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ABSTRACT. In this paper, we consider the fourth-order differential equations with impulsive
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1. INTRODUCTION

In this paper, we consider the following fourth-order impulsive differential equa-

tion:

(1.1)


u(iv)(t) + Au′′(t) +Bu(t) = f(t, u(t)), t ̸= tj, a.e. t ∈ [0, T ],

∆(u′′(tj)) = I1j(u
′(tj)), j = 1, 2, . . . ,m,

−∆(u′′′(tj)) = I2j(u(tj)), j = 1, 2, . . . ,m,

u(0) = u(T ) = u′′(0+) = u′′(T−) = 0,

where A and B are real constants, f : [0, T ] × R → R is a continuous function, the

impulsive functions I1j, I2j ∈ C(R,R) for 1 ≤ j ≤ m, 0 = t0 < t1 < t2 < · · · < tm <

tm+1 = T and ∆(u′′(tj)) = u′′(t+j )− u′′(t−j ), ∆(u′′′(tj)) = u′′′(t+j )− u′′′(t−j ), where the

left and right limits of u′′(tj), u
′′′(tj) are represented by u′′(t−j ), u

′′′(t−j ) and u′′(t+j ),

u′′′(t+j ), at t = tj, j = 1, 2, . . . ,m, respectively.
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Due to a wide range of significant applications in various sciences, such as physics,

engineering, chemistry, biology, ecology, control, etc., impulsive fourth-order differen-

tial equations, have played the crucial role in above sciences. Their most outstanding

advantage is that they can vividly describe the model which suffer sudden changes

at certain instants which can not be modeled by the classical differential equations.

Owing to this reason, more and more considerations by many people have been paid

to study the existence of solutions for impulsive fourth-order differential equations.

By means of variational methods and critical point theory, many interesting results

on the fourth-order differential equations have presented to our sight, we refer the

readers to [1, 2, 3, 7, 8, 9, 10].

More precisely, Sun et al. in [7] have investigated the fourth-order differential

equation with impulsive effects as follow:

(1.2)


u(iv)(t) + Au′′(t) +Bu(t) = f(t, u(t)), t ̸= tj, a.e. t ∈ [0, T ],

∆(u′′(tj)) = I1j(u
′(tj)), j = 1, 2, . . . , l,

∆(u′′′(tj)) = I2j(u(tj)), j = 1, 2, . . . , l,

u(0) = u(T ) = u′′(0+) = u′′(T−) = 0.

They have proved that the problem (1.2) has at least one solution and infinitely many

solutions by applying variational methods, the main results are as follow:

Theorem 1.1 ([7, Theorem 3.1]). Assume that the following conditions hold:

(H1) There exists a constant µ > 2 such that 0 < µF (t, u) ≤ uf(t, u) for every

t ∈ [0, T ] and u ∈ R \ {0}, where F (t, u) =
∫ u

0
f(t, s)ds;

(H2) There exist constants Lj > 0, j = 1, 2, . . . , l, such that

|I1j(u)− I1j(v)| ≤ Lj|u− v|, ∀u, v ∈ R, j = 1, 2, . . . , l,

where Lj satisfy 0 <
∑l

j=1 Lj <
µ−2

2M2
1 (µ+1)

,and M1 is defined in Lemma 2.2 of [7];

(H3) The impulsive functions I2j satisfy sublinear growth, i.e., there exist constants

a2j > 0, b2j > 0 and γ2j ∈ [0, 1), j = 1, 2, . . . , l such that

|I2j(u)| ≤ a2j + b2j|u|γ2j , ∀u ∈ R, j = 1, 2, . . . , l;

(H4) The following inequality

1

2M2
1

− MT 4

π4M2
1 δ

2
−

l∑
j=1

(Lj + a2j + b2j + |I1j(0)|) > 0

holds, where M = sup{F (t, u) : t ∈ [0, T ], |u| = 1}.

Then, the problem (1.2) has at least one classical solution.

Theorem 1.2 ([7, Theorem 3.2]). Suppose that (H1)-(H4) hold. Moreover, f(t, u)

and impulsive functions I1j(u), I2j(u) are all odd in u. Then, the problem (1.2) has

infinitely many classical solutions.
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In [9], Xie and Luo have further studied the following boundary value problem:

(1.3)


u(iv)(t) + Au′′(t) + Bu(t) = λf(t, u(t)), t ̸= tj, a.e. t ∈ [0, 1],

∆(u′′(tj)) = I1j(u
′(tj)), j = 1, 2, . . . ,m,

−∆(u′′′(tj)) = I2j(u(tj)), j = 1, 2, . . . ,m,

u(0) = u(1) = u′′(0) = u′′(1) = 0.

