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ABSTRACT. In this paper, we present new definitions of multi-valued mappings in G- complete

G-metric spaces and establish a sharper sufficient condition for the existence of fixed points by mak-

ing use of analysis technique. The results which are obtained improve, enrich, generalize and extend

many known results. Some examples are also given to demonstrate the application of our main results
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1. Introduction

The existence of a solution (positive solution) to a theoretical or practical consid-

erations physical problem is equivalent to the existence of a fixed point for a suitable

map or operator in a wide range of mathematical, economical, computational, model-

ing and engineering problems (see, e. g., [1]-[2]). Fixed point theory in ordered metric

space plays a key role in many fields of mathematical problems in applied and pure

mathematics, and sciences (see, for example [3]-[9]), chemical and multidisciplinary

application simulations such as variational and differential inequalities, optimization

(see [1]-[28]) etc. The fixed point theory itself is a beautiful mixture of analysis,

geometry and topology. For decades, the classical theory of fixed points in ordered

metric space has been revealed as a very important and powerful tool in the study

of nonlinear phenomenon. Fixed point iterative techniques have been successfully

applied in various kinds of areas such as game theory, chemistry, physics and so on.

One refers to see ([10]–[28]) and the references therein.
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In 1962, Edelstein obtained a interesting result on fixed and periodic points with

the aid of contractive mapping. One can see [8] and the references therein. Edelstein

presented the following results.

Theorem 1.1. Let E be a metric space, and g be a contractive selfmapping of E

satisfying the following conditions

∃ x(εE) : {gni} ⊂ {gn} with lim
i→∞

gni(x)εE

Then ξ = lim
i→∞

gni(x) is a unique fixed point.

Many researchers studied fixed point theory by weakening conditions and apply-

ing simultaneously enriching metric space structure with partial orders afterwards.

One can referee [1]-[28], where excellent authors extended and generalized fixed point

results. All in all, the results of fixed points of mappings have been a center on

rigorous research for a long time.

It is well known that Picard iterative operator can lead to uniqueness of fixed

point. Operator T is said to be a weakly Picard operator, if E is a nonempty,

T : E −→ E and the sequence of successive approximation for any initial value in E

converges to a fixed point of T .

Recently, many fixed point theorems have been showed in G–metric space, see

[9]-[11] and the references therein. Samet et al. [27] studied that a few of fixed point

theorems in the circumstance of a G–metric space could be showed (by simple change)

using associate existing results in the ascertained a (quasi–) metric space. That is to

say, if the contraction condition of the nonlinear operator on G–metric space can be

cut to two variables, then one can establish an equivalent nonlinear operator equation

in the ascertained usual metric space. Very recently, Karapinar and Agarwal [13]

obtained many nice results. They presented new contraction condition in G– metric

space. Agarwal et al. ([3]-[6]) and Karapinar [15] considered some excellent results

for a class of generalized contractions in ordered metric spaces.

In 2006, Mustafa and Sims (see [18]) constructed a novel structure of generalized

G– metric space and gave some basic topological properties of D–metric spaces. They

brought in a new kind of G–metric space (see [9]–[25]), which is called G–metric

spaces as a generalization and extension of metric spaces. In the new G– metric

spaces, Mustafa [25] considered new fixed point theorems of various mappings. Since

then, many researchers have studied and expanded fixed point theory in G-metric

spaces (see [14]–[22]). Kikkawa and Suzuki [17], Popescu [26] defined new multi-

valued operators. For more interesting results, one can also refer to ([9], [10], [11],

[18]–[25]), in which listing results of the fixed point theory in G–metric space. And in

([10]–[14]) some new fixed point theorems for operators satisfying various constractive
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conditions in G–metric spaces were obtained. Karapinar et al. [16] gave some coupled

fixed point results in G–metric spaces.

The G–metric space from then on has paid the attention of mathematicians

and natural philosopher and became a very popular topic especially in the sense of

perspective of fixed point theory. The definition of G- metric space is as the following

(see [18] and [2]–[7]):

Definition 1.1.(see [2]–[7] and [18]) Let E be a nonempty set. A function G is said

a generalized metric, or a G-metric, and the pair (E,G) is called a G- metric space,

For u, v, w, c ∈ E, if the function G : E × E × E → [0,+∞) satisfies the following

properties

(G1) G(u, v, w) = G(u,w, v) = · · · = G(w, u, v) = 0 if u = v = w;

(G2) G(u, u, w), G(u, v, v), G(w, v, w) > 0 for u ̸= v, w ̸= v, u ̸= w;

(G3) G(u, u, w), G(u, v, v), G(w, v, w) ≤ G(u, v, w) for u ̸= v, w ̸= v, u ̸= w;

(G4) G(u, v, w) = G(u,w, v) = G(v, w, u) = G(v, u, w) = G(w, u, v) = G(w, v, u);

(G5) G(u, v, w) ≤ G(u, v, c) +G(c, v, w)(rectangle inequality).

