, satisfies either inf,cz [¢(n)] > 0
or ¢(n) =0 for all n € Z. Our lemma shows that such a nontrivial bounded solution

u with inf,cz |u(n)| = 0 is even not almost automorphic.

Consider auxiliary equations
(2.5) z(n) = la(n)] - z(n — 1),
(2.6) z(n) = [sgn a(n)] - x(n — 1),

of which the Cauchy matrices are respectively |V (n, m)| and sgn V(n,m), where m,

n € Z. It is easy to prove the following result.

Lemma 2.5. The following statements are true.

(i) If u is a solution to (2.1), then {|u(n)|}nez is a solution to (2.5).

(i) If v is a solution to (2.5), then {v(n) - sgn V(n,m)}nez is a solution to (2.1)
for each m € Z.

(iii) If u, v, w are respectively nontrivial solutions to (2.1), (2.5), (2.6), then v/w =
vew, u/w=u-w, u/v=uv/u are respectively solutions to (2.1), (2.5), (2.6).

(iv) w is a solution, bounded or with inf,cz |u(n)| > 0, to (2.1), if and only if v is
a solution, bounded or with inf,cz |v(n)| > 0, to (2.5), where v(n) = |u(n)|,
u(n) = v(n) - [sgn V(m,m)] - u(m)/lu(m)] = v(n) - [sgn V(n, mu(m)).

(v) Ifu is an almost periodic solution to (2.1), then {|u(n)|}nez is an almost periodic
solution to (2.5). If in addition, inf,cz |u(n)| > 0, then {sgn u(n)}nez is an

almost periodic solution to (2.6).

One may expect integer-valued almost periodic sequences to be periodic.

Lemma 2.6. Suppose that a € AP(Z,R) and inf, ¢z |a(n)| =9 > 0, then all solutions
to (2.6) are |2p|-periodic, where p € T(a,€), p# 0 and 0 < e < 29.

Proof. 1t suffices to consider nontrivial solutions u of (2.6). Let €, 0 < € < 29, be
given. For each p € T'(a,¢) and n € Z, the inequality

la(n +p) —a(n)| <e< 29
implies sgn a(n + p) = sgn a(n). Consequently, from the equalities

i a(k) =TT a(k)a(k +p),  p>0;

V(n+2p,n)= L, p=1

1 1
n+2p+1 _ Tntetl p> 0.

= am e @y
it follows that sgn V(n +2p,n) =1 for all n € Z. Therefore,

u(n +2p) = [sgn V(n + 2p,n)] - u(n) = u(n)
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for all n € Z. O

We are in the position giving an equivalent condition for the existence of almost

periodic solutions to (2.1).

Theorem 2.7. Suppose that a € AP(Z,R) and inf,cz |a(n)| = > 0, then a non-
trivial solution u to (2.1) is almost periodic if and only if w is bounded on Z and

inf,cz |u(n)| > 0.

Proof. Necessity. Suppose that u € AP(Z,R) is a nontrivial solution to (2.1). Clear,

u is bounded on Z. From Lemma 2.3 it follows that inf,cz |u(n)| > 0.

Sufficiency. Let u be a bounded solution to (2.1) such that inf,cz |u(n)| > 0.
Then {|u(n)|}nez and {In |u(n)|},ez are respectively bounded solutions to (2.5) and

the auxiliary equation
(2.7) z(n) —x(n—1)=Inla(n)|, ne€Z.
Because {In|a(n)|}nez € AP(Z,R), {In|u(n)|}nez is an almost periodic solution to
(2.7). Therefore,
{Jut] = oy,

is an almost periodic solution to (2.5). By Lemma 2.6, {sgn V(n,0)},ecz is a periodic

solution to (2.6). A direct calculation shows that
u(n) = V(n,0)u(0)
= [Vi(n,0)] - [u(0)] - sgn [V(n, 0)u(0)]
= |u(n)| - sgn V(n,0) - sgn u(0)
for all n € Z. Thus u € AP(Z,R). O

Remark 2.8. Under the conditions of Theorem 2.7, (2.1) has a nontrivial solution
w with inf,cz |u(n)| = 0 if and only if {ln |u(n)|},ez is a solution to (2.7) such that

inf,ez In |u(n)| = —oo, which may be true in many situations.

3. The factorization theorem

In this section, we prove the main result on the factorization of p.c.a.p. functions
into Bohr almost periodic functions and sequences, and show the almost periodicity

of the functions in (1.10). Elementary properties of p.c.a.p. functions are listed below.

Lemma 3.1 ([13, p. 206, 214]). Suppose that h, hy € PCAP(R,R) have discon-
tinuities at the points of a subset of the same Wealer sequence {7;};cz, then (i)
hh, € PCAP(R,R); (ii) h/hy € PCAP(R,R) if infep |h1(2)] > 0; (iii) {h(7y)}nez €
AP(Z,R).
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Proof of Theorem 1.4. If a(n) := h(r,))/h(r,) for n € Z, then a € AP(Z,R) and
inf, ez la(n)| > 0 by (iii) of Lemma 3.1. Theorem 2.7 implies that the bounded
solution v with inf,ez|v(n)] > 0 to (1.2) is almost periodic. Define a function g

piecewise on R by
gty =v(n), T, <t<Th1,n€Z.
It is easy to check that g € PCAPW (R, R) and infcg |g(t)| > 0. If
f

h
ft):=—=, teR,
) g(t)
then f € PCAP(R,R) by (ii) of 3.1. We shall prove that f € C(R,R), which implies
the almost periodicity of f by Theorem 3.8 in [12]. A direct calculation shows that
_ () h(m)
—wu(n)  wv(n—1)

= f(m)

for all n € Z.