They have proved that the problem (1.3) has at least one solution by applying vari-

ational methods, the main result is as follow:

Theorem 1.3 ([9, Theorem 3.1]). Assume that the following condition holds:

(H5) There exist two positive constants k1 and k2 such that for each u ∈ X

0 ≤
m∑
j=1

∫ u′(tj)

0

I1j(s)ds ≤ k1 max
j∈{1,2,...,m}

|u′(tj)|2

and

0 ≤
m∑
j=1

∫ u(tj)

0

I2j(s)ds ≤ k2 max
j∈{1,2,...,m}

|u(tj)|2.

If there exist constants c1, c2 and c satisfying c1 <
√
2k0M1c <

√
2k3M1c < c2 and

0 < a(c2, c) < b(c1, c), where k0 = 2− A
6
+ B

60
, k3 = k0 + k1 +

1
4
k2,

a(c2, c) =

∫ 1

0
max|u|≤c2 F (t, u)dt−

∫ 1

0
F (t, u1(t))dt

c22 − 2k3M2
1 c

2
,

b(c1, c) =

∫ 1

0
F (t, u1(t))dt−

∫ 1

0
max|u|≤c1 F (t, u)dt

2k3M2
1 c

2 − c21
,

u1(t) = ct(1− t) and M1 = 1 + 1
π
, then, for each λ ∈ (λ1, λ2), the problem (1.3) has

at least one solution u and ∥u∥X < c2
M1

, where λ1 =
1

2M2
1 b(c1,c)

and λ2 =
1

2M2
1a(c2,c)

.

In [1], Afrouzi et al. also extended problem (1.3), they considered the following

boundary value problem:

(1.4)
u(iv)(t) + Au′′(t) +Bu(t) = λf(t, u(t)) + µg(t, u(t)), t ̸= tj, a.e. t ∈ [0, 1],

∆(u′′(tj)) = I1j(u
′(tj)), j = 1, 2, . . . ,m,

−∆(u′′′(tj)) = I2j(u(tj)), j = 1, 2, . . . ,m,

u(0) = u(1) = u′′(0) = u′′(1) = 0.

They have obtained that the problem (1.4) has at least three classical solutions under

the above assumption (H5) by using variational methods.
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In [8], Tian and Liu have considered the following Sturm-Liouville boundary value

problem:

(1.5)



u(iv)(t)− u′′(t) + u(t) = f(t, u(t)), t ̸= tj, a.e. t ∈ [0, T ],

−∆(u′′′(ti)) = I1i(u(ti)), i = 1, 2, . . . , l,

∆(u′′(ti)) = I2i(u
′(ti)), i = 1, 2, . . . , l,

au(0)− bu′(0) = 0, cu(T ) + du′(T ) = 0,

au′′(0)− bu′′′(0) = 0, cu′′(T ) + du′′′(T ) = 0.

They have proved that the problem (1.5) has at least one nontrivial solution by

applying variational methods, the main result is as follow:

Theorem 1.4 ([8, Theorem 3.1]). Assume that following conditions hold:

(H6) There exist constants µ > 2 and r ≥ 0 such that for |ξ| ≥ r,

0 < µF (t, ξ) ≤ ξf(t, ξ);

(H7) The impulsive functions I1i satisfy sublinear growth, that is, there exist constants

αi > 0, βi > 0 and γi ∈ [0, 1), i = 1, 2, . . . , l such that

|I1i(u)| ≤ αi + βi|u|γi ;

(H8) The impulsive functions I2i, i = 1, 2, . . . , l are bounded;

(H9) f(t, u) = o(|u|), I1i(u) = o(|u|), I2i(u) = o(|u|) as |u| → 0, i = 1, 2, . . . , l.

Then, the problem (1.5) has at least one nontrivial solution.