(G6) G(αu) = |α|G(u), α ∈ R1, G(u, u, w) = G(u,w, u) = G(w, u, u).

Definition 1.2.(see [2]–[7] and [18]) Let (E, G) be a G-metric space. Suppose that

{un}+∞
n=1 ⊂ E be a subsequence of points. We call that un is G–convergent to u∗ ∈ E

if for any ε > 0, there exists positive integer N ∈ N such that G(u∗, un, um) < ε, for

all n,m ≥ N , that is lim
n,m→+∞

G(u∗, un, um) = 0.

Definition 1.3.(see [2]–[7] and [18]) Let (E, G) be a G-metric space. A sequence

{un}+∞
n=1 ⊂ E is said to be a G– Cauchy sequence if lim

n,m,l→+∞
G(un, um, vl) = 0, that

is, there exists positive integer N ∈ N such that G(un, um, ul) < ε for all m,n, l ≥ N .

Definition 1.4.(see [2]–[7] and [18]) Let (E, G) be a G-metric space. A G–metric

space (E, G) is said to be G–complete if every G–Cauchy sequence is G–convergent

in (E,G).

Definition 1.5.(see [2]–[7] and [18]) Let (E, G) be a G-metric space. A map-

ping T : E × E × E −→ E is called G– metric continuous if for any three G–

convergent sequences {un}+∞
n=1 ⊂ E, {vn}+∞

n=1 ⊂ E, {wn}+∞
n=1 ⊂ E satisfying lim

n→+∞
un =

u, lim
n→+∞

vn = v, lim
n→+∞

wn = u respectively, such that lim
n,m→+∞

T(un, vn, wn) = T(u, v, w),

for u, v, w ∈ E.
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Definition 1.6. Let (E, G) be a G-metric space. A mapping T : E × E × E −→ E

is called G–completely continuous if T is compact and G–metric continuous.

As we notice that the strategy cannot be always valid, when the contraction

condition is nonlinear type. Motivated and inspired by above nice articles, we will

overcome the difficulty and present a new technique. In this work, we extend, general-

ize, improve, enrich the above mentioned fixed points results of nonlinear contraction

mapping in partially ordered G- metric spaces under some weaker conditions. Firstly,

we give new fixed point results in a G- complete G- metric space. Then the aim of

the article is also to redefine multi-valued mapping in G- complete G- metric spaces

and give the corresponding fixed point results. We should address here that our new

results extend and complement some known results.

The rest of the article is organized as follows. In section 2, some elementary

definitions are introduced. Then the main results and proofs are presented and some

examples are given in section 3 to demonstrate the application of our main results,

followed by some discussion in section 4.

2. Preliminaries

In this section, we recall some elementary definitions from the asymmetric topol-

ogy and the order theory, which are necessary for a good understanding of the work

below.

The following definitions and results (cf. [14], [17], [18], [26], [28]) gives a com-

parison result about the G- convergent and some definitions of G- metric space. Now

we review some basic concepts and results of G-metric spaces. In the following paper,

we denote E = (E,G), J = [a, b] ⊂ R1.

Definition 2.1. Let E be a G- metric space, and for t ∈ J , let {un} = {un(t)} be

a sequence of points of E. Then, we say that {un} is G-convergent to u = u(t) ∈ E

for t ∈ J if lim
n,m→∞

G(u, un, um) = 0, that is, for any ε > 0, there exists N ∈ N such

that G(u, un, um) < ε for all n,m ≥ N. We call u is the limit of the sequence {un}
and denote un −→ u (n → ∞) or lim

n→∞
un = u.

Proposition 2.2. Let E be a G- metric space. For any u = u(t), v = v(t) ∈ E, t ∈ J ,

define on E the metric dG by dG(u, v) = G(u, v, v) + G(u, u, v). Then for sequence

{un}∞n=1 ⊆ E, the following statements are equivalent

(a) {un} is G-convergent to u;

(b) lim
n→∞

G(un, un, u) = 0;

(c) lim
n→∞

G(un, u, u) = 0;
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(d) lim
n,m→∞

G(un, um, u) = 0.

Definition 2.3. A G-metric space E is called symmetric G- metric if G(u, v, v) =

G(v, u, u) = G(u, v, u) = G(v, u, v) for all u = u(t), v = v(t) ∈ E, t ∈ J .

Definition 2.4. Let E be a G-metric space. For t ∈ J a sequence {un}∞n=1 =

{un(t)} ⊂ E is called a G- Cauchy sequence if for any ε > 0, there exists a positive in-

tegerN ∈ N such thatG(un, um, ul) < ε for all n,m, l ≥ N, that is lim
n,m,l→∞

G(un, um, ul) =

0 in E.

