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ABSTRACT. In this proposed article we consider an approximation space I = (U, R), where U denotes nonempty 

finite set of objects and R be an arbitrary equivalence relation defined on U. The Rough Co-zero divisor graph 

G(Z∗(J))  of a Rough Semiring (T, ∆, ∇) on I corresponding to the Rough ideal is taken for study. The degree of each 

of the vertices and distance of any two vertices in G(Z∗(J)) are computed. Based on the degree of vertices a Partition 

graph P(Z∗(J)) is defined. This Partition graph is used to find the Wiener index of G(Z∗(J)). The main advantage of 

partition graph is that all the graph theoretical parameters can be computed for any Rough Co-zero divisor graph with 

2n−m. 3m − 2, 1 ≤ m ≤ n. An analysis of disease symptom relationship is made through the defined parameters. All 

of the concepts are embellished with suitable examples. AMS Classification: 05C12, 05C05  
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                                 1.INTRODUCTION  

 Wiener index is the primary graph theoretical index to be used in Chemistry. It was introduced 

by Harold Wiener in 1947. Mathematical studies of  Wiener index started in the year 1970 [1];[2]. 

The concept of Wiener index is a boundary between Algebraic graph theory and Chemistry.  

The introduction of Rough set theory was proposed by Pawlak [12] in 1982 which is tool for 

Medalling with imperfect knowledge, in particular with vague concepts in the information systems 

and it is defined as a pair called lower and upper approximation. 

Rough set theory is one such tool and has more advantage than Fuzzy set theory and any other 

theory like probability theory, evidence theory, etc and It provides efficient methods, algorithms 

and tools for finding hidden patterns in data.  For a subset of the universe, Rough set is an ordered 

pair of lower and upper approximations. The research on Rough set theory and its application in 

various fields have attracted the attention of researchers more and more. Rough set theory is 

applied in knowledge discovery, feature selection, pattern recognition, machine learning, 

medicine, and telecommunications. 

 In 201[5];[8-10] considered an approximation space 𝐼 = (𝑈, 𝑅) where 𝑈 is nonempty finite 

set of objects and 𝑅 is an arbitrary equivalence relation on 𝑈. With respect to the two operations 

∆ and ∇ the set of all Rough sets 𝑇 on 𝑈 is proved to be a Semiring called namely Rough Semiring. 

The ideals of this Rough Semiring are also studied widely [5].  
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Hua [6];[7] designed the concept of Co-zero divisor graph, denoted by Γ′(𝑅) , on a 

commutative ring 𝑅 . Let by W∗(𝑅) denote non-unit elements of 𝑅 . In the vertex set Γ′(𝑅) is 

W∗(𝑅) and for two distinct vertices 𝑎 and 𝑏 in W∗(𝑅), 𝑎 is adjacent to 𝑏 if and only if 𝑎𝜖(𝑏) and 

𝑏𝜖(𝑎), where (𝑐) is an ideal generated by the element 𝑐. 

In 1988 Mohar and Pisanki  they derived algorithms to calculate the Wiener index of graphs 

and trees.  In 2013 Vijayabarathi and Anjaneyulu also have made a study on the Wiener index of 

graphs and its chemical applications. M. Fischerman, et.al (characterized the trees which 

minimizes and maximizes the Wiener index under different conditions and Stevanovic discussed 

on the maximization of Wiener index of graphs with maximum degree. A study on edge - Wiener 

index of a graph is made by authors P. Danklemann et.al.[3]; [4] Motivation of this study is to 

discuss the Algebraic graph theoretic concepts on the Rough semiring (𝑇, ∆, ∇). The complexity 

of this study will increase for large values of 𝑛 and 𝑚. In this work, the complexity is made simpler 

by defining a partition graph 𝑃(𝑍∗(𝐽))corresponding to 𝐺(𝑍∗(𝐽)) , in which the vertices are 

divided into seven partitions. This partition graph is obtained by defining suitable partition in the 

vertices of 𝐺(𝑍∗(𝐽)). Hence vertices of same degree will fall into same partition. The objective of 

these graph theoretical parameters is computed using partition graph corresponding to a Rough 

Co-zero divisor graph. 

In section 2 we provide with a basic definitions and notations and in section 3 we define the 

partition graph of 𝐺(𝑍∗(𝐽)) and in section 3.1 we find the degree’s of the vertices in 𝐺(𝑍∗(𝐽)). In 

section 3.2. we define partition graph of Rough Co-zero divisor graph. Finally section 3.3 explains 

the Wiener index of 𝐺(𝑍∗(𝐽))  using the partition graph. An analysis of disease symptom 

relationship is made through the defined parameters in section 4 followed by a conclusion. 

                        2 . BASIC DEFINITION AND NOTATION  

2.1 Graph Theory 

Graph theory plays a vital role in modelling real time problems with which a suitable solution 

can be obtained. The Graph theoretical parameters are widely used in  data flow diagram, decision 

making ability, and displays relationships among objects, easy alterations and modifications in the 

existing system etc. 

Let graph 𝑆, connected undirected graph with 𝑉(𝑆) = {𝑣1, 𝑣2, … 𝑣𝑛} and 𝐸(𝑆) = {𝑒1, 𝑒2, … 𝑒𝑛} 

the distance between any two vertices 𝑣𝑖 and 𝑣𝑗  denoted by 𝑑(𝑣𝑖, 𝑣𝑗) is the length of a shortest 

path between 𝑣𝑖 and 𝑣𝑗  in 𝑆. The wiener index of a graph 𝑆 denoted by 𝑊(𝑆) is the sum of the 

distances between all pair of vertices of 𝑆.  

(i.e.)𝑊(𝑆) = ∑ 𝑑(𝑣𝑖, 𝑣𝑗)𝑖<𝑗  

The degree of a vertex of a graph is the number of edges that are incident to the vertex. The 

degree of a vertex is denoted by 𝑑𝑒𝑔(𝑣).  
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2.2 Rough Set Theory 

Let 𝑈 be a nonempty set which is finite and 𝑅 be an arbitrary equivalence relation defined on 

𝑈then 𝐼 = (𝑈, 𝑅) is called an approximation space for 𝑥, [𝑥]𝑅 = {𝑦 ∈ 𝑈|(𝑥, 𝑦) ∈ 𝑅} is said to be 

an equivalence class. Then for 𝑋 ⊆ 𝑈, let 𝑅𝑆(𝑋) = (𝑅(𝑋), 𝑅(𝑋)) be the rough set, where 𝑅(𝑋) =

{𝑥 ∈ 𝑈|[𝑥]𝑅 ⊆ 𝑋} is said to be a lower approximation and higher approximation  defined as 

𝑅(𝑋) = {𝑥 ∈ 𝑈|[𝑥]𝑅 ∩ 𝑋 ≠ ∅}. Also 𝑇 = {𝑅𝑆(𝑋)|𝑋 ⊆ 𝑈} be the collection of all rough sets. 

For any approximation space I = (U, R), the set of all Rough sets T was proved to be a lattice 

called Rough lattice having praba∆ and praba∇ as its least upper bound and greatest lower bound. 

Hence (T,∆,∇) is a semiring called rough semiring [9]. 

Theorem 2.1.  

Let I = (U, A) be an information system where U be the universal (finite) set and A be the set 

of attributes and T be the set of all rough sets then (T, Δ, ∇) is a Semiring. 

Definition 2.1  

Let 𝑋, 𝑌 ⊆ 𝑈  the 𝑝𝑟𝑎𝑏𝑎 ∆  is defined as 𝑋 = 𝑋 ∪ 𝑌  if 𝐼𝑊(𝑋 ∪ 𝑌 ) =  𝐼𝑊(𝑋 ) +

 𝐼𝑊(𝑌 )–  𝐼𝑊(𝑋 ∩ 𝑌 ). 

Definition 2.2:  

Let 𝑋, 𝑌 ⊆ 𝑈 then an element 𝑥 ∈ 𝑈 is called a Pivot element, if [𝑥]𝑝 ⊈ 𝑋 ∩ 𝑌, but [𝑥]𝑝 ∩

𝑋 ≠ ∅ and [𝑥]𝑝 ∩ 𝑌 ≠ ∅. 𝑃𝑋∩𝑌 be the collection of pivot elements. 

Definition 2.3: 

𝑝𝑟𝑎𝑏𝑎 𝛻 𝑋 and 𝑌 define by 𝑋∇𝑌 = {𝑥|[𝑥]𝑝 ⊆ 𝑋 ∩ 𝑌} ∪ 𝑃𝑋∩𝑌, where 𝑋, 𝑌 ⊆ 𝑈. Identify that 

every pivot element in 𝑃𝑋∩𝑌 be the representative of specific class. 

Definition 2.4:  

The Rough co-zero divisor graph 𝐺(𝑍∗(𝐽)) = (𝑉(𝑍∗(𝐽)), 𝐸(𝑍∗(𝐽))) where 𝑉(𝑍∗(𝐽)) is the 

set of vertices consisting of the elements of 𝑇∗ = 𝑇 − {𝑅𝑆(∅), 𝑅𝑆(𝑈)} and two elements 𝑅𝑆(𝑋), 

𝑅𝑆(𝑌) ∈ 𝑉(𝑍∗(𝐽)) are adjacent if and only if 𝑅𝑆(𝑋) ∉ 𝑅𝑆(𝑌)∇𝐽 and 𝑅𝑆(𝑌) ∉ 𝑅𝑆(𝑋)∇𝐽. 

Illustration 2.1: 

Let 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} and let {𝑋1, 𝑋2, 𝑋3} are the equivalence classes induced by an 

equivalence relation 𝑅 on 𝑈 such 𝑋1 = {𝑥1, 𝑥3}, 𝑋1 = {𝑥2, 𝑥4, 𝑥6} and 𝑋1 = {𝑥5} 
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𝑉(𝑍∗(𝐽)) = {𝑅𝑆(𝑥1), 𝑅𝑆(𝑥2), 𝑅𝑆(𝑋1), 𝑅𝑆(𝑋2), 𝑅𝑆(𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑥2), 𝑅𝑆(𝑋1 ∪ 𝑋2), 𝑅𝑆(𝑋1 ∪

𝑋3), 𝑅𝑆(𝑋2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑋2), 𝑅𝑆(𝑋1 ∪ 𝑥2), 𝑅𝑆(𝑥1 ∪ 𝑋3), 𝑅𝑆(𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑋2 ∪

𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑥2 ∪ 𝑋3)} ; 𝐵 = {𝑥1, 𝑥2}, 𝐽 = {𝑅𝑆(𝑥1), 𝑅𝑆(𝑥2), 𝑅𝑆(𝑥1 ∪ 𝑥2)} 

Figure 1 represents the Rough co-zero divisor graph for 𝑛 = 3 and 𝑚 = 2. 