Motivated by above fact, it is clear to see that the impulsive functions in [1, 7, 8, 9]

are required to satisfy the sublinear growth conditions, Lipschitz continuous condi-

tions or bounded conditions. Compared with the corresponding conditions imposed

on impulsive functions I1j and I2j in the above literatures, in our paper, we sup-

pose that the impulsive functions I1j and I2j are required to satisfy the superlinear

growth conditions. Under new certain assumptions, we prove that problem (1.1) has

at least two solutions and infinitely many solutions by means of variational methods

and critical point theory. It is worth pointing out that there is no paper which has

considered the existence of solutions for fourth-order differential equations with su-

perlinear impulsive growth conditions up to know, the aim of this paper is to close

this gap. Moreover, we also improve and generalize some previous results.

The arrangement of the rest paper is as follows. In Section 2, some preliminaries

and results which are applied in the later paper are presented. In Section 3, the main

proof of theorems will be vividly shown. In Section 4, corresponding examples are

given to illustrate the obtained results in Section 3.
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2. PRELIMINARIES

We will assume for the remainder of the paper that A ≤ 0 ≤ B.

Let us recall some basic knowledge first. In the Sobolev space

X := H2(0, T ) ∩H1
0 (0, T ),

we can consider the inner product

(u, v) =

∫ T

0

u′′(t)v′′(t)dt, ∀u, v ∈ X,

which induces the norm

∥u∥ =

[∫ T

0

|u′′(t)|2dt
] 1

2

.

Then we can define the following norm of X as follow

∥u∥X =

[∫ T

0

(|u′′(t)|2 − A|u′(t)|2 +B|u(t)|2)dt
] 1

2

.

Since A ≤ 0 ≤ B, it is immediate that ∥u∥ ≤ ∥u∥X .
The usual norm of C1([0, T ]) and Lp(0, T ) are defined as follow:

∥u∥∞ = max

{
max
t∈[0,T ]

|u(t)|, max
t∈[0,T ]

|u′(t)|
}
, ∥u∥Lp =

(∫ T

0

up(t)dt

) 1
p

.

Lemma 2.1 ([4]). Let u ∈ X, then ∥u∥∞ ≤ M1∥u∥X , where

M1 = max

{
T

3
2

2π
,
√
T

}
.

Remark 2.2. It is clear that the M1 is more simple in our results than that in

[7, 10], which is defined as M1 = max
{

T
3
2

πδ
,
√
T
δ
(1 + 1

π
)
}
, where δ :=

√
1− σ and

σ := max
{

AT 2

π2 ,−BT 4

π4 , AT 2

π2 − BT 4

π4 , 0
}
, we know if assume that A ≤ 0 ≤ B, then σ = 0

and δ = 1, so M1 = max
{

T
3
2

π
,
√
T (1 + 1

π
)
}
.

Remark 2.3. It is also obvious that the M1 is better in our results than that in [1, 9],

which is defined as M1 = 1 + 1
π
. However, M1 = 1 in our results if T = 1. Thus our

results generalize and improve some known results.

Remark 2.4. It is also clear that the M1 is better in our results than that in [8],

which is defined as M1 =
1√
T
+
√
T . When T = 1, M1 = 2 in [8], however, M1 = 1 in

our results. Thus our results generalize and improve some known results.
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Definition 2.5. A function u ∈ X is a weak solution of the problem (1.1) if the

following equality∫ T

0

(u′′v′′ − Au′v′ +Buv)dt = −
m∑
j=1

I1j(u
′(tj))v

′(tj)−
m∑
j=1

I2j(u(tj))v(tj)

+

∫ T

0

f(t, u(t))v(t)dt

holds for every v ∈ X.

Then we consider the functional φ : X → R defined by

(2.1) φ(u) =
1

2
∥u∥2X +

m∑
j=1

∫ u′(tj)

0

I1j(t)dt+
m∑
j=1

∫ u(tj)

0

I2j(t)dt−
∫ T

0

F (t, u(t))dt,

where F (t, u) =
∫ u

0
f(t, s)ds.

Owing to the continuity of f and Iij, i = 1, 2, we immediately deduce that φ is

continuous and differentiable at any u ∈ X and

φ′(u)(v) =

∫ T

0

(u′′v′′ − Au′v′ +Buv)dt+
m∑
j=1

I1j(u
′(tj))v

′(tj)

+
m∑
j=1

I2j(u(tj))v(tj)−
∫ T

0

f(t, u(t))v(t)dt, ∀v ∈ X.(2.2)

Hence, a critical point of φ, defined by (2.1), give us a weak solution of the problem

(1.1).