Definition 2.5. A G-metric space E is said G- complete if every G- Cauchy sequence

{un}∞n=1 = {un(t)} ⊂ E is G- convergent in E.

It is well known that for t ∈ J , a sequence {un}∞n=1 = {un(t)} ⊂ E in a G- metric

space E is the G- Cauchy if and only if for any ε > 0, there exists a positive integer

N ∈ N such that G(un, um, ul) < ε for all n,m, l ≥ N, that is lim
n,m,l→∞

G(un, um, ul) = 0

in E. It is worth mentioning that every G-metric space E defines a metric dG on E

given by

(2.1) dG(u, v) = G(u, v, v) +G(v, u, u) for all u(t), v(t) ∈ E, t ∈ J.

Corollary 2.6. Let E be a G- metric space. Then E is complete metric space iff

each G-Cauchy sequence of E is G-convergent in E.

Definition 2.7. Let E be a G- metric space. A mapping Φ : E −→ E is called to

be orbitally continuous iff lim
i→∞

Φni
= x̄ implies lim

i→∞
ΦΦni

x = Φx̄.

It follows from Definition 1.1 and Proposition 2.2 that the following corollary

holds.

Corollary 2.8. Let E be a G- metric space, A metric dG on E is given as (2.1).

Then the metric dG(u, v, w) on E is continuous with respect to its three variables

u, v, w ∈ E.

Now we introduce some notations.

We denote by CB(E) the family of all nonempty closed bounded subsets of E,

for any subsets A,B of E. Let

δ(A,B) := inf{dist(a, b) : a ∈ A, b ∈ B}.

δ(A,B) is said to be a metric of A and B.

Denotes the gap between the subsets A and B of E. In particular, if u ∈ E, then

dist(u,B) := inf
v∈B

dist(u, v), dist(v, A) := inf
u∈A

dist(u, v).
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Let H(·, ·) be the Hausdorff metric, i.e.,

H(A,B) = sup

{
sup
u∈A

d(u,B), sup
v∈B

d(v, A)

}
, for all A,B ∈ CB(E).

Recently, Kaewcharoen and Kaewkhao [14] introduced the following concepts.

Let E be a G- metric space and H(·, ·, ·) be the Hausdorff G-distance on CB(E),

i.e.
G(u, v, A) := inf{G(u, v, w), w ∈ A}

HG(A,B, F ) = sup

{
sup
u∈A

G(u,B, F ), sup
u∈B

G(A, u, F ), sup
u∈F

G(A,B, u)

}
,

where

G(u,B, F ) = dG(u,B) + dG(B,F ) + dG(u, F ), dG(u,B) = inf{dG(u, v) : v ∈ B}

dG(A,B) = inf{dG(a, b) : a ∈ A, b ∈ B}.

Recall that G(u, v, F ) := inf{G(u, v, w), w ∈ F}. A mapping T : E → CB(E) is

said to be a multi-valued mapping. A point u ∈ E is said to be a fixed point of T if

u ∈ Tu.

Lemma 2.9. Let E be a G- metric space and A,B ∈ CB(E). Then for each α ∈ A,

we have

G(u,B,B) ≤ HG(A,B,B).

Corollary 2.10. Suppose that f(t) = 1
1+β(t)

is a real function for t ∈ [0,+∞), with

0 ≤ β(t) < 1, and E is a metric space with F ⊆ E. Then T : F −→ CB(E) is said to

be a β(t)-KS multi-valued operator if 0 ≤ β(t) < 1, t ∈ [0,+∞) and u, v ∈ E with

δ(u, Tu) ≤ 1
f(t)

d(u, v) implies

H(Tu, Tv) ≤ β(t)d(u, v).

The following result is a refinement of Nadler′s theorem. One refers to see ([17],

[19]-[25], [26]) and references therein.

Theorem 2.11. Suppose that f(t) = 1
1+β(t)

is a real function for t ∈ [0,+∞) with

0 ≤ β(t) < 1, and E is a complete metric space. Let T : E −→ CB(E) be a β(t)-KS

multi-valued operator. Then there exists w ∈ E such that w ∈ Tw.

Definition 2.12. Let E be a complete metric space. Suppose that T : E −→ CB(E).

T is said to be an (γ, β(t))-contractive multi-valued operator if 0 ≤ β(t) < 1, γ ≥ β(t)

and u, v ∈ E with δ(v, Tu) ≤ γd(v, u) implies H(Tu, Tv) ≤ β(t)MT (u, v)), where

MT (u, v) = max

{
d(u, v), δ(u, Tu), δ(v, Tv),

δ(u, Tv) + δ(v, Tu)

2

}
.