 

Figure 1: Rough Co-Zero Divisor Graph for n = 3 and m = 2. 

Illustration 2.2: 

Let 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} and let {𝑋1, 𝑋2, 𝑋3} are the equivalence classes induced by an 

equivalence relation 𝑅 on 𝑈 such 𝑋1 = {𝑥1, 𝑥3}, 𝑋1 = {𝑥2, 𝑥4} and 𝑋1 = {𝑥5, 𝑥6} 

𝑉(𝑍∗(𝐽)) = {𝑅𝑆(𝑥1), 𝑅𝑆(𝑥2), 𝑅𝑆(𝑥3), 𝑅𝑆(𝑋1), 𝑅𝑆(𝑋2), 𝑅𝑆(𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑥2), 𝑅𝑆(𝑥1 ∪

𝑥3), 𝑅𝑆(𝑥2 ∪ 𝑥3), 𝑅𝑆(𝑥1 ∪ 𝑥2 ∪ 𝑥3), 𝑅𝑆(𝑋1 ∪ 𝑋2), 𝑅𝑆(𝑋1 ∪ 𝑋3), 𝑅𝑆(𝑋2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪

𝑋2), 𝑅𝑆(𝑋1 ∪ 𝑥2), 𝑅𝑆(𝑥1 ∪ 𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑥3), 𝑅𝑆(𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑋2 ∪ 𝑥3), 𝑅𝑆(𝑥1 ∪ 𝑋2 ∪

𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑋2 ∪ 𝑥3), 𝑅𝑆(𝑥1 ∪ 𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑋2 ∪ 𝑥3), 𝑅𝑆(𝑋1 ∪ 𝑥2 ∪

𝑥3)}  

𝐵 = {𝑥1, 𝑥2, 𝑥3} , 𝐽 = {𝑅𝑆(𝑥1), 𝑅𝑆(𝑥2), 𝑅𝑆(𝑥3), 𝑅𝑆(𝑥1 ∪ 𝑥2), 𝑅𝑆(𝑥1 ∪ 𝑥3), 𝑅𝑆(𝑥2 ∪

𝑥3)𝑅𝑆(𝑥1 ∪ 𝑥2 ∪ 𝑥3)} 

Figure 2 represents the Rough co-zero divisor graph for = 𝑚 = 3. 



                                          WIENER INDEX OF ROUGH CO-ZERO DIVISOR GRAPH                                       1523 
 

 

 

Figure 2: Rough Co-Zero Divisor Graph for n = m = 3 

3. WIENER INDEX OF A ROUGH CO-ZERO DIVISOR GRAPH  

Throughout this section we assume that 𝐼 = (𝑈, 𝑅). Let {𝑋1, 𝑋2, . . 𝑋𝑛} are the equivalence 

classes persuaded by 𝑅  on 𝑈 .We also infer that 𝑚  equivalence classes {𝑋1, 𝑋2, . . 𝑋𝑚}  with 

cardinality larger than 1and the remaining 𝑛 − 𝑚 equivalence classes {𝑋𝑚+1, 𝑋𝑚+2, . . 𝑋𝑛} have 

cardinality equal to 1, where 1 < 𝑚 ≤ 𝑛. Let 𝐵 = {𝑥1, 𝑥2, . . 𝑥𝑚} representative member of the 

equivalence class having cardinality larger than 1.  

Let 𝑇 = {𝑅𝑆(𝑋)|𝑋 ⊆ 𝑈} be the rough lattice [9] associated with the information system  𝐼 and 

𝑇∗ = 𝑇 − {𝑅𝑆(∅), 𝑅𝑆(𝑈)}. Moreover let 𝐽 = {𝑅𝑆(𝑋)|𝑋 ∈ 𝑃(𝐵)} be the rough ideal [5] on 𝑇∗. 

3.1  Degree of Rough Co-Zero Divisor Graph  

In this section we obtain the degree’s each vertex of 𝐺(𝑍∗(𝐽)). 

Definition 3.1.1: 

Degree of a vertex in 𝐺(𝑍∗(𝐽)) is denoted by 𝑑𝑒𝑔(𝑅𝑆(𝑋)), is the no. of lines incident with 

𝑅𝑆(𝑋) .The maximum degree of 𝐺(𝑍∗(𝐽))  denoted by ∆(𝐺(𝑍∗(𝐽))) , is defined to be 

∆(𝐺(𝑍∗(𝐽))) = 𝑚𝑎𝑥{𝑑𝑒𝑔(𝑅𝑆(𝑋))|𝑅𝑆(𝑋) ∈ 𝑉(𝑍∗(𝐽))}.  

Similarly the minimum degree of 𝐺(𝑍∗(𝐽))  denoted by ∆(𝐺(𝑍∗(𝐽))) , is defined to be 

𝛿(𝐺(𝑍∗(𝐽))) = 𝑚𝑖𝑛{𝑑𝑒𝑔(𝑅𝑆(𝑋))|𝑅𝑆(𝑋) ∈ 𝑉(𝑍∗(𝐽))}. 

Theorem 3.1.1  

The degree of 𝑅𝑆(𝑥𝑖) is (𝑚 − 1)(2𝑛+1−𝑚) + 2𝑚−1 − 𝑚 + 2𝑛−𝑚 − 1 + [(𝑚 − 1)𝐶𝑟(2𝑛−𝑚 −

1) + (𝑚 − 1)𝐶𝑟(2𝑛−𝑚) + ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)𝑚−1
𝑟=2 ](2𝑛−𝑚) 

Proof: 



1524                                                         B. PRABA AND M. LOGESHWARI 
 

 

Let us consider the Rough set corresponding to the pivot elements. Let 𝑃1 = {𝑅𝑆(𝑥𝑖)|𝑖 =

1,2. . 𝑚} the following observations are made. 

1. For each  𝑖,  𝑅𝑆(𝑥𝑖) is connected to all  𝑅𝑆(𝑥𝑗) for  𝑖 ≠ 𝑗,  𝑖, 𝑗 = 1,2 … 𝑚. Number of such 

elements to which 𝑅𝑆(𝑥𝑖) connected to is (𝑚 − 1). 

2. For each  𝑖,  𝑅𝑆(𝑥𝑖) is connected to 𝑅𝑆(𝑥𝑗 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑗 ∪ 𝑀) for  𝑖 ≠ 𝑗,  𝑖, 𝑗 = 1,2 … 𝑚. 

Number of such elements to which 𝑅𝑆(𝑥𝑖) connected to is (𝑚 − 1)(2𝑛−𝑚+1 − 1). 

3. For each𝑖 ,  𝑅𝑆(𝑥𝑖) is connected to all the elements of the set  {𝑅𝑆(𝑄𝑗)|𝑄𝑗 ∈ 𝑃(𝑄) −

∅, 𝑄 = 𝑋𝑚+1, 𝑋𝑚+2,…𝑋𝑛} for  𝑖 ≠ 𝑗,  𝑖, 𝑗 = 1,2 … 𝑚. Number of such elements to which 

𝑅𝑆(𝑥𝑖) connected to is 2𝑛−𝑚 − 1. 

4. We consider the set {𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟)|1 < 𝑟 < 𝑚}, 𝑅𝑆(𝑥𝑖) will be connected to all the 

elements of the form  𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟) that does not contain 𝑅𝑆(𝑥𝑖) . Number of such 

elements is given by 2𝑚−1 − 𝑚. 

5. We consider the set 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2 … 𝑋𝑟 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑟 ∪ 𝑀) . 

Number of such elements to which 𝑅𝑆(𝑥𝑖)  connected to is (𝑚 − 1)𝐶𝑟(2𝑛−𝑚 − 1) +

(𝑚 − 1)𝐶𝑟(2𝑛−𝑚) + ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)𝑚−1
𝑟=2 (2𝑛−𝑚) 

Therefore for the total number of elements in 𝑉(𝑍∗(𝐽)) to which 𝑅𝑆(𝑥𝑖) is connected to is 

obtained by adding all the observations. Hence degree of  𝑅𝑆(𝑥𝑖) is 

 (𝑚 − 1)(2𝑛−𝑚+1) + 2𝑛−𝑚 − 1 + 2𝑚−1 − 𝑚 + [(𝑚 − 1)𝐶𝑟(2𝑛−𝑚 − 1) + (𝑚 −

1)𝐶𝑟(2𝑛−𝑚) + (2𝑛−𝑚) ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)𝑚−1
𝑟=2 ] 

Theorem 3.1.2: 

The degree of 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀)is 𝑚(2𝑛+1−𝑚 − 1) + 2𝑚 − 𝑚 − 2 + 2𝑛−𝑚 − 1 +

1 + 2𝑚 − (𝑚 + 2)(2𝑛−𝑚+1 − 1) + 3(3𝑚−1 − 2𝑚 + 1)(2𝑛−𝑚) + 2𝑛−𝑚(2𝑚) − 2 

Where 𝑀 is the union of none, one or more equivalence classes whose cardinality is equal to 

one in 𝐺(𝑍∗(𝐽)) and 𝑀′  denotes the one either more equivalence classes having cardinality is 

equivalent to one in 𝐺(𝑍∗(𝐽)). 

Proof: 

Now let us consider 𝑃2 = {𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀)|𝑖 = 1,2. . 𝑚}  

To calculate the degree of vertices in this set, consider the following statements. 

1. For each  𝑖,  𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀) will not connected to  𝑅𝑆(𝑥𝑖). Hence number of 

such elements to which 𝑅𝑆(𝑥𝑖) connected to is (𝑚 − 1)(2𝑛−𝑚+1 − 1). 

2. For each  𝑖,  𝑅𝑆(𝑥𝑖 ∪ 𝑀′) is connected to all  𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀) and 𝑅𝑆(𝑋𝑖 ∪ 𝑀) 

is connected to all  𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀) . Therefore the total sum of such elements 

to which 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀) connected to is (2𝑛−𝑚+1 − 1). 
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3. Evidently 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀)  is connected to all the elements of the set  

{𝑅𝑆(𝑄𝑗)|𝑄𝑗 ∈ 𝑃(𝑄) − ∅, 𝑄 = 𝑋𝑚+1, 𝑋𝑚+2,…𝑋𝑛} . Number of such elements to which 

𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀) connected to is 2𝑛−𝑚 − 1. 