Lemma 2.6. If u ∈ X is a weak solution of problem (1.1), then u is also a classical

solution of (1.1).

Proof. The proof is similar as to the Lemma 2.1 of [7], we omit it here.

Lemma 2.7. Assume that the sequence {uk} converges weakly to u ∈ X, i.e., uk ⇀ u.

Then, we have that {uk} converges strongly to u ∈ C([0, T ],R), i.e., ∥uk − u∥∞ → 0

as k → ∞.

Definition 2.8. Let X be a Banach space and φ : X → R. We say φ is sequentially

weakly lower semi-continuous, if lim infk→+∞ φ(uk) ≥ φ(u) as uk ⇀ u in X.

Lemma 2.9. The functional φ is sequentially weakly lower semi-continuous.

Proof. Since X is a reflexive real Banach space, we may choose a weakly convergent

subsequence, we denote {uk} ∈ X and uk ⇀ u in X. Also, we have uk → u uniformly

in C([0, T ],R) as k → ∞; that is,

∥uk − u∥∞ → 0, lim inf
k→∞

∥uk∥X ≥ ∥u∥X , as k → ∞.



IMPULSIVE FOURTH-ORDER DIFFERENTIAL EQUATIONS 1441

From (2.1), we have

lim inf
k→∞

φ(uk) = lim inf
k→∞

[1
2
∥uk∥2X +

m∑
j=1

∫ u′
k(tj)

0

I1j(t)dt

+
m∑
j=1

∫ uk(tj)

0

I2j(t)dt−
∫ T

0

F (t, uk(t))dt
]

≥ 1

2
∥u∥2X +

m∑
j=1

∫ u′(tj)

0

I1j(t)dt

+
m∑
j=1

∫ u(tj)

0

I2j(t)dt−
∫ T

0

F (t, u(t))dt

= φ(u),

it implies that φ is sequentially weakly lower semi-continuous.

Definition 2.10. Let X be a real Banach space. We say φ ∈ C1(X,R) satisfies the
Palais-Smale condition (shortly (P.S.)), if every sequence {uj} ⊂ X for which {φ(uj)}
is bounded and φ′(uj) → 0 as j → 0, possesses a convergent subsequence in X.

Our main tools to prove the main results of this paper are the following theorems.

Theorem 2.11 ([5]). Let φ ∈ C1(X,R), and φ satisfies the (P.S.) condition. Assume

that there exist u0, u1 ∈ X and a bounded neighborhood Ω of u0 satisfying u1 /∈ Ω and

inf
v∈∂Ω

φ(v) > max{φ(u0), φ(u1)}.

Then, there exists a critical point u of φ, i.e., φ′(u) = 0, with φ(u) > max{φ(u0), φ(u1)}.

Theorem 2.12 ([11]). For the functional φ : M ⊆ X → R with M ̸= ∅, minu∈M φ(u) =

α has a solution in case the following conditions hold:

(i) X is a real reflexive Banach space;

(ii) M is bounded and weak sequentially closed;

(iii) φ is sequentially weakly lower semi-continuous on M .

Theorem 2.13 ([6]). Let X be an infinite dimensional Banach space, and let φ ∈
C1(X,R) be even, satisfy the (P.S.) condition, and φ(0) = 0. If X = V

⊕
Υ, where

V is finite dimensional, and φ satisfies:

(i) There exist constants ρ, η > 0 such that φ(u) ≥ η for all u ∈ Υ with ∥u∥X = ρ;

(ii) For each finite dimensional subspace W ⊂ X, there is an R = R(W ) such that

φ ≤ 0 on W\BR,

then φ possesses an unbounded sequence of critical values.
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3. MAIN RESULTS

In this section we present our main results. To be precise, we establish an ex-

istence result of at least two solutions, Theorem 3.1, which is based on Theorems

2.11 and 2.12. Finally, we present another existence result of infinitely many solu-

tions, Theorem 3.3, which is based in turn on Theorem 2.13, and we point out a

consequence, Corollary 3.4.