When γ = s, β(t) = r, one can see Popescu [26] defined the (s, r)- contractive

multi-valued operator is a special of (γ, β(t)). Therefore Definition 2.12 is novel.
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3. Main results

Definition 3.1. Let E be a complete G-metric space and T : E −→ CB(E). Suppose

that f(t) = 1
1+β(t)

is a strictly decreasing real function for t ∈ [0,+∞). If there exists

0 ≤ β(t) < 1, t ∈ [0,+∞) such that G(u, u, Tu) ≤ 1
f(t)

G(u, u, v) implies

(3.1) HG(Tu, Tu, Tv) ≤ β(t)G(u, u, v), for all u, v ∈ E.

Then T is called a β(t)-KS multi-valued operator in G-metric space.

Definition 3.2. Let E be a complete G- metric space and T : E −→ CB(E). Assume

that 0 ≤ β(t) < 1, t ∈ [0,+∞), γ ≥ 1 and u, v ∈ E with G(v, v, Tu) ≤ γG(v, v, u)

implies

(3.2) HG(Tu, Tu, Tv) ≤ β(t)MT (u, u, v)

Where

MT (u, u, v) = max

{
G(u, u, v), G(u, u, Tu), G(v, v, Tv),

G(u, u, Tv) +G(v, v, Tu)

2

}
.

Then T is called an (γ, β(t))- contractive multi-valued operator in G-metric space.

Remark 3.3. Let E be a G-metric space, A,B ⊆ CB(E), by lemma 2.8, for each

b ∈ B, we have G(A,A, b) ≤ HG(A,A,B), since G(A,A, b) = 2dG(b, A), then there

exists a ∈ A such that G(A,A, b) = 2(G(b, b, a) +G(a, a, b)), hence we have

G(a, a, B) ≤ G(a, a, b) ≤ G(A,A, b) ≤ HG(A,A,B).

Theorem 3.4. Let E be a complete G-metric space and T be a r-KS multi-valued

operator from E into CB(E) in G- metric space. Then there exists w ∈ E such that

w ∈ Tw.

Proof. Take a real number β1(t) with 0 ≤ β(t) < β1(t) < 1, t ∈ [0,+∞). Then, for

each x = x0 ∈ E and there exists x1 ∈ Tx, we have

G(x, x, Tx) = G(x, x, x1) ≤
1

f(t)
G(x, x, x1).

From (3.1) and remark 3.3 we have

G(x1, x1, Tx1) ≤ HG(Tx, Tx, Tx1) ≤ β(t)G(x, x, x1)

holds. So, there exists x2 ∈ Tx1 such that G(x1, x1, x2) ≤ β1(t)G(x, x, x1). Thus, we

have a sequence {xn} in E such that xn+1 ∈ Txn and

(3.3)
G(xn−1, xn−1, xn) ≤ β1(t)G(xn−2, xn−2, xn−1) ≤ β2

1(t)G(xn−3, xn−3, xn−2) ≤ · · ·

≤ βn−1
1 (t)G(x, x, x1).
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Then, for all n,m ∈ N, n < m, we have by repeated use of the rectangle inequality

and equation (3.3) that

G(xn, xn, xm) ≤ G(xn, xn, xn+1) +G(xn+1, xn+1, xn+2) + · · ·+G(xm−1, xm−1, xm)

≤ (βn
1 (t) + βn+1

1 (t) + · · ·+ βm+n−1
1 (t))G(x, x, x1)

≤ βm
1 (t)

1− β1(t)
G(x, x, x1).

Then, G(xn, xn, xm) −→ 0 as n,m → ∞, since lim
m→∞

βm
1 (t)

1−β1(t)
G(x, x, x1) = 0. For

n,m, l ∈ N, (G5) implies that

G(xn, xm, xl) ≤ G(xn, xm, xm) +G(xm, xm, xl),

taking limit as n,m, l → ∞, we get G(xn, xm, xl) −→ 0. So {xn} is G-Cauchy

sequence. By completeness of E, there exist w ∈ E such that {xn} is G-converges to

w.

Then we show that G(w,w, Tu) ≤ β(t)G(w,w, u) for all u ∈ E \ {w}.

Since xn −→ w, there exist k ∈ N such that

G(w,w, xn) ≤
1

3
G(w,w, u), and G(w, xn, xn) ≤

1

3
G(w,w, u), ∀ n ∈ N, n ≥ k.

Then we have

f(t)G(xn, xn, Txn) ≤ G(xn, xn, Txn) ≤ G(xn, xn, xn+1)

≤ G(xn, xn, w) +G(w,w, xn+1)

≤ 2

3
G(w,w, u) = G(w,w, u)− 1

3
G(w,w, u)

≤ G(w,w, u)−G(w,w, xn) ≤ G(xn, xn, u)

Hence HG(Txn, Txn, Tu) ≤ β(t)G(xn, xn, u). So it follows that

G(xn+1, xn+1, Tu) ≤ β(t)G(xn, xn, u), for n ∈ N, with n ≥ v.