4. For each 𝑖,  every elements in  𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀) is connected to the set  

{𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟)|1 < 𝑟 < 𝑚} . Number of such elements is given by 2𝑚 − 𝑚 − 2. 

5. Similarly for each 𝑖,  the set 𝑃2 is connected to the single element set 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑚). 

Hence the number of such element is 1. 

6. For each 𝑖, every elements in 𝑃2 is connected to the set 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟 ∪ 𝑀′) with (2𝑚 −

(𝑚 + 2))(2𝑛−𝑚) elements and 𝑃2  is connected to the set   𝑅𝑆(𝑋1, 𝑋2 … 𝑋𝑟 ∪ 𝑀)  with 

(2𝑚 − (𝑚 + 2))(2𝑛−𝑚 − 1)  elements and 𝑃2  is connected to the set 𝑅𝑆(𝑄𝑟 ∪ 𝑀)  where 

𝑄𝑟 = 𝑥𝑟 or 𝑋𝑟 with 3(2𝑛−𝑚)(3𝑚−1 − 2𝑚 + 1) elements. 

7. For each 𝑖, every elements in 𝑃2 is connected all the elements in the  set 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑚 ∪

𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2 … 𝑋𝑚 ∪ 𝑀) ∪  𝑅𝑆(𝑄𝑚 ∪ 𝑀)with 2𝑛−𝑚(2𝑚) − 2 elements. 

8. Therefore for the total number of elements in 𝑉(𝑍∗(𝐽))  to which 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪

𝑅𝑆(𝑋𝑖 ∪ 𝑀) is connected to is obtained by adding all the statements. Hence degree of  

𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀) is 

 𝑚(2𝑛+1−𝑚 − 1) + 2𝑚 − 𝑚 − 2 + 2𝑛−𝑚 − 1 + 1 + 2𝑚 − (𝑚 + 2)(2𝑛−𝑚+1 − 1) +

3(3𝑚−1 − 2𝑚 + 1)(2𝑛−𝑚) + 2𝑛−𝑚(2𝑚) − 2 

Theorem 3.1.3 

The degree of the elements in the set {𝑅𝑆(𝑌)|𝑌 ∈ 𝑀′} for 𝑖 = 1,2, . . 𝑚 is (2𝑚 + 1)2𝑛−𝑚 −

(𝑚 + 2)(2𝑛+1−𝑚 − 1)+2𝑚 − 𝑚 − 2 + 2𝑚 + 3(2𝑛−𝑚)(3𝑚−1 − 2𝑚 + 1) + 2𝑛−𝑚(2𝑚) − 2 

Proof:  

Let 𝑃3 = {𝑅𝑆(𝑌)|𝑌 ∈ 𝑀′}. A similar argument as in Theorem 3.1.2 is true for the elements of 

the set {𝑅𝑆(𝑌)|𝑌 ∈ 𝑀′} and it is connected to all the elements in  𝑉(𝑍∗(𝐽)). Hence the total 

number of such elements in 𝑃3 is (2𝑚 + 1)2𝑛−𝑚 − (𝑚 + 2)(2𝑛+1−𝑚 − 1)+2𝑚 − 𝑚 − 2 + 2𝑚 +

3(2𝑛−𝑚)(3𝑚−1 − 2𝑚 + 1) + 2𝑛−𝑚(2𝑚) − 2. 

Accurately the degree of each vertices in the set {𝑅𝑆(𝑌)|𝑌 ∈ 𝑀′} is 2𝑛−𝑚. 3𝑚 − 3. 

Theorem 3.1.4 

The degree of elements in 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟)  is 2𝑛−𝑚(2𝑚) − 2𝑚−1 − 2 + {(
𝑚(𝑚−1)

2
− 1) +

(
𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 + ⋯ (𝑚 − 2)(𝑚 − 1)) + ⋯ + 1 − 2 + (|𝐴| − (∗ + ∗∗ + ∗∗∗))} 

Where |𝐴| = 2𝑛−𝑚(2𝑚) − 2 
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∗= {[
𝑚(𝑚−1)

2
] . [(𝑚 − 2)𝐶0 + (𝑚 − 2)𝐶1 + ⋯ + (𝑚 − 2)𝐶𝑚−3] + [

𝑚(𝑚−1)(𝑚−2)

2
− 1.2 +

2.3 + ⋯ (𝑚 − 2)(𝑚 − 1)] . [(𝑚 − 3)𝐶0 + (𝑚 − 3)𝐶1 + ⋯ + (𝑚 − 3)𝐶𝑚−4] + ⋯ +

1. [𝑚(𝑚(𝑚 − 1)). (2𝑛−𝑚 − 1)]}  

∗∗= {[
𝑚(𝑚−1)

2
] . [(𝑚 − 2)𝐶0 + (𝑚 − 2)𝐶1 + ⋯ + (𝑚 − 2)𝐶𝑚−3] + [

𝑚(𝑚−1)(𝑚−2)

2
− 1.2 +

2.3 + ⋯ (𝑚 − 2)(𝑚 − 1)] . [(𝑚 − 3)𝐶0 + (𝑚 − 3)𝐶1 + ⋯ + (𝑚 − 3)𝐶𝑚−4] + ⋯ +

1. [𝑚(𝑚(𝑚 − 1)). (2𝑛−𝑚)]}  

∗∗∗= {[
𝑚(𝑚−1)

2
] [∑ ∑ 𝑘𝐶𝑖

𝑘−1
𝑖=1

𝑚−1
𝑘=2 ] + [

𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 + ⋯ (𝑚 − 2)(𝑚 − 1)] +

[∑ ∑ 𝑘𝐶𝑖
𝑘−1
𝑖=1

𝑚−1
𝑘=3 ]+. . +1} 2𝑛−𝑚 

Proof:  

Consider the set 𝑃4 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟) where 1 < 𝑟 < 𝑚. 

When 𝑟 = 2 , An element 𝑅𝑆(𝑍)  will be connected to 𝑅𝑆(𝑥1, 𝑥2)  precisely if 𝑅𝑆(𝑍) ∉

𝑅𝑆(𝑥1, 𝑥2)∇𝐽 and 𝑅𝑆(𝑥1, 𝑥2) ∉ 𝑅𝑆(𝑍)∇J. The degree of 𝑅𝑆(𝑥1, 𝑥2) is acquired by considering 

those vertices of 𝑅𝑆(𝑍) connected to 𝑅𝑆(𝑥1, 𝑥2). Hence 𝑅𝑆(𝑥1, 𝑥2) is connected to 𝑃1 with (𝑚 −

2)  elements where 𝑖 ≠ 1,2  and it is connected to 𝑃2  with 2𝑚(2𝑛−𝑚) − 𝑚  elements and 

𝑅𝑆(𝑥1, 𝑥2) is connected to 𝑃3 with 2𝑛−𝑚 − 1 elements. 

When 𝑟 = 3, 𝑅𝑆(𝑥1, 𝑥2, 𝑥3)is connected to 𝑃1 with (𝑚 − 2) elements where 𝑖 ≠ 1,2,3 and it 

is connected to 𝑃2  with 2𝑚(2𝑛−𝑚) − 𝑚  elements and 𝑅𝑆(𝑥1, 𝑥2, 𝑥3)  is connected to 𝑃3  with 

2𝑛−𝑚 − 1 elements. Clearly it is true for 𝑟 = 𝑚 − 1.  

The degree of elements in 𝑃4 is 2𝑛−𝑚(2𝑚) − 2𝑚−1 − 2 + {(
𝑚(𝑚−1)

2
− 1) + (

𝑚(𝑚−1)(𝑚−2)

2
−

1.2 + 2.3 + ⋯ (𝑚 − 2)(𝑚 − 1)) + ⋯ + 1 − 2 + (|𝐴| − (∗ + ∗∗ + ∗∗∗))} 

Theorem 3.1.5: 

The degree of 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚) is 2𝑛−𝑚[2𝑚 + 2𝑚 − (𝑚 + 2) + 3(3𝑚−1 − 2𝑚 + 1)] − 𝑚 

Proof: 

Now we consider the set 𝑃5 = 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚) for every 𝑥𝑖 ∈ 𝐵 . A vertex 𝑅𝑆(𝑋) will be 

connected to 𝑅𝑆(𝑥𝑖) for 𝑖 = 1,2, … 𝑚 if and only if 𝑅𝑆(𝑋) ∉ 𝑅𝑆(𝑥𝑖)∇𝐽 and 𝑅𝑆(𝑥𝑖) ∉ 𝑅𝑆(𝑋)∇J. 

The degree of 𝑃5 (single element) is achieved by taking into account of those vertices to which 

𝑅𝑆(𝑋) which are adjacent to 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚). Also 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚) is not connected to the set 
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𝑃(𝐵), where 𝐵 = {𝑥1, 𝑥2, … 𝑥𝑚}. Hence the degree of each elements in the set 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚) is 

2𝑛−𝑚[2𝑚 + 2𝑚 − (𝑚 + 2) + 3(3𝑚−1 − 2𝑚 + 1)] − 𝑚. 

Theorem 3.1.6: 

The degree of {𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟 ∪ 𝑀′)|1 < 𝑟 < 𝑚}   is 2𝑛−𝑚[2𝑚 + 2𝑚 + 1 + 3(3𝑚−1 −

2𝑚 + 1)] + [2𝑚 − (𝑚 + 2)](2𝑛−𝑚+1 − 1) − 8 

Proof: 

Let us consider {𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟 ∪ 𝑀′)|1 < 𝑟 < 𝑚}.  

Observe that the set {𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟 ∪ 𝑀′)|1 < 𝑟 < 𝑚} will not be connected to the elements 

in this set (𝑥1, 𝑥2, … 𝑥𝑟)  . Also 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟 ∪ 𝑀′) ∉ 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀)∇J  and 

𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀)) ∉ 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟 ∪ 𝑀′)∇J.  