Theorem 3.1. Assume that the following conditions hold:

(A1) There exist µ > 2, ξij > 0, i = 1, 2, j = 1, 2, . . . ,m, such that

(i) Iij(u)u ≤ µ
∫ u

0
Iij(s)ds < 0, for u ∈ R \ {0},

(ii)
∫ u

0
Iij(s)ds ≥ −ξij|u|µ, for u ∈ R \ {0};

(A2) There exist positive constants c1, c2 and δ ∈ [0, 1) such that

|f(t, u)| ≤ c1 + c2|u|δ,

for all (t, u) ∈ [0, T ]× R;
(A3) F (t, u) ≤ 0 for all (t, u) ∈ [0, T ]× R.

Then, the problem (1.1) has at least two solutions.

Proof. It is easy to see that φ ∈ C1(X,R) is an even functional and φ(0) = 0.

Firstly, we need to prove that φ satisfies the (P.S.) condition. Let {uk} ⊂ X

such that {φ(uk)} be a bounded sequence and limk→∞ φ′(uk) = 0. Assume that there

exists a constant Z1 > 0 such that

(3.1) |φ(uk)| ≤ Z1, ∥φ′(uk)∥X ≤ Z1.

By (2.1) and (A1), we have

∥uk∥2X = 2φ(uk) + 2

∫ T

0

F (t, uk(t))dt

−2
m∑
j=1

∫ u′
k(tj)

0

I1j(t)dt− 2
m∑
j=1

∫ uk(tj)

0

I2j(t)dt

≤ 2Z1 + 2

∫ T

0

F (t, uk(t))dt

− 2

µ

m∑
j=1

I1j(u
′
k(tj))u

′
k(tj)−

2

µ

m∑
j=1

I2j(uk(tj))uk(tj).

From (2.2), together with the above inequality one has(
1− 2

µ

)
∥uk∥2X ≤ 2Z1 + 2

∫ T

0

F (t, uk(t))dt

− 2

µ
φ′(uk(t))(uk(t))−

2

µ

∫ T

0

f(t, uk(t))uk(t)dt.
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By (A2), (3.1) and Lemma 2.1, we have

(3.2)
(
1− 2

µ

)
∥uk∥2X ≤ 2Z1+

2

µ
Z1M1∥uk∥X+

(
2+

2

µ

)
T
[
c1M1∥uk∥X+c2M

δ+1
1 ∥uk∥δ+1

X

]
.

Since µ > 2, (3.2) implies that {uk} is bounded in X. Since X is a reflexive space,

we may choose a weakly convergent subsequence, we denote {uk} and uk ⇀ u in X.

Then we will prove that uk → u in X. In fact, from Lemma 2.7, we have uk → u in

C([0, T ],R) and uk → u, a.e. t ∈ [0, T ], so
(φ′(uk)− φ′(u))(uk − u) → 0,∑m

j=1[I1j(u
′
k(tj)− u′(tj))][u

′
k(tj)− u′(tj)] → 0,∑m

j=1[I2j(uk(tj)− u(tj))][uk(tj)− u(tj)] → 0,∫ T

0
[f(t, uk(t))− f(t, u(t))][uk(t)− u(t)]dt → 0, as k → ∞.

Thus, by (2.2) we have

∥uk − u∥2X = (φ′(uk)− φ′(u))(uk − u)

−
m∑
j=1

[I1j(u
′
k(tj)− u′(tj))][u

′
k(tj)− u′(tj)]

−
m∑
j=1

[I2j(uk(tj)− u(tj))][uk(tj)− u(tj)]

+

∫ T

0

[f(t, uk(t))− f(t, u(t))][uk(t)− u(t)]dt → 0, as k → ∞.

We immediately deduce that ∥uk − u∥X → 0 as k → ∞, and this implies that {uk}
converges strongly to u ∈ X. So φ satisfies the (P.S.) condition.

Next, we verify that there exists M2 > 0 such that the functional φ has a local

minimum u0 ∈ BM2 = {u ∈ X : ∥u∥X < M2}.

In fact, let {uk} ⊆ B̄M2 and uk ⇀ u as k → ∞, from Mazur Theorem, there

exists a sequence of convex combinations

vk =
k∑

j=1

αkjuj,

k∑
j=1

αkj = 1, αkj ≥ 0, k ∈ N,

such that vk → u in X. Since B̄M2 is a closed convex set, we have {vk} ⊆ B̄M2 and

u ∈ B̄M2 , thus we proved that B̄M2 is bounded and weak sequentially closed.