Letting n −→ ∞, we obtain G(w,w, Tu) ≤ β(t)G(w,w, u) for all u ∈ E \ {w}.

Next we prove that HG(Tu, Tu, Tw) ≤ β(t)G(u, u, w), for all u ∈ E.

If w = u, then it obviously holds. So we assume that w ̸= u, then for every

n ∈ N, there exists vn ∈ Tu such that G(w,w, vn) ≤ G(w,w, Tu) + 1
n
G(u, u, w). We
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have

G(u, u, Tu) ≤ G(u, u, vn) ≤ G(u, u, w) +G(w,w, vn)

≤ G(u, u, w) +G(w,w, Tu) +
1

n
G(u, u, w)

≤ G(u, u, w) + β(t)G(w,w, u) +
1

n
G(u, u, w)

≤ G(u, u, w) + β(t)(G(w, u, u) +G(u,w, u)) +
1

n
G(u, u, w)

= (1 + 2β(t) +
1

n
)G(u, u, w)

Hence we have
1

1 + 2β(t)
G(u, u, Tu) ≤ G(u, u, w).

From (3.1), we have HG(Tu, Tu, Tw) ≤ 2β(t)G(u, u, w).

Finally, since

G(w,w, Tw) = lim
n→∞

G(xn+1, xn+1, Tw) ≤ lim
n→∞

HG(Txn, Txn, Tw)

≤ lim
n→∞

2β(t)G(xn, xn, w) = 0

and Tw is closed, we obtain w ∈ Tw.

Corollary 3.5. Suppose that E is a complete G-metric space and T : E −→ CB(E).

If there exists 0 ≤ β(t) < 1, t ∈ [0,+∞) such that

HG(Tu, Tu, Tv) ≤ β(t)G(u, u, v) for all u, v ∈ E.

then there exists w ∈ E such that w ∈ Tw.

Theorem 3.6. Suppose that E is a complete G- metric space and T : E −→ CB(E)

is a (γ, β(t))- contractive multi-valued operator with γ > β(t). Then there exists

w ∈ E such that w ∈ Tw.

Proof. Let β1(t) be a real number such that 0 ≤ β(t) < β1(t) < γ and 0 < β1(t) < 1.

Let x1 ∈ E and there exists x2 ∈ Tx1. If x2 = x1, then x1 ∈ Tx1 and the proof is

complete. So we assume that x2 ̸= x1, then G(x2, x2, Tx1) ≤ γG(x2, x2, x1). From

(3.2) and remark 3.3 we have

G(x2, x2, Tx2) ≤ HG(Tx1, Tx1, Tx2)

≤ β(t)max
{
G(x1, x1, x2), G(x1, x1, Tx1), G(x2, x2, Tx2),

G(x1, x1, Tx1) +G(x2, x2, Tx2)

2

}
So

G(x2, x2, Tx2) ≤ β(t)max

{
G(x1, x1, x2), G(x1, x1, Tx1),

G(x1, x1, x2) +G(x2, x2, Tx2)

2

}
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Hence, from 0 ≤ β(t) < 1, we have G(x2, x2, Tx2) ≤ G(x1, x1, x2). Then there

exists x3 ∈ Tx2 such that G(x2, x2, x3) ≤ β1(t)G(x1, x1, x2). Thus, we can construct

a sequence {xn} in E such that xn+1 ∈ Txn and

(3.4) G(xn−1, xn−1, xn) ≤ β1(t)G(xn−2, xn−2, xn−1) ≤ · · · ≤ βn−2
1 (t)G(x1, x1, x2)

Then, for all n,m ∈ N, n < m, we have by repeated use of the rectangle inequality

and equation (3.4) that

G(xn, xn, xm) ≤ G(xn, xn, xn+1) +G(xn+1, xn+1, xn+2) + · · ·+G(xm−1, xm−1, xm)

≤ (βn
1 (t) + βn+1

1 (t) + · · ·+ βm+n−1
1 (t))G(x1, x1, x2) ≤

βn
1 (t)

1− β1(t)
G(x1, x1, x2).

since lim
n→∞

βn
1 (t)

1−β1(t)
G(x1, x1, x2) = 0. Then, lim

n,m→∞
G(xn, xn, xm) = 0. Thus for

n,m, l ∈ N, together with (G5), it implies that

G(xn, xm, xl) ≤ G(xn, xm, xm) +G(xm, xm, xl)

Thus we get lim
n,m,l→∞

G(xn, xm, xl) = 0. So {xn} is a G-Cauchy sequence. By com-

pleteness of E, there exists w ∈ E such that {xn} is G- converges to w.