At last, the uniqueness of f and v up to a nonzero multiplicative constant follows

from Lemma 2.1. O

Remark 3.2. From the proof above it follows that Theorem 1.4 remains true if (1.1)

is replaced by

6 (37} cx AP @R 5[5

Note that (1.1) is proposed to generate the sequence in (3.1). This remark will be

> 0.

referenced in the applications of impulsive differential equations.

Proof of Theorem 1.5. Let h be given by (1.3). We first prove that h satisfies (ii)
of Definition 1.3. Since f is uniformly continuous on R, for every € > 0 there is a
d = d(e) > 0 such that |f(s) — f(t)| < € for all s, t € R satisfying |s —t| < §. A

straightforward computation shows that

h(s) = h(t)] = [f(s)u(g) = F@Quli)] < [[ul] -

whenever s, t € (7, 7;4+1] for some j € Z and |s — t| < 4.

Next we prove that h satisfies (iii) of Definition 1.3 by showing the set T'(h, €’) to
be relatively dense, where € = (||ul| + || f||) - €. Consider the following inequalities in
(r,q) € R x Z,

(3.2) ft+7)—f(t)] <e tER,
(3.3) lu(n +q) —u(n)| <e, nez,
(3.4) ITi—r|<e, j€ELZ.

I
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Using the method of common almost periods as in Lemma 35 in [13, p. 208, the

following two sets

I' = {r € R; there exists ¢ € Z such that (r, q) satisfies (3.2)-(3.4)},
Q = {q € Z; there exists r € R such that (r, q) satisfies (3.2)-(3.4)}

are relatively dense. Let (r,q) € I' x @ satisfy (3.2)-(3.4). If 7, + € <t < Typy1 — €
for some m € Z, from (3.4) it follows that
Tmtqg — Tm — € < T < Ting14qg — Tm+1 T €,
Ttq < t+7 < Tmggt1-
A direct calculation shows that
At +7) = h(t)] = [f(t+r)ulm +q) — f(H)u(m)|
<|[ft+7r) = fFOlulm + @] + [f()[ulm + q) — u(m)]]
< (lull + 171 - e = €

Hence T'(h,€') contains the relatively dense set I and h is p.c.a.p. O
Now we show the almost periodicity of the functions in (1.10).

Proof of Theorem 1.6. 1t is easy to check that (¢1,...,¢4) is a solution to (1.11) if
and only if (¢1/¢1,...,0a/10q4) is a solution to (1.12). Next we prove the almost
periodicity.
Let (¢1,...,¢q) be a p.c.a.p. solution to (1.11) such that ¢;(7,) # 0 for all n € Z
and ¢ =1, ..., d. From
¢i(rh) _ viln))
¢i(7n) B ¥i(Tn)
it follows that (1.2) takes the form of (1.9) for i =1, ..., d. Therefore, the sequences
{u;}¢, defined by (1.7) are almost periodic by (A2) and Theorem 2.7, and the func-
tions {t;}%, given by (1.8) are p.c.a.p. by Theorem 1.5 with f = 1. Since u; is a

=1+b(n), neZ.

nontrivial solution to (1.9) and

_ &)
¥i(t)

Remark 3.2 implies that ¢;/1); is the unique Bohr almost periodic function such that

(1.3) holds for ¢;, ¢;/1; and u;.

The second conclusion follows from (3.5) and Theorem 1.5. O

(3.5) i(t)

u(n), T, <t<T1,n€Z,

Remark 3.3. Assumption of the existence of almost periodic solutions in Theorem
1.6 may hold in various well-known situations by using, e.g., Favard’s separation
method, fixed point theory, semigroup theory, exponential dichotomy and Lyapunov

functions etc. Clearly, additional conditions should be imposed on the equations so
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that one of the tools mentioned above is applicable. See Example 3.4 for such a

presentation.

At last, we discuss an example arising from [9] to enhance the contribution of the

main results in this paper.

Example 3.4. Consider almost periodic competitive system subject to impulsive

perturbations

Ba(t)ya (t)}
1—|—y2(t)
By (t)
INEEA0)

Yh(6) = (0) [ (8) = e (D (1) -

H-
SN—

Y1 Y2

With (1.8) the transformation (xq,z3) = <¢_,¢_
1 P2

) reduces (3.6) to a continuous

system with p.c.a.p. coefficients

24 (1) = 21(t) [0 (0) = n (O (e (1) - %it)ﬁ(f;fi(f;}

lt)~ sttt - SR

(3.7)

8
)
~—~

~
S~—

Il
=]
%)
—~
~
N—
—

Taking logarithms (u1,us) = (Inxy,Inzy) further transforms (3.7) into

iy _ B
(3.8) 1 + o (t)er2®)

/ _ ug(t ( ) (t) i)
uh(t) = 2 (t) — aa(t)a(t)e2® — 1+ ¢y (H)em®

Under suitable conditions including (A2) on the coefficients of (3.6), a Lyapunov
function exists for (3.8). We refer the readers to [9] for detailed calculations and
numerical simulations. It follows the existence of a unique uniformly asymptotically
stable positive almost periodic solution of (3.7). By (ii) of Theorem 1.6, (3.6) admits

a unique p.c.a.p. solution with desired properties.
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