Since X is a reflexive Banach space and φ is sequentially weakly lower semi-

continuous on B̄M2 , by means of Theorem 2.12, we deduce that φ has a local minimum

u0 ∈ B̄M2 . Without loss of generality, we assume that φ(u0) = minu∈B̄M2
φ(u). Then

we will verify

(3.3) φ(u0) < inf
u∈∂BM2

φ(u).
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In fact, let ε = M2 > 0 satisfying

(3.4)
1

2
ε2 −

m∑
j=1

(ξ1j + ξ2j)M
µ
1 ε

µ > 0.

For any u = ετ with τ ∈ X and ∥τ∥X = 1, one has u ∈ ∂BM2 . By (2.1), (3.4), (A1)

and (A3), we have

φ(u) = φ(ετ) =
1

2
∥ετ∥2X +

m∑
j=1

∫ ετ ′(tj)

0

I1j(t)dt

+
m∑
j=1

∫ ετ(tj)

0

I2j(t)dt−
∫ T

0

F (t, ετ(t))dt

≥ 1

2
ε2 −

m∑
j=1

(ξ1j + ξ2j)M
µ
1 ε

µ > 0.

Thus, φ(u) > 0 = φ(0) ≥ φ(u0) for u ∈ ∂BM2 , that is, (3.3) holds and u0 ∈ BM2 .

Finally, we verify that there exists u1 with ∥u1∥ > M2 such that φ(u1) <

infu∈∂BM2
φ(u).

In fact, from (i) of (A1), we deduce that there exist positive constants d1j, d2j,

D1 and D2 such that

(3.5)

∫ u′

0

I1j(s)ds ≤ −d1j|u′|µ +D1

and

(3.6)

∫ u

0

I2j(s)ds ≤ −d2j|u|µ +D2

for u ∈ X. Now, let u1 = σθ, σ > 0 with θ ∈ X and ∥θ∥X = 1, then by (2.1), (3.5),

(3.6) and (A2), we have

φ(u1) = φ(σθ) =
1

2
∥σθ∥2X +

m∑
j=1

∫ σθ′(tj)

0

I1j(t)dt

+
m∑
j=1

∫ σθ(tj)

0

I2j(t)dt−
∫ T

0

F (t, σθ(t))dt

≤ 1

2
σ2 + T

[
c1M1σ + c2M

δ+1
1 σδ+1

]
−σµ

[ m∑
j=1

d1j|θ′(t)|µ +
m∑
j=1

d2j|θ(t)|µ
]
+m(D1 +D2),

then, we deduce that there exists sufficiently large σ > M2 = ε > 0 such that

φ(σθ) < 0. So, we have

max{φ(u0), φ(u1)} < inf
u∈∂BM2

φ(u),
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that is, we obtain another critical point u∗ by Theorem 2.11. Therefore, u0, u
∗ are

two critical points of φ, which are two solutions of (1.1).

Remark 3.2. In our results, the impulsive functions I1j and I2j require to satisfy the

superlinear growth conditions which are different from [1, 7, 8, 9, 10].

Theorem 3.3. Assume that (A1)-(A3) hold and f(t, u) and Iij(u), i = 1, 2, j =

1, 2, . . . ,m, are odd in u. Then, the problem (1.1) has infinitely many solutions.

Proof. Bacause of the continuity of f and Iij, i = 1, 2, j = 1, 2, . . . ,m, we clearly

know that φ is continuous and differentiable. Since f(t, u) and Iij(u), i = 1, 2,

j = 1, 2, . . . ,m, are odd in u, we know φ is even and φ(0) = 0. As the similar proof

of Theorem 3.1, we obtain that φ satisfies the (P.S.) condition. By (2.1), (A1) and

(A3), we have

φ(u) =
1

2
∥u∥2X +

m∑
j=1

∫ u′(tj)

0

I1j(t)dt

+
m∑
j=1

∫ u(tj)

0

I2j(t)dt−
∫ T

0

F (t, u)dt

≥ 1

2
∥u∥2X −

m∑
j=1

(ξ1j + ξ2j)M
µ
1 ∥u∥

µ
X .

Since µ > 2, the above inequality implies that there exists ρ > 0 small enough such

that φ(u) ≥ α > 0 with ∥u∥ = ρ. That is, (i) of Theorem 2.13 holds.