Now, we will show that there exists a subsequence {xnk
} ⊂ {xn} such that

G(w,w, Txnk
) ≤ γG(w,w, xnk

), for all k ∈ N.

Arguing by contradiction, we assume that there exists a positive integer N such that

G(w,w, Twn) > γG(w,w, xn), for all n ≥ N.

This implies G(w,w, xn+1) > γG(w,w, xn), by induction and (G5), for all n ≥ N ,

p ≥ 1, we get that

(3.5)
γpG(w,w, xn) < G(w,w, xn+p) ≤ G(w, xn+p, xn+p) +G(xn+p, w, xn+p)

= 2G(xn+p, xn+p, w)

by repeated use of the rectangle inequality and (3.4) we have

G(xn, xn, xn+p) ≤ G(xn, xn, xn+1) + · · ·+G(xn+p−1, xn+p−1, xn+p)

≤ G(xn, xn, xn+1)(1 + β1(t) + β2
1(t) + · · ·+ βp−1

1 (t))

=
1− βp

1(t)

1− β1(t)
G(xn, xn, xn+1)

for all n ≥ N, p ≥ 1. Taking the limit as p → ∞, we get

G(xn, xn, w) ≤
1

1− β1(t)
G(xn, xn, xn+1), for all n ≥ 1.

Then we obtain

(3.6)

G(xn+p, xn+p, w) ≤
1

1− β1(t)
G(xn+p, xn+p, xn+p+1) ≤

βp
1(t)

1− β1(t)
G(xn, xn, xn+1)
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for all n ≥ N, p ≥ 1. From (3.5) and (3.6), we obtain

G(w,w, xn) <
2
(

β1(t)
γ

)p

1− β1(t)
G(xn, xn, xn+1)

for all n ≥ N, p ≥ 1. Taking the limit as p → ∞, we get that G(w,w, xn) = 0,

that is w = xn for all n ≥ N . This contradicts with (3.5). Therefore there exists a

subsequence {xnk
} ⊂ {xn} such that

G(w,w, Txnk
) ≤ γG(w,w, xnk

)

for all k ∈ N. By making use of (3.2), we have

(3.7)

HG(Txnk
, Txnk

, Tw) ≤ β(t)max
{
G(xnk

, xnk
, w), G(xnk

, xnk
, Txnk

),

G(w,w, Tw),
G(w,w, Txnk

) +G(xnk
, xnk

, Tw)

2

}
Hence there exists xnk+1 ∈ Txnk

such that

(3.8)

G(xnk+1, xnk+1, Tw) ≤ β(t)max
{
G(xnk

, xnk
, w), G(xnk

, xnk
, xnk+1),

G(w,w, Tw),
G(w,w, xnk+1) +G(xnk

, xnk
, Tw)

2

}
Letting k → ∞, we have

G(w,w, Tw) ≤ β(t)max

{
G(w,w, Tw),

G(w,w, Tw)

2

}
.

Then we get G(w,w, Tw) = 0 and Tw ∈ CB(E), w ∈ Tw.

Example 3.7. Let E = {1, 2, 3} and G : E × E × E → [0,+∞) be defined by

G(1, 1, 2) = G(2, 1, 1) = G(1, 2, 1) = G(1, 2, 2) = G(2, 1, 2) = G(2, 2, 1) = 2;

G(1, 1, 3) = G(3, 1, 1) = G(1, 3, 1) = G(1, 3, 3) = G(3, 1, 3) = G(3, 3, 1) = 1;

G(2, 2, 3) = G(3, 2, 2) = G(2, 3, 2) = G(2, 3, 3) = G(3, 2, 3) = G(3, 3, 2) = 6;

G(1, 2, 3) = G(1, 3, 2) = G(2, 1, 3) = G(2, 3, 1) = G(3, 1, 2) = G(3, 2, 1) = 3;

G(u, u, u) = 0 for all u ∈ E.

E is a symmetric G-complete G-metric space.

Let T : E → CB(E) be defined by T1 = T2 = {1, 2}, T3 = {1, 2, 3}. Then

(i) T is an (γ, β(t))-contractive multi-valued operator with β(t) = 0.8 and γ = 0.9;

(ii) Every u ∈ E is a fixed point of T .
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We have

G(1, 1, T2) = G(1, 1, T3) = {0, 2}, HG(T1, T1, T2) = HG(T1, T2, T2) = 0

HG(T1, T1, T3) = HG(T2, T2, T3) = G(2, 2, 3) = 6.

2dG(3, T2) = 2(G(3, 1, 1) +G(1, 3, 3)) = 4 < 0.8G(2, 2, 3)

HG(T3, T3, T1) = HG(T3, T3, T2) = HG(3, 3, 2)

dG(3, T2) = G(3, 1, 1) +G(1, 3, 3) = 2 < 0.8G(3, 3, 2)

and

0 = G(1, 1, T2) ≤ γG(1, 1, 2) = 1.6, 2 = G(1, 1, T2) ≥ γG(1, 1, 1) = 0,

0 = G(1, 1, T3) < γG(1, 1, 3) = 0.8, 2 = G(1, 1, T3) = G(1, 1, 2) > γG(1, 1, 3) = 0.8,

1 = G(1, 1, T3) = G(1, 1, 3) < γG(1, 1, 2) = 1.6,

2 = G(1, 1, T3) = G(1, 1, 2) > γG(1, 1, 1) = 0,

2 = G(2, 2, 1) = G(2, 2, T1) > γG(2, 2, 2) = 0,

0 = G(2, 2, 2) = G(2, 2, T1) < γG(2, 2, 1) = 1.6,

2 = G(2, 2, 1) = G(2, 2, T3) < γG(2, 2, 3) = 4.8,

0 = G(2, 2, 2) = G(2, 2, T3) < γG(2, 2, 3) = 4.8,

6 = G(2, 2, 3) = G(2, 2, T3) > γG(2, 2, 1) = 1.6,

6 = G(2, 2, 3) = G(2, 2, T3) > γG(2, 2, 2) = 0,

1 = G(3, 3, 1) = G(3, 3, T1) > γG(3, 3, 1) = 0.8,

6 = G(3, 3, 2) = G(3, 3, T1) > γG(3, 3, 2) = 4.8,

1 = G(3, 3, 1) = G(3, 3, T2) < γG(3, 3, 2) = 4.8,

6 = G(3, 3, 2) = G(3, 3, T2) > γG(3, 3, 1) = 0.8

So T is an (γ, β(t))- contractive multi-valued operator with β(t) = 0.8 and γ =

0.9.

(ii) It is obvious.

Considering T as a single-valued mapping, then we have the following theorem.

Theorem 3.8. Let E be a complete G-metric space and T : E −→ E be a (γ, β(t))

-contractive single-valued operator u, v ∈ E with G(v, v, Tu) ≤ γG(v, v, u) implies

(3.9) G(Tu, Tu, Tv) ≤ β(t)MT (u, u, v),

where

MT (u, u, v) = max

{
G(u, u, v), G(u, u, Tu), G(v, v, Tv),

G(u, u, Tv) +G(v, v, Tu)

2

}
.
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Then T has a fixed point. Moreover, if γ ≥ 1, then T has a unique point.

Proof. It follows from Theorem 3.6. that if γ ≥ 1, there exists u, v ∈ Fix(T ), u ̸= v,

then G(v, v, Tu) = G(v, v, u) ≤ γG(v, v, u). By (3.7), we have

(3.10) G(u, u, v) = G(Tu, Tu, Tv) ≤ max

{
G(u, u, v),

G(u, u, v) +G(v, v, u)

2

}
Consequently, there are the following two cases

Case (1) If G(u, u, v) ≤ β(t)G(u, u, v) which is a contradiction.

Case (2) If G(u, u, v) ≤ β(t)G(u,u,v)+G(v,v,u)
2

, then we have

G(u, u, v) ≤ β(t)

2− β(t)
G(v, v, u).

By the symmetry of u and v, we obtain

(3.11) G(u, u, v) ≤ β(t)

2− β(t)
G(v, v, u) ≤

(
β(t)

2− β(t)

)2

G(u, u, v)

Notice that β(t) ∈ [0, 1), then we have
(

β(t)
2−β(t)

)2

< 1. Thus (3.11) is a contradiction.

Hence, if γ ≥ 1, then T has a unique fixed point.

Example 3.9. Let E = {1, 2, 3, 4} and G : E × E × E → [0,+∞) be defined by

G(1, 1, 2) = G(2, 1, 1) = G(1, 2, 1) = G(1, 2, 2) = G(2, 1, 2) = G(2, 2, 1) = 7;

G(1, 1, 3) = G(3, 1, 1) = G(1, 3, 1) = G(1, 3, 3) = G(3, 1, 3) = G(3, 3, 1) = 6;

G(1, 1, 4) = G(4, 1, 1) = G(1, 4, 1) = G(1, 4, 4) = G(4, 1, 4) = G(4, 4, 1) = 5;

G(2, 2, 3) = G(3, 2, 2) = G(2, 3, 2) = G(2, 3, 3) = G(3, 2, 3) = G(3, 3, 2) = 4;

G(2, 2, 4) = G(4, 2, 2) = G(2, 4, 2) = G(2, 4, 4) = G(4, 2, 4) = G(4, 4, 2) = 3;

G(3, 3, 4) = G(4, 3, 3) = G(3, 4, 3) = G(3, 4, 4) = G(4, 3, 4) = G(4, 4, 3) = 2;

G(1, 2, 3) = G(1, 3, 2) = G(2, 1, 3) = G(2, 3, 1) = G(3, 1, 2) = G(3, 2, 1) = 8;

G(2, 3, 4) = G(2, 4, 3) = G(3, 2, 4) = G(3, 4, 2) = G(4, 2, 3) = G(4, 3, 2) = 8;

G(1, 3, 4) = G(1, 4, 3) = G(3, 1, 4) = G(3, 4, 1) = G(4, 1, 3) = G(4, 3, 1) = 8;

G(1, 2, 4) = G(1, 4, 2) = G(2, 1, 4) = G(2, 4, 1) = G(4, 1, 2) = G(4, 2, 1) = 8;

G(u, u, u) = 0 for all u ∈ E.

E is a symmetric G-complete G-metric space.

Let T : E → E be such that T1 = T2 = 3, T3 = T4 = 4. Then

(a) T is a (γ, β(t))-contractive single-valued operator with β(t) = 0.6 and γ = 1.1;
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(b) T has a unique fixed point.

Proof. (a) we have the following cases:

(i) If u = 1, v = 2 or u = 2, v = 1, then G(Tu, Tu, Tv) = G(3, 3, 3) = 0 and

MT (u, u, v) = 7, hence 0 = G(Tu, Tu, Tv) ≤ β(t)MT (u, u, v) = 4.2.

(ii) If u = 1, v = 3 or u = 3, v = 1 then G(Tu, Tu, Tv) = G(3, 3, 4) = 2 and

MT (u, u, v) = 6, hence 2 = G(Tu, Tu, Tv) ≤ β(t)MT (u, u, v) = 3.6.

(iii) If u = 1, v = 4 or u = 4, v = 1, then G(Tu, Tu, Tv) = G(3, 3, 4) = 2 and

MT (u, u, v) = 6, hence 2 = G(Tu, Tu, Tv) ≤ β(t)MT (u, u, v) = 3.6.

(iv) If u = 2, v = 3 or u = 3, v = 2, then G(Tu, Tu, Tv) = G(3, 3, 4) = 2 and

MT (u, u, v) = 4, hence 2 = G(Tu, Tu, Tv) ≤ β(t)MT (u, u, v) = 2.4.

(v) If u = 2, v = 4 or u = 4, v = 2, then G(Tu, Tu, Tv) = G(3, 3, 4) = 2 and

MT (u, u, v) = 4, hence 2 = G(Tu, Tu, Tv) ≤ β(t)MT (u, u, v) = 2.4.

(vi) If u = 3, v = 4 or u = 4, v = 3, then G(Tu, Tu, Tv) = G(4, 4, 4) = 0 and

MT (u, u, v) = 2, hence 0 = G(Tu, Tu, Tv) ≤ β(t)MT (u, u, v) = 1.2.

(b) It is obvious.

4. Discussions on the conditions of Theorems

We discuss the conditions in this paper. It is easy to see that the functions

satisfying the conditions of the theorems are rather wide. For example, we can obtain

the following corollary:

Corollary 4.1. Suppose that all βi(y) (i = 0, 1, · · · , m) are nonnegative continuous

functions and satisfy 0 ≤ βi(t) < 1 on [0, +∞). Let E be a complete G-metric space

and T : E −→ E be a (γ, β(t))-contractive single-valued operator with G(v, v, Tu) ≤
γG(v, v, u) for u, v ∈ E, γ > β(t) implies

(4.1) G(Tu, Tu, Tv) ≤ βi(t)MT (u, u, v).

where

MT (u, u, v) = max

{
G(u, u, v), G(u, u, Tu), G(v, v, Tv),

G(u, u, Tv) +G(v, v, Tu)

2

}
.

Then T has a fixed point. Moreover, if γ ≥ 1, then T has a unique fixed point.

Remark 4.1. The key condition in [11] requires the constant 0 < r < 1. Here

in our work, we only require the function 0 < β(t) < 1, t ∈ [0,+∞). From above

discussions, it is clear that our results improve and extend the results in [11] and [25].
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Fisicas y Naturales. Serie A. Mathemaáticas, 110(2):433–456, 2016. http://doi.org/10.1007/s

13398–015–0242–6.

[5] Ravi P Agarwal and E. Karapinar, Remarks on some coupled fixed point theorems in G–metric

spaces, Fixed Point Theory Appl., 2013(2): 1-15, 2013.

[6] Ravi P. Agarwal, E. Karapinar, D. O’Regan, A. -F. Roldán -López-de-Hierro, Further Fixed
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