Hence it is adjacent to all the elements of the set 𝑃3   and 𝑃5 . Therefore the degree of 

{𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟 ∪ 𝑀′)|1 < 𝑟 < 𝑚}   is 2𝑛−𝑚[2𝑚 + 2𝑚 + 1 + 3(3𝑚−1 − 2𝑚 + 1)] + [2𝑚 −

(𝑚 + 2)](2𝑛−𝑚+1 − 1) − 8 

Corollary 1: 

The degree of {𝑅𝑆(𝑋1, 𝑋2, … 𝑋𝑟 ∪ 𝑀)|1 < 𝑟 < 𝑚}  is 2𝑛−𝑚[2𝑚 + 2𝑚 + 1 + 3(3𝑚−1 − 2𝑚 +

1)] + [2𝑚 − (𝑚 + 2)](2𝑛−𝑚+1 − 1) − 8 

Proof: 

The proof is follows from Theorem 3.1.6. Consider {𝑅𝑆(𝑋1, 𝑋2, … 𝑋𝑟 ∪ 𝑀)|1 < 𝑟 < 𝑚} where 

|𝑋𝑖| > 1  

Hence the degree of {𝑅𝑆(𝑋1, 𝑋2, … 𝑋𝑟 ∪ 𝑀)|1 < 𝑟 < 𝑚}is 2𝑛−𝑚[2𝑚 + 2𝑚 + 1 + 3(3𝑚−1 −

2𝑚 + 1)] + [2𝑚 − (𝑚 + 2)](2𝑛−𝑚+1 − 1) − 8 

Corollary 2: 

The degree of 𝑅𝑆(𝑄𝑟 ∪ 𝑀)  is 2𝑛−𝑚[2𝑚 + 2𝑚 + 1 + 3(3𝑚−1 − 2𝑚 + 1)] + [2𝑚 − (𝑚 +

2)](2𝑛−𝑚+1 − 1) − 8 

Proof: 

 The proof is similar to Theorem 3.1.6. The degree of 𝑅𝑆(𝑄𝑟 ∪ 𝑀), 𝑄𝑟 = {(𝑍1, 𝑍2, … 𝑍𝑟)|𝑍𝑖 =

𝑦𝑖 𝑜𝑟 𝑌𝑖}  and 𝑖 = 1,2, . . 𝑚 is 2𝑛−𝑚[2𝑚 + 2𝑚 + 1 + 3(3𝑚−1 − 2𝑚 + 1)] + [2𝑚 − (𝑚 +

2)](2𝑛−𝑚+1 − 1) − 8 

Theorem 3.1.7: 
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The degree of 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚 ∪ 𝑀′)   is 2𝑛−𝑚[2𝑚+1 + 𝑚 − 2 + 3(3𝑚−1 − 2𝑚 + 1)] −

(𝑚 + 3) 

Proof: 

Let us take the set 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚 ∪ 𝑀′) note that 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚 ∪ 𝑀′) is not connected to 

the elements of 𝑃(𝐵) . But 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚 ∪ 𝑀′)  is connected to the elements in  

𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2, … 𝑋𝑟 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑟 ∪ 𝑀)  where 1 < 𝑟 < 𝑚  and also it is 

connected to 𝑃2 and 𝑃3. Hence the degree of 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚 ∪ 𝑀′)  is 2𝑛−𝑚[2𝑚+1 + 𝑚 − 2 +

3(3𝑚−1 − 2𝑚 + 1)] − (𝑚 + 3) 

Corollary 3: 

The degree of 𝑅𝑆(𝑋1, 𝑋2, … 𝑋𝑚 ∪ 𝑀)is 2𝑛−𝑚[2𝑚+1 + 𝑚 − 2 + 3(3𝑚−1 − 2𝑚 + 1)] − (𝑚 +

3) 

Proof: 

The proof is obvious  from Theorem 3.1.7.  

Corollary 2: 

The degree of 𝑅𝑆(𝑄𝑚 ∪ 𝑀)is 2𝑛−𝑚[2𝑚+1 + 𝑚 − 2 + 3(3𝑚−1 − 2𝑚 + 1)] − (𝑚 + 3) 

Proof: 

 The proof is similar to Theorem 3.1.7.  

3.2. Partition Graph  

In this section we define a partition on 𝑉(𝑍∗(𝐽)). A partition graph is defined using this 

partition which is based on the degree's of vertices in 𝐺(𝑍∗(𝐽)). The objective of this partition 

graph is to make the study of 𝐺(𝑍∗(𝐽)) simpler. Because all the vertices in one partition will have 

the same degree and they behave similarly. 

Definition 3.2.1: 

The partition graph 𝑃(𝑍∗(𝐽)) is a graph whose vertices are the partitions on 𝑉(𝑍∗(𝐽)). Hence 

the vertices of 𝑃(𝑍∗(𝐽)) is the set {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6, 𝑃7}, where  

𝑃1 = 𝑅𝑆(𝑥𝑖)  

𝑃2 = 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀)  

𝑃3 = {𝑅𝑆(𝑌)|𝑌 ∈ 𝑀′}  

𝑃4 = 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟)  
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𝑃5 = 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚)  

𝑃6 = 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2, … 𝑋𝑟 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑟 ∪ 𝑀)  

𝑃7 = 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2, … 𝑋𝑚 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑚 ∪ 𝑀)  

Two vertices 𝑃𝑖 and 𝑃𝑗 in the partition graph are connected by an edge if the elements in 𝑃𝑖are 

adjacent to any of the elements in 𝑃𝑗 by an edge in 𝐺(𝑍∗(𝐽)). 

Note: 

It is very important to notice that the partition graph of 𝐺(𝑍∗(𝐽)) always has 7 vertices and the 

number of elements in each of the partition will vary as 𝑚 and 𝑛 varies. Also note that when 𝑛 =

𝑚, 𝑀′ = {𝑅𝑆(𝑌)|𝑌 ∈ 𝑃(𝑋𝑚+1, 𝑋𝑚+2, … 𝑋𝑛)} = ∅ , therefore 𝑃3 = ∅. Hence when 𝑛 = 𝑚 , the 

number of vertices in the partition graph of 𝐺(𝑍∗(𝐽)) has only 6 vertices. 

The elements of 𝑃𝑖 for all 𝑖, 𝑖 ≠ 4 will form a complete graph. When 𝑖 = 4, the elements of 𝑃4 

will form a complete graph for 𝑚 = 3 and for all 𝑛. It is easy to verify that it need not be true for 

𝑚 > 3. 

The following figure 3 represents the partition graph of 𝐺(𝑍∗(𝐽))  for 𝑛 ≠ 𝑚  

 

Figure 3: Partition Graph for n ≠ m 

When 𝑛 = 𝑚 the corresponding partition graph of 𝐺(𝑍∗(𝐽))  is given in figure 4 

 

Figure 4: Partition Graph for n = m 
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Now the following table gives the elements of partition graph and the cardinality of each 

partition for all values of 𝑚 and 𝑛. 

Table 1: Partitions and Cardinalities of G(Z∗(J)) 

Partitions 

(𝑷𝒊) 

Elements Cardinality 

𝑃1 𝑅𝑆(𝑥𝑖) 𝑚 

𝑃2 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀) 2𝑚(2𝑛−𝑚) − 𝑚 

𝑃3 {𝑅𝑆(𝑌)|𝑌 ∈ 𝑀′} 2𝑛−𝑚 − 1 

𝑃4 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟) 2𝑚 − (𝑚 + 2) 

𝑃5 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚) 1 

𝑃6 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2, … 𝑋𝑟 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑟 ∪ 𝑀)  2𝑚 − (𝑚 + 2)(2𝑛−𝑚+1 − 1
+ 3(2𝑛−𝑚)(3𝑚−1 − 2𝑚 + 1) 

𝑃7 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2, … 𝑋𝑚 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑚 ∪ 𝑀)  2𝑛−𝑚(2𝑚) − 2 

Examples  

Example 3.2.1 

From Illustration 1 in section 2, we obtain the elements in each partition of  𝐺(𝑍∗(𝐽)) using 

table 1. 

Table 2: Partitions and Cardinalities of G(Z∗(J))for n = 3&𝑚 = 2 

Partitions 

(𝑷𝒊) 

Elements Cardinality 

𝑃1 𝑅𝑆(𝑥1), 𝑅𝑆(𝑥2) 2 

𝑃2 𝑅𝑆(𝑥1 ∪ 𝑋3), 𝑅𝑆(𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑋1),  
𝑅𝑆(𝑋2), 𝑅𝑆(𝑋1 ∪ 𝑋3), 𝑅𝑆(𝑋2 ∪ 𝑋3) 

6 

𝑃3 𝑅𝑆(𝑋3) 1 

𝑃4 ∅ 0 

𝑃5 𝑅𝑆(𝑥1𝑥2) 1 

𝑃6 ∅  0 

𝑃7 𝑅𝑆(𝑋1 ∪ 𝑋2), 𝑅𝑆(𝑥1 ∪ 𝑋2), 𝑅𝑆(𝑋1 ∪ 𝑥2), 
𝑅𝑆(𝑥1 ∪ 𝑋2 ∪ 𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑥2 ∪ 𝑋3), 

𝑅𝑆(𝑥1 ∪ 𝑥2 ∪ 𝑋3) 

 

6 

The partition graph for the above mentioned Example 3.2.1 is given below  

 

Figure 5: Partition Graph for n = 3 and m = 2 
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Example 3.2.2 

From Illustration 2 in section 2, we examine the elements in each partition of  𝐺(𝑍∗(𝐽)) using 

table 3. 

Table 3: Partitions and Cardinalities of G(Z∗(J))for n = m = 3 

Partitions 

(𝑷𝒊) 

Elements Cardinality 

𝑃1 𝑅𝑆(𝑥1), 𝑅𝑆(𝑥2), 𝑅𝑆(𝑥3) 3 

𝑃2 𝑅𝑆(𝑋1), 𝑅𝑆(𝑋2), 𝑅𝑆(𝑋3) 3 

𝑃3 ∅ 0 

𝑃4 𝑅𝑆(𝑥1 ∪ 𝑥2), 𝑅𝑆(𝑥1 ∪ 𝑥3), 𝑅𝑆(𝑥2 ∪ 𝑥3) 3 

𝑃5 𝑅𝑆(𝑥1 ∪ 𝑥2 ∪ 𝑥3) 1 

 

𝑃6 

𝑅𝑆(𝑋1 ∪ 𝑋2), 𝑅𝑆(𝑋1 ∪ 𝑋3), 𝑅𝑆(𝑋2 ∪ 𝑋3) 

𝑅𝑆(𝑥1 ∪ 𝑋2), 𝑅𝑆(𝑥1 ∪ 𝑋2), 𝑅𝑆(𝑥1 ∪ 𝑋3) 

𝑅𝑆(𝑋1 ∪ 𝑥3), 𝑅𝑆(𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑋2 ∪ 𝑥3) 

 

9 

𝑃7 𝑅𝑆(𝑥1 ∪ 𝑋2 ∪ 𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑋2 ∪ 𝑥3) 

𝑅𝑆(𝑥1 ∪ 𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑋2 ∪ 𝑥3), 𝑅𝑆(𝑋1 ∪ 𝑥2 ∪ 𝑥3) 

 

6 

The partition graph for t Example 3.2.2 is given below  

 

Figure 6: Partition Graph for n = m = 3 

3.2  Wiener Index of 𝑮(𝒁∗(𝑱)) using Partition Graph  

In this section we calculate the wiener index of 𝐺(𝑍∗(𝐽)) using Partition Graph 𝑃(𝑍∗(𝐽)). 

Definition 3.3.1: 

Let 𝐺(𝑍∗(𝐽))  be a Rough co-zero divisor graph. The wiener index 𝑊(𝑍∗(𝐽))  of 

𝐺(𝑍∗(𝐽)) defined by 𝑊(𝑍∗(𝐽)) = ∑ 𝑑 (𝑅𝑆(𝑥𝑖), 𝑅𝑆(𝑥𝑗)) ,𝑅𝑆(𝑥𝑖),𝑅𝑆(𝑥𝑗)∈𝑉(𝑍∗(𝐽)) where 

𝑑 (𝑅𝑆(𝑥𝑖), 𝑅𝑆(𝑥𝑗)) is the distance between the elements 𝑅𝑆(𝑥𝑖) and 𝑅𝑆(𝑥𝑗) in 𝐺(𝑍∗(𝐽)). 
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To make the calculation simpler, if  𝑑 (𝑅𝑆(𝑥𝑖), 𝑅𝑆(𝑥𝑗))  is taken for calculation then 

𝑑 (𝑅𝑆(𝑥𝑗), 𝑅𝑆(𝑥𝑖)) is not taken into account as both are one and the same. 

Connectedness between the Partitions 

In this section we compute the distances from one partition to every other partition. The main 

advantage of the partition graph is that all the vertices of one partition will behave similarly. Hence 

the distance between the vertices of 𝐺(𝑍∗(𝐽)) can be obtained by calculating distance between the 

partition in 𝑃(𝑍∗(𝐽)).Therefore we calculate the distance from 𝑃1to  𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6 and 𝑃7 the 

distance from 𝑃2to 𝑃3,  𝑃4,  𝑃5, 𝑃6 and 𝑃7 ... and the distance from 𝑃6to 𝑃7.  Following propositions 

will detail the distance from one partition to another. 

Proposition 3.3.1: 

The distance between the vertices of 𝑃1 to the vertices of 𝑃2 is given by 

|𝑃1|{1. (|𝑃2| − 2𝑛+1−𝑚 + 1) + 2. (−2𝑛−𝑚+1 + 1)}

= 𝑚{1. (2𝑚(2𝑛−𝑚) − 𝑚 − 2𝑛+1−𝑚 + 1) + 2. (1−2𝑛−𝑚+1)} 

Where 𝑃1 = 𝑅𝑆(𝑥𝑖) ; 𝑃2 = 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀)  

Proof: 

For each 𝑖 = 1,2, . . 𝑚 𝑅𝑆(𝑥𝑖) is connected to 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀) for 𝑖 ≠ 𝑗 and hence the 

distance is one. Therefore we have (1). |𝑃1|(|𝑃2| − (2𝑛−𝑚 − 1) − ((2𝑛−𝑚)) 

For 𝑖 = 𝑗  the distance between 𝑅𝑆(𝑥𝑖)  to 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀)  is 2. Thus we have 

(2). |𝑃1|(−(2𝑛−𝑚 − 1) − (2𝑛−𝑚)). 

Therefore the sum of such distance is given by  |𝑃1|{1. (|𝑃2| − 2𝑛+1−𝑚 + 1) + 2. (−2𝑛−𝑚+1 +

1)} = 𝑚{1. (2𝑚(2𝑛−𝑚) − 𝑚 − 2𝑛+1−𝑚 + 1) + 2. (1−2𝑛−𝑚+1)} 

Proposition 3.3.2: 

The distance between the vertices of 𝑃1  to the vertices of 𝑃3  is given by 1. (|𝑃1|. |𝑃3|) =

1. (𝑚. (2𝑛−𝑚 − 1)), where 𝑃1 = 𝑅𝑆(𝑥𝑖) and 𝑃3 = {𝑅𝑆(𝑌)|𝑌 ∈ 𝑀′} 

Proof:  

Since for 𝑖 = 1,2 … 𝑚 each element in the partition 𝑃1 is connected to each element in 𝑃3. 

Hence the distance is 1. (|𝑃1|. |𝑃3|) = 1. (𝑚. (2𝑛−𝑚 − 1)) 

Proposition 3.3.3: 

The distance between the vertices of 𝑃1 to the vertices of 𝑃4 is given by 
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 |𝑃1|{1. (|𝑃4| − (2𝑚−1 − 2)) + 2. ((2𝑚−1 − 2)} = 𝑚{1. ((2𝑚 − (𝑚 + 2)) − (2𝑚−1 − 2)) +

2. (2𝑚−1 − 2)} Where 𝑃1 = 𝑅𝑆(𝑥𝑖) and 𝑃4 = 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟) 

Proof: 

Considering the elements in 𝑃1  there exist (2𝑚 − (𝑚 + 2) − 2𝑚−1 + 2)  elements are 

connected to 𝑃4 with distance 1 and 2𝑚−1 + 2 elements are connected with distance 2. 

Thus the distance from 𝑃1  to 𝑃4  is |𝑃1|{1. (|𝑃4| − (2𝑚−1 − 2)) + 2. ((2𝑚−1 − 2)} =

𝑚{1. ((2𝑚 − (𝑚 + 2)) − (2𝑚−1 − 2)) + 2. (2𝑚−1 − 2)} 

Proposition 3.3.4: 

The distance between the vertices of 𝑃1 to the vertices of 𝑃5 is given by 2. (|𝑃1|. |𝑃5|) = 2. 𝑚 

Where 𝑃1 = 𝑅𝑆(𝑥𝑖) and 𝑃4 = 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚) 

Proof: 

Being 𝑖 = 1,2 … 𝑚 none of the elements in 𝑃1 is connected to 𝑃5 with distance 1. 

Hence 2. (|𝑃1|. |𝑃5|) = 2𝑚. Which means that every elements in 𝑃1 is not connected to 𝑃5. 

Proposition 3.3.5: 

The distance between the vertices of 𝑃1 to the vertices of  𝑃6 is given by  

|𝑃1|{1. [(𝑚 − 1)𝐶𝑟(2−(−𝑛+𝑚) − 1) + (2−(𝑚−𝑛))((𝑚 − 1)𝐶𝑟 + ∑ ((𝑚 − 1)𝐶1 + (𝑚 −𝑚−1
𝑟=2

1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)]) + 2. [|𝑃6| − (𝑚 − 1)𝐶𝑟(2𝑛−𝑚 − 1) + (𝑚 − 1)𝐶𝑟(2𝑛−𝑚) +

(2𝑛−𝑚) ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)𝑚−1
𝑟=2 ]} = 𝑚{1. [(𝑚 − 1)𝐶𝑟(2𝑛−𝑚 −

1) + (𝑚 − 1)𝐶𝑟(2𝑛−𝑚) + (2𝑛−𝑚) ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)𝑚−1
𝑟=2 ] +

2. [2𝑚 − (2 + 𝑚)(2𝑛+1−𝑚 − 1) + 3(2𝑛−𝑚)(3𝑚−1 − 2𝑚 + 1) − (𝑚 − 1)𝐶𝑟(2𝑛−𝑚 − 1) + (𝑚 −

1)𝐶𝑟(2𝑛−𝑚) + (2𝑛−𝑚) ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)𝑚−1
𝑟=2 ]}  

Where 𝑃1 = 𝑅𝑆(𝑥𝑖) and 𝑃6 = 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2, … 𝑋𝑟 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑟 ∪ 𝑀) 

Proof: 

In view of partition 𝑃6 has 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2, … 𝑋𝑟 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑟 ∪ 𝑀) 

elements with cardinality 2𝑚 − (𝑚 + 2)(2𝑛−𝑚+1 − 1) + 3(2𝑛−𝑚)(3𝑚−1 − 2𝑚 + 1). 

Since 𝑅𝑆(𝑥𝑖)  is connected to 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑟 ∪ 𝑀′)  accompanying 2𝑚 − (𝑚 + 2)(2𝑛−𝑚 −

1)  with distance 1, 𝑅𝑆(𝑥𝑖)  is connected to 𝑅𝑆(𝑋1, 𝑋2, … 𝑋𝑟 ∪ 𝑀)  accompanying 2𝑚 − (𝑚 +

2)(2𝑛−𝑚)  with distance 1 and 𝑅𝑆(𝑥𝑖)  is connected to 𝑅𝑆(𝑄𝑟 ∪ 𝑀)  accompanying 
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(2𝑛−𝑚)(3𝑚−1 − 2𝑚 + 1) with distance 1. Remaining elements in 𝑃6 are connected 𝑅𝑆(𝑥𝑖) with 

distance 2. 

On that account we have the distance from 𝑃1 to 𝑃6 is  

|𝑃1|{1. [(𝑚 − 1)𝐶𝑟(2−(−𝑛+𝑚) − 1) + (2−(𝑚−𝑛))((𝑚 − 1)𝐶𝑟 + ∑ ((𝑚 − 1)𝐶1 + (𝑚 −𝑚−1
𝑟=2

1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)]) + 2. [|𝑃6| − (𝑚 − 1)𝐶𝑟(2𝑛−𝑚 − 1) + (𝑚 − 1)𝐶𝑟(2𝑛−𝑚) +

(2𝑛−𝑚) ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)𝑚−1
𝑟=2 ]} = 𝑚{1. [(𝑚 − 1)𝐶𝑟(2𝑛−𝑚 −

1) + (𝑚 − 1)𝐶𝑟(2𝑛−𝑚) + (2𝑛−𝑚) ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)𝑚−1
𝑟=2 ] +

2. [2𝑚 − (2 + 𝑚)(2𝑛+1−𝑚 − 1) + 3(2𝑛−𝑚)(3𝑚−1 − 2𝑚 + 1) − (𝑚 − 1)𝐶𝑟(2𝑛−𝑚 − 1) + (𝑚 −

1)𝐶𝑟(2𝑛−𝑚) + (2𝑛−𝑚) ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)𝑚−1
𝑟=2 ]}  

Proposition 3.3.6: 

The distance between the vertices of 𝑃1 to the vertices of  𝑃7 is given by  

2. (|𝑃1|. |𝑃7|) = 2. (𝑚. 2𝑛−𝑚(2𝑚) − 2), 

 Where 𝑃1 = 𝑅𝑆(𝑥𝑖)  and 𝑃6 = 𝑅𝑆(𝑥1, 𝑥2, … 𝑥𝑚 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2, … 𝑋𝑚 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑚 ∪

𝑀) 

 

Proof: 

Being 𝑖 = 1,2 … 𝑚 none of the elements in 𝑃1 is connected to 𝑃7 with distance 1. Therefore it 

is connected through another element so the distance 2. 

Hence 2. (|𝑃1|. |𝑃7|) = 2. (𝑚. 2𝑛−𝑚(2𝑚) − 2).  

Proposition 3.3.7: 

The distance between the vertices of 𝑃2  to the vertices of  𝑃3  is given by 1. (|𝑃2|. |𝑃3|) =

1. (2𝑛−𝑚(2𝑚 + 1) − (𝑚 + 1)) 

Where 𝑃2 = 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀); 𝑃3 = {𝑅𝑆(𝑌)|𝑌 ∈ 𝑀′} 

Proof: 

In 𝑃2 we posses  𝑚 equivalence classes and 𝑃3 have 𝑛 − 𝑚 equivalence classes. By using the 

definition of Rough co-zero divisor graph every elements in 𝑃2 is connected to every elements 

in 𝑃3. Hence 𝑃2 is adjacent to 𝑃3 with distance 1.  

Thus we have 1. (|𝑃2|. |𝑃3|) = 1. (2𝑛−𝑚(2𝑚 + 1) − (𝑚 + 1)). 
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In a similar manner by the definition of partition graph, partition 𝑃2 is connected to 𝑃4, 𝑃5, 𝑃6 

and 𝑃7 accompanied by distance 1. 

Proposition 3.3.8: 

The distance between the vertices of 𝑃2  to the vertices of  𝑃4  is given by 1. (|𝑃2|. |𝑃4|) =

1. [(2𝑚(2𝑛−𝑚) − 𝑚)(2𝑚 − (𝑚 + 2))] 

Where𝑃2 = 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀); 𝑃4 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟) 

Proof: 

Can be proved by direct verification. 

Proposition 3.3.9: 

The distance between the vertices of 𝑃2  to the vertices of  𝑃5  is given by 1. (|𝑃2|. |𝑃5|) =

1. (2𝑚(2𝑛−𝑚) − 𝑚)) where𝑃2 = 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀); 𝑃5 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑚) 

Proof: 

Can be proved by direct verification. 

Proposition 3.3.10: 

The distance between the vertices of 𝑃2  to the vertices of 𝑃6  is given by 1. (|𝑃2|. |𝑃6|) =

1. [(2𝑚(2𝑛−𝑚) − 𝑚)). (2𝑚 − (𝑚 + 2)(2𝑛−𝑚+1 − 1) + 3(2𝑛−𝑚)(3𝑚−1 − 2𝑚 + 1))] 

Where 𝑃2 = 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀) ; 𝑃6 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2 … 𝑋𝑟 ∪

𝑀) ∪ 𝑅𝑆(𝑄𝑟 ∪ 𝑀) 

Proof: 

Can be proved by direct verification. 

Proposition 3.3.11: 

The distance between the vertices of 𝑃2  to the vertices of 𝑃7  is given by 1. (|𝑃2|. |𝑃7|) =

1. [(2𝑚(2𝑛−𝑚) − 𝑚)). (2𝑛−𝑚(2𝑚) − 2)] 

Where  𝑃2 = 𝑅𝑆(𝑥𝑖 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀) ; 𝑃7 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑚 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2 … 𝑋𝑚 ∪

𝑀) ∪ 𝑅𝑆(𝑄𝑚 ∪ 𝑀) 

Proof: 

Can be proved by direct verification. 

Proposition 3.4.12: 
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The distance between the vertices of 𝑃3  to the vertices of  𝑃4  is given by 1. (|𝑃3|. |𝑃4|) =

1. [(2𝑛−𝑚 − 1). (2𝑚 − (𝑚 + 2))] 

Where 𝑃3 = {𝑅𝑆(𝑌)|𝑌 ∈ 𝑀′}; 𝑃4 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟) 

Proof: 

Since the elements in 𝑃3 contains maximum degree, which indicates that the distance from 𝑃3 

to 𝑃4, 𝑃5, 𝑃6  and 𝑃7  is 1. Hence the distance from 𝑃3  to 𝑃4  is 1. (|𝑃3|. |𝑃4|) = 1. [(2𝑛−𝑚 −

1). (2𝑚 − (𝑚 + 2))] 

Proposition 3.3.13: 

The distance between the vertices of 𝑃3  to the vertices of  𝑃5  is given by 1. (|𝑃3|. |𝑃5|) =

1. (2𝑛−𝑚 − 1) where 𝑃3 = {𝑅𝑆(𝑌)|𝑌 ∈ 𝑀′}; 𝑃5 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑚) 

Proof: 

The proof is obvious from the Proposition 3.3.12 

Proposition 3.3.14: 

The distance between the vertices of 𝑃3  to the vertices of 𝑃6  is given by 1. (|𝑃3|. |𝑃6|) =

[(2𝑚 − (𝑚 + 2)(2𝑛+1−𝑚 − 1)(2𝑛−𝑚 − 1) + 3(2−(−𝑛+𝑚))(3𝑚−1 + 1 − 2𝑚))] where 

𝑃3 = {𝑅𝑆(𝑌)|𝑌 ∈ 𝑀′}; 𝑃6 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2 … 𝑋𝑟 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑟 ∪ 𝑀) 

Proof: 

Can be proved by direct verification. 

Proposition 3.3.15: 

The distance between the vertices of 𝑃3  to the vertices of 𝑃7  is given by 1. (|𝑃3|. |𝑃7|) =

1. [(2𝑛−𝑚 − 1). (2𝑛−𝑚(2𝑚) − 2)] where 𝑃3 = {𝑅𝑆(𝑌)|𝑌 ∈ 𝑀′} ; 𝑃7 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑚 ∪ 𝑀′) ∪

𝑅𝑆(𝑋1, 𝑋2 … 𝑋𝑚 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑚 ∪ 𝑀) 

Proof: 

Can be proved by direct verification. 

Proposition 3.3.16: 

The distance between the vertices of 𝑃4  to the vertices of 𝑃5  is given by 2. (|𝑃4|. |𝑃5|) =

1. [(2𝑚 − 𝑚 − 2)] where 𝑃4 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟) and 𝑃5 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑚) 

Proof: 
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None of the elements in  𝑃4 is connected to 𝑃5 with distance 1 because 1 < 𝑟 < 𝑚.  

Hence the distance from 𝑃4 to 𝑃5 is  2. (|𝑃4|. |𝑃5|) = 1. [(2𝑚 − 𝑚 − 2)]. 

Proposition 3.3.17: 

The distance between the elements of 𝑃4  to the vertices of 𝑃6  is given by |𝑃4|[1. (|𝑃6| −

(∗ + ∗∗ + ∗∗∗)) + 2. (∗ + ∗∗ + ∗∗∗)] = 2𝑚 − (𝑚 + 2)[1. (2𝑚 − (𝑚 + 2)(2𝑛+1−𝑚+1 − 1 +

3(2𝑛−𝑚)(3𝑚−3−2 − 2𝑚 + 1) − (∗ + ∗∗ + ∗∗∗)) + 2. (∗ + ∗∗ + ∗∗∗)]  

where 𝑃4 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟)  and 𝑃6 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2 … 𝑋𝑟 ∪ 𝑀) ∪

𝑅𝑆(𝑄𝑟 ∪ 𝑀) 

Proof: 

Considering the partition 𝑃4  is of the form 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟)  with 2𝑚 − (𝑚 + 2)  elements, 

where 1 < 𝑟 < 𝑚  and partition 𝑃6  is an association of three set namely the first set is 

𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟 ∪ 𝑀′), the second set is 𝑅𝑆(𝑋1, 𝑋2 … 𝑋𝑟 ∪ 𝑀) and the third set is 𝑅𝑆(𝑄𝑟 ∪ 𝑀). 

For 𝑟 = 2,3 … (𝑚 − 1) the total number of two element category in 𝑃4 is 
𝑚(𝑚−1)

2
 , the total 

number of three element category in  𝑃4 is 
𝑚(𝑚−1)(𝑚−2)

2
− (1.2 + 2.3 + ⋯ + (𝑚 − 2)(𝑚 − 1)) 

and so on beyond any doubt (𝑚 − 1) number of elements in 1. 

Case1: 

Two element category in 𝑃4 is connected to the first set of 𝑃6 with distance 2 and is given by 

[
𝑚(𝑚−1)

2
] . [(𝑚 − 2)𝐶0 + (𝑚 − 2)𝐶1 + ⋯ + (𝑚 − 2)𝐶𝑚−3](2𝑛−𝑚 − 1) 

Correspondingly the three element category in 𝑃4  is connected to the first set of 𝑃6  with 

distance 2 and is given by  

[
𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 + ⋯ (𝑚 − 2)(𝑚 − 1)] . [(𝑚 − 3)𝐶0 + (𝑚 − 3)𝐶1 + ⋯ + (𝑚 −

3)𝐶𝑚−4](2𝑛−𝑚 − 1) and so on eventually (𝑚 − 1) element category in 𝑃4 is connected to the first 

set of 𝑃6 with distance 2 and is given by [𝑚(𝑚(𝑚 − 1)). (2𝑛−𝑚 − 1)] 

Adding all we get  

{[
𝑚(𝑚−1)

2
] . [(𝑚 − 2)𝐶0 + (𝑚 − 2)𝐶1 + ⋯ + (𝑚 − 2)𝐶𝑚−3] + [

𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 +

⋯ (𝑚 − 2)(𝑚 − 1)] . [(𝑚 − 3)𝐶0 + (𝑚 − 3)𝐶1 + ⋯ + (𝑚 − 3)𝐶𝑚−4] + ⋯ + 1. [𝑚(𝑚(𝑚 −

1)). (2𝑛−𝑚 − 1)]} … … … … … . . (∗)  
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Case 2: 

Two element category in 𝑃4 is connected to the first set of 𝑃6 with distance 2 and is given by 

[
𝑚(𝑚−1)

2
] . [(𝑚 − 2)𝐶0 + (𝑚 − 2)𝐶1 + ⋯ + (𝑚 − 2)𝐶𝑚−3](2𝑛−𝑚) 

Correspondingly the three element category in 𝑃4  is connected to the first set of 𝑃6  with 

distance 2 and is given by  

[
𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 + ⋯ (𝑚 − 1)(𝑚 − 2)] . [(𝑚 − 3)𝐶0 + (𝑚 − 3)𝐶1 + ⋯ + (𝑚 −

3)𝐶𝑚−4](2𝑛−𝑚) and so on eventually (𝑚 − 1) element category in 𝑃4 is connected to the first set 

of 𝑃6 with distance 2 and is given by [𝑚(𝑚(𝑚 − 1)). (2𝑛−𝑚)] 

Adding all we get  

{[
𝑚(𝑚−1)

2
] . [(𝑚 − 2)𝐶0 + (𝑚 − 2)𝐶1 + ⋯ + (𝑚 − 2)𝐶𝑚−3] + [

𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 +

⋯ (𝑚 − 1)(𝑚 − 2)] . [(𝑚 − 3)𝐶0 + (𝑚 − 3)𝐶1 + ⋯ + (𝑚 − 3)𝐶𝑚−4] + ⋯ + [𝑚(𝑚(𝑚 −

1)). (2𝑛−𝑚)]} … … … … … … … (∗∗)  

Case 3: 

Two element category in 𝑃4 is connected to the first set of 𝑃6 with distance 2 and is given by 

[
𝑚(𝑚−1)

2
] [∑ ∑ 𝑘𝐶𝑖

𝑘−1
𝑖=1

𝑚−1
𝑘=2 ](2𝑛−𝑚) 

Correspondingly the three element category in 𝑃4  is connected to the first set of 𝑃6  with 

distance 2 and is given by  

[
𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 + ⋯ (𝑚 − 2)(𝑚 − 1)] . [∑ ∑ 𝑘𝐶𝑖

𝑘−1
𝑖=1

𝑚−1
𝑘=3 ](2𝑛−𝑚)  and so on 

eventually (𝑚 − 1) element category in 𝑃4 is connected to the first set of 𝑃6 with distance 2 and is 

given by [𝑚(𝑚(𝑚 − 1)). (2𝑛−𝑚)] 

Adding all we get  

{[
𝑚(𝑚−1)

2
] [∑ ∑ 𝑘𝐶𝑖

𝑘−1
𝑖=1

𝑚−1
𝑘=2 ] + [

𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 + ⋯ (𝑚 − 2)(𝑚 −

1)] . [∑ ∑ 𝑘𝐶𝑖
𝑘−1
𝑖=1

𝑚−1
𝑘=3 ] + ⋯ + 1} (2𝑛−𝑚) … … … … (∗∗∗)  

Therefore the distance between the elements of 𝑃4  to the vertices of 𝑃6  is given by 

|𝑃4|[1. (|𝑃6| − (∗ + ∗∗ + ∗∗∗)) + 2. (∗ + ∗∗ + ∗∗∗)]. 

Proposition 3.3.18: 
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The distance between the vertices of 𝑃4  to the vertices of 𝑃7  is given by 2. (|𝑃4|. |𝑃7|) =

2. [(2𝑚 − (𝑚 + 2)). (2𝑛−𝑚(2𝑚) − 2)] where 𝑃4 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟) 

 and 𝑃7 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑚 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2 … 𝑋𝑚 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑚 ∪ 𝑀) 

Proof: 

None of the elements in 𝑃4 is connected to 𝑃7 with distance 1.  

Hence 2. (|𝑃4|. |𝑃7|) = 2. [(2𝑚 − (𝑚 + 2)). (2𝑛−𝑚(2𝑚) − 2)]. 

Proposition 3.3.19: 

The distance between the vertices of 𝑃5  to the vertices of 𝑃6  is given by 1. (|𝑃5|. |𝑃6|) =

1. [(2𝑚 − (𝑚 + 2)(2𝑛+1−𝑚 − 1) + 3(2𝑛−𝑚)(3𝑚−5+4 − 2𝑚 + 1)]where 𝑃5 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑚) 

 and 𝑃7 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2 … 𝑋𝑟 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑟 ∪ 𝑀) 

Proof: 

In consequence 𝑃5 has single element and it is connected to all the elements in  𝑃6. Thus the 

distance from 𝑃5 to 𝑃6 is 

1. (|𝑃5|. |𝑃6|) = 1. [(2𝑚 − (𝑚 + 2)(2𝑛+1−𝑚 − 1) + 3(2𝑛−𝑚)(3𝑚−5+4 − 2𝑚 + 1)]. 

Proposition 3.3.20: 

The distance between the vertices of 𝑃5  to the vertices of 𝑃7  is given by 2. (|𝑃5|. |𝑃6|) =

1. [2𝑛−𝑚(2𝑚) − 2] where 𝑃5 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑚) 

 and 𝑃7 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑚 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2 … 𝑋𝑚 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑚 ∪ 𝑀) 

Proof: 

Element in 𝑃5 is connected to every elements in  𝑃7 with distance 2. Hence 2. (|𝑃5|. |𝑃7|) =

2. [2𝑛−𝑚(2𝑚) − 2]. 

Proposition 3.3.21: 

The distance between the elements of 𝑃6 to the elements of 𝑃7 is given by 1. (|𝑃6|. |𝑃7|) =

2. [(2𝑚 − (𝑚 + 2)(2𝑛−𝑚+1 − 1) + 3(2𝑛−𝑚)(3𝑚−1 − 2𝑚 + 1). (2𝑛−𝑚(2𝑚) − 2)]. 

Where 𝑃6 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑟 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2 … 𝑋𝑟 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑟 ∪ 𝑀) 

𝑃7 = 𝑅𝑆(𝑥1, 𝑥2 … 𝑥𝑚 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋1, 𝑋2 … 𝑋𝑚 ∪ 𝑀) ∪ 𝑅𝑆(𝑄𝑚 ∪ 𝑀)  

Proof: 
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All the elements in 𝑃6  is connected with 𝑃7  with distance 1. (|𝑃6|. |𝑃7|) = 1. [(2𝑚 − (𝑚 +

2)(2𝑛−𝑚+1 − 1) + 3(2𝑛−𝑚)(3𝑚−1 − 2𝑚 + 1). (2𝑛−𝑚(2𝑚) − 2)] 

Theorem 3.3.1: 

The wiener index 𝑊(𝑍∗(𝐽)) of Rough co-zero divisor graph 𝐺(𝑍∗(𝐽)), when 𝑛 ≠ 𝑚 is(𝐴) +

(𝐵) + (𝐶) where  

𝐴 = |𝑃1|{1. [|𝑃2| + |𝑃3| + |𝑃4| − (2𝑛 − 3) + (𝑚 − 1)𝐶𝑟(2−(−𝑛+𝑚) − 1) + (2𝑛−𝑚)((𝑚 −

1)𝐶𝑟 + ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1))𝑚−1
𝑟=2 ] + 2. [2𝑚−1 − 2𝑛−𝑚+2 + 1 +

|𝑃5| + |𝑃6| − (𝑚 − 1)𝐶𝑟(2−(−𝑛+𝑚) − 1) + (2𝑛−𝑚)((𝑚 − 1)𝐶𝑟 + ∑ ((𝑚 − 1)𝐶1 + (𝑚 −𝑚−1
𝑟=2

1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1))(2−(−𝑛+𝑚) + |𝑃7|]} + |𝑃2|{1. [|𝑃3| + |𝑃4| + |𝑃5| + |𝑃6| + |𝑃7|]} +

|𝑃3|{1. [|𝑃4| + |𝑃5| + |𝑃6| + |𝑃7|]} + |𝑃4|{1. [(|𝑃6| − (∗ + ∗∗ + ∗∗∗))] + 2. [|𝑃5| + (∗ + ∗∗ + ∗∗

∗)]. +|𝑃7|} + |𝑃5|{1. |𝑃6| + 2. |𝑃7|} + |𝑃6|{1. |𝑃7|}  

𝐵 =
1

2
{|𝑃1| (|𝑃1|  − 1) + |𝑃2| (|𝑃2|  − 1) + |𝑃3| (|𝑃3|  − 1) + |𝑃5| (|𝑃5|  − 1) + |𝑃6| (|𝑃6|  −

1) + |𝑃7| (|𝑃7|  − 1)}  

𝐶 = 1. [
(𝑚−1)𝑚

2
] + [

𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 + ⋯ + (𝑚 − 1)(𝑚 − 2)] + ⋯ . +1 + 2. {( 2𝑚 −

(𝑚 + 2)) − [
(𝑚−1)𝑚

2
] + [

(𝑚−1)(𝑚−2)𝑚

2
− 1.2 + 2.3 + ⋯ + (𝑚 − 1)(𝑚 − 2)] + ⋯ . +1}  

Proof: 

The wiener index of 𝐺(𝑍∗(𝐽)) is the sum of the distance from every vertex to every other vertex 

and hence from Proposition 3.3.1 to Proposition 3.3.21 we have  

|𝑃1|{1. [|𝑃2| + |𝑃3| + |𝑃4| − (2𝑛 − 3) + (𝑚 − 1)𝐶𝑟(2−(−𝑛+𝑚 − 1) + (𝑚 − 1)𝐶𝑟 +

∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)(2𝑛−𝑚)𝑚−1
𝑟=2 ] + 2. [2𝑚−1 − 2𝑛−𝑚+2 + 1 +

|𝑃5| + |𝑃6| − (𝑚 − 1)𝐶𝑟(2−(−𝑛+𝑚) − 1) + ((𝑚 − 1)𝐶𝑟 + ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 +𝑚−1
𝑟=2

⋯ + (𝑚 − 1)𝐶𝑟−1))(2𝑛−𝑚) + |𝑃7|]} + |𝑃2|{1. [|𝑃3| + |𝑃4| + |𝑃5| + |𝑃6| + |𝑃7|]} +

|𝑃3|{1. [|𝑃4| + |𝑃5| + |𝑃6| + |𝑃7|]} + |𝑃4|{1. [(|𝑃6| − (∗ + ∗∗ + ∗∗∗))] + 2. [|𝑃5| +

(∗ + ∗∗ + ∗∗∗)]. +|𝑃7|} + |𝑃5|{1. |𝑃6| + 2. |𝑃7|} + |𝑃6|{1. |𝑃7|} … … … … . (𝐴)  

Proposition 3.3.1 to 3.3.21, gives the distance from one partition to every other partition. Hence 

equation (𝐴)  gives the distance from the vertices of one partition to vertices of every other 

partition. Also note that the vertices of 𝑃1, 𝑃2, 𝑃3, 𝑃5, 𝑃6  and 𝑃7  form a complete subgraph of 

𝐺(𝑍∗(𝐽)). Therefore the distances between the vertices in each of these partition in each of these 

partition are one. Hence the sum of such distance is given by 
𝑛(𝑛−1)

2
 where 𝑛 = |𝑃𝑖|  for 𝑖 =

1,2,3,5,6,7 which is calculated by 
|𝑃𝑖| (|𝑃𝑖| −1)

2
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(i.e)  
|𝑃1| (|𝑃1| −1)

2
+

|𝑃2| (|𝑃2| −1)

2
+

|𝑃3| (|𝑃3| −1)

2
+

|𝑃5| (|𝑃5| −1)

2
+

|𝑃6| (|𝑃6| −1)

2
+

|𝑃7| (|𝑃7| −1)

2
 

1

2
{|𝑃1| (|𝑃1|  − 1) + |𝑃2| (|𝑃2|  − 1) + |𝑃3| (|𝑃3|  − 1) + |𝑃5| (|𝑃5|  − 1) + |𝑃6| (|𝑃6|  − 1) +

|𝑃7| (|𝑃7|  − 1)} … … … … … … … … … … … . . (𝐵)  

Now when i = 4, we need to find the distance between the vertices in |P4|. Note that P4 =

RS(x1, x2 … xr). Hence we calculate the distance within the vertices of P4 is  

1. [
(𝑚−1)𝑚

2
] + [

(𝑚−1)(𝑚−2)𝑚

2
− 1.2 + 2.3 + ⋯ + (𝑚 − 1)(𝑚 − 2)] + ⋯ . +1 + 2. {( 2𝑚 −

(𝑚 + 2)) − [
(𝑚−1)𝑚

2
] + [

𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 + ⋯ + (𝑚 − 1)(𝑚 − 2)] + ⋯ . +1} … … (𝐶)  

The wiener index of 𝐺(𝑍∗(𝐽)) is obtained as by using (𝐴) + (𝐵) + (𝐶) we get 

𝑊(𝑍∗(𝐽)) = |𝑃1|{1. [|𝑃2| + |𝑃3| + |𝑃4| − (2𝑛 − 3) + (𝑚 − 1)𝐶𝑟(2𝑛−𝑚 − 1) + (𝑚 −

1)𝐶𝑟(2𝑛−𝑚) + (2𝑛−𝑚) ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)𝑚−1
𝑟=2 ] + 2. [2𝑚−1 −

2𝑛−𝑚+2 + 1 + |𝑃5| + |𝑃6| − (𝑚 − 1)𝐶𝑟(2𝑛−𝑚 − 1) + (𝑚 − 1)𝐶𝑟(2𝑛−𝑚) +

(2𝑛−𝑚) ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)𝑚−1
𝑟=2 + |𝑃7|]} + |𝑃2|{1. [|𝑃3| + |𝑃4| +

|𝑃5| + |𝑃6| + |𝑃7|]} + |𝑃3|{1. [|𝑃4| + |𝑃5| + |𝑃6| + |𝑃7|]} + |𝑃4|{1. [(|𝑃6| − (∗ + ∗∗ + ∗∗∗))] +

2. [|𝑃5| + (∗ + ∗∗ + ∗∗∗)]. +|𝑃7|} + |𝑃5|{1. |𝑃6| + 2. |𝑃7|} + |𝑃6|{1. |𝑃7|} +
1

2
{|𝑃1| (|𝑃1|  − 1) +

|𝑃2| (|𝑃2|  − 1) + |𝑃3| (|𝑃3|  − 1) + |𝑃5| (|𝑃5|  − 1) + |𝑃6| (|𝑃6|  − 1) + |𝑃7| (|𝑃7|  − 1)} +

1. [
𝑚(𝑚−1)

2
] + [

𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 + ⋯ (𝑚 − 2)(𝑚 − 1)] + ⋯ . +1 + 2. {( 2𝑚 − (𝑚 +

2)) − [
𝑚(𝑚−1)

2
] + [

𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 + ⋯ (𝑚 − 2)(𝑚 − 1)] + ⋯ . +1} … . . (𝐼)  

Theorem 3.3.2: 

The wiener index 𝑊(𝑍∗(𝐽)) of Rough co-zero divisor graph 𝐺(𝑍∗(𝐽)), when 𝑛 = 𝑚 is 

|𝑃1|{1. [|𝑃2| + |𝑃4| − (2𝑛 − 3) + (𝑚 − 1)𝐶𝑟(2𝑛−𝑚 − 1) + (𝑚 − 1)𝐶𝑟(2𝑛−𝑚) +

(2𝑛−𝑚) ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)𝑚−1
𝑟=2 ] + 2. [2𝑚−1 − 2𝑛−𝑚+2 + 1 +

|𝑃5| + |𝑃6| − (𝑚 − 1)𝐶𝑟(2𝑛−𝑚 − 1) + (𝑚 − 1)𝐶𝑟(2𝑛−𝑚) + (2𝑛−𝑚) ∑ ((𝑚 − 1)𝐶1 + (𝑚 −𝑚−1
𝑟=2

1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1) + |𝑃7|]} + |𝑃2|{1. [+|𝑃4| + |𝑃5| + |𝑃6| + |𝑃7|]} + |𝑃4|{1. [(|𝑃6| − (∗

+ ∗∗ + ∗∗∗))] + 2. [|𝑃5| + (∗ + ∗∗ + ∗∗∗)]. +|𝑃7|} + |𝑃5|{1. |𝑃6| + 2. |𝑃7|} + |𝑃6|{1. |𝑃7|} +
1

2
{|𝑃1| (|𝑃1|  − 1) + |𝑃2| (|𝑃2|  − 1) + +|𝑃5| (|𝑃5|  − 1) + |𝑃6| (|𝑃6|  − 1) + |𝑃7| (|𝑃7|  − 1)} +

1. [
𝑚(𝑚−1)

2
] + [

𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 + ⋯ (𝑚 − 2)(𝑚 − 1)] + ⋯ . +1 + 2. {( 2𝑚 − (𝑚 +

2)) − [
𝑚(𝑚−1)

2
] + [

𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 + ⋯ (𝑚 − 2)(𝑚 − 1)] + ⋯ . +1} … … … … . (𝐼𝐼)  

Proof: 
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Now we calculate the wiener index of Rough co-zero divisor graph 𝐺(𝑍∗(𝐽)) when 𝑛 = 𝑚. 

Since 𝑃3 = ∅. Therefore by a similar calculation on leaving 𝑃3 the wiener index of 𝐺(𝑍∗(𝐽)) is  

𝑊(𝑍∗(𝐽)) = |𝑃1|{1. [|𝑃2| + |𝑃4| − (2𝑛 − 3) + (𝑚 − 1)𝐶𝑟(2𝑛−𝑚 − 1) + (𝑚 − 1)𝐶𝑟(2𝑛−𝑚) +

(2𝑛−𝑚) ∑ ((𝑚 − 1)𝐶1 + (𝑚 − 1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1)𝑚−1
𝑟=2 ] + 2. [2𝑚−1 − 2𝑛−𝑚+2 + 1 +

|𝑃5| + |𝑃6| − (𝑚 − 1)𝐶𝑟(2𝑛−𝑚 − 1) + (𝑚 − 1)𝐶𝑟(2𝑛−𝑚) + (2𝑛−𝑚) ∑ ((𝑚 − 1)𝐶1 + (𝑚 −𝑚−1
𝑟=2

1)𝐶2 + ⋯ + (𝑚 − 1)𝐶𝑟−1) + |𝑃7|]} + |𝑃2|{1. [+|𝑃4| + |𝑃5| + |𝑃6| + |𝑃7|]} + |𝑃4|{1. [(|𝑃6| − (∗

+ ∗∗ + ∗∗∗))] + 2. [|𝑃5| + (∗ + ∗∗ + ∗∗∗)]. +|𝑃7|} + |𝑃5|{1. |𝑃6| + 2. |𝑃7|} + |𝑃6|{1. |𝑃7|} +
1

2
{|𝑃1| (|𝑃1|  − 1) + |𝑃2| (|𝑃2|  − 1) + +|𝑃5| (|𝑃5|  − 1) + |𝑃6| (|𝑃6|  − 1) + |𝑃7| (|𝑃7|  − 1)} +

1. [
𝑚(𝑚−1)

2
] + [

𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 + ⋯ (𝑚 − 2)(𝑚 − 1)] + ⋯ . +1 + 2. {( 2𝑚 − (𝑚 +

2)) − [
𝑚(𝑚−1)

2
] + [

𝑚(𝑚−1)(𝑚−2)

2
− 1.2 + 2.3 + ⋯ (𝑚 − 2)(𝑚 − 1)] + ⋯ . +1} … … … … . (𝐼𝐼)  

Example 3.3.1 

From Example 3.2.1 we have 𝑛 = 𝑚 = 3 by substituting all the values in equation (𝐼𝐼) we get 

𝑊(𝑍∗(𝐽)) = 2{1. (3) + 2. (3)} + 1. (1.2) + 2(2.1) + 2. (2.6) +  1. (6.1) + 1. (6.1) + 1. (1.1)

+ 1. (1.6) + 2. (1.6) + (1 + 15 + 15) 

= 18 + 2 + 4 + 24 + 6 + 6 + 36 + 1 + 6 + 12 + 31 = 146  

when 𝑛 = 𝑚 = 3, the wiener index 𝑊(𝑍∗(𝐽)) of 𝐺(𝑍∗(𝐽)) is obtained by 146 

Example 3.3.2 

From Example 3.2.2 we have 𝑛 = 𝑚 = 3 by substituting all the values in equation (𝐼𝐼) we get 

𝑊(𝑍∗(𝐽)) = 3{1. (3 − 2 + 1) + 2. (−2 + 1)} + 3{1. (3 − 2) + 2. (2)} + 2(3.1)

+ 3{1. (3) + 2. (9 − (3))} +  2. {(3.6) + 1. {(3.3) + 1. {(3.1) + 1. {(3.9)

+ 1. {(3.6) + 2. {(3.1) + {1.18 + 2.9 + 2. {(3.6) + 2. {(1.6) + 1. {(9.6)}

+ {1.3 + 1.3 + 1.3 + 1.0 + 1.36 + 1.15} 

= 12 + 15 + 6 + 45 + 36 + 9 + 3 + 27 + 18 + 6 + 36 + 36 + 9 + 12 + 54 + 60 = 384 