For every η > 0 and any finite dimensional subspace W ⊂ X, by (2.1), (3.5),

(3.6) and (A2), we have

φ(ηu) =
1

2
∥ηu∥2X +

m∑
j=1

∫ ηu′(tj)

0

I1j(t)dt

+
m∑
j=1

∫ ηu(tj)

0

I2j(t)dt−
∫ T

0

F (t, ηu(t))dt

≤ 1

2
η2∥u∥2X + T

[
c1M1η∥u∥X + c2M

δ+1
1 ηδ+1∥u∥δ+1

X

]
−ηµ

[ m∑
j=1

d1j|u′(t)|µ +
m∑
j=1

d2j|u(t)|µ
]
+m(D1 +D2),

for u ∈ W. Let ϑ(t) ∈ W with ∥ϑ∥X = 1. From above inequality, we have

φ(ηϑ(t)) ≤ 1

2
η2 + T

[
c1M1η + c2M

δ+1
1 ηδ+1

]
−ηµ

[ m∑
j=1

d1j|ϑ′(t)|µ +
m∑
j=1

d2j|ϑ|µ
]
+m(D1 +D2).
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Since µ > 2, the above inequality implies that there exists η1 > 0 such that ∥ηϑ(t)∥X =

η > ρ and φ(ηϑ(t)) < 0 for every η ≥ η1 > 0. Since W is a finite dimensional sub-

space, we select an R = R(W ) > 0 such that φ(u) ≤ 0 for any u ∈ W with ∥u∥X ≥ R.

That is, (ii) of Theorem 2.13 holds.

From Theorem 2.13, we know φ has infinitely many critical points, that is, the

problem (1.1) has infinitely many solutions.

By the similar methods as Theorem 3.3, we also have the following corollary.

Corollary 3.4. Let (A1) and the following condition holds:

(A4) There exists a constant β ∈ (2, µ] such that

0 < βF (t, u) ≤ uf(t, u),

for every t ∈ [0, T ] and u ∈ R\{0}, where F (t, u) =
∫ u

0
f(t, s)ds. Moreover,

f(t, u) and Iij(u), i = 1, 2, j = 1, 2, . . . ,m, are odd in u.

Then, the problem (1.1) has infinitely many solutions.

4. EXAMPLES

In this part, we will give corresponding examples to illustrate the main results in

our paper.

Example 4.1. Let T = B = 1, A = −1, t1 ∈ [0, 1], then consider the following

differential equation:

(4.1)
u(iv)(t)− u′′(t) + u(t) = − sin(u(t))e− cos(u(t)) − u

1
3 (t), t ̸= t1, a.e. t ∈ [0, 1],

∆(u′′(t1)) = −1
2
u3(t1),

−∆(u′′′(t1)) = −1
3
u3(t1),

u(0) = u(1) = u′′(0+) = u′′(1−) = 0.

It is obvious to see f(t, u) = − sin(u(t))e− cos(u(t))−u
1
3 (t), I11(u) = −1

2
u3, and I21(u) =

−1
3
u3. Let µ = 4, ξ11 =

1
8
, and ξ21 =

1
12
, that is (A1) holds. Since |f(t, u)| ≤ e+ |u| 13 ,

then F (t, u) = −e− cos(u(t)) − 3
4
u

4
3 ≤ 0, that is (A2) and (A3) hold. By Theorem 3.1,

the problem (4.1) has at least two solutions.

Example 4.2. Let T = B = 1, A = −1, t1 ∈ [0, 1], then consider the following

differential equation:

(4.2)


u(iv)(t)− u′′(t) + u(t) = −etu

1
5 (t), t ̸= t1, a.e. t ∈ [0, 1],

∆(u′′(t1)) = −eu7(t1),

−∆(u′′′(t1)) = −e2u7(t1),

u(0) = u(1) = u′′(0+) = u′′(1−) = 0.
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It is obvious to see f(t, u) = −etu
1
5 (t), I11(u) = −eu7, and I21(u) = −e2u7. Let

µ = 8, ξ11 = e
8
, and ξ21 = e2

8
, that is (A1) holds. Since |f(t, u)| ≤ e|u| 15 , then

F (t, u) = −5et

6
u

6
5 (t) ≤ 0, that is, (A2) and (A3) hold. Also, f(t, u), I11(u) and I21(u)

are odd in u. Thus, by Theorem 3.3, the problem (4.2) has infinitely many solutions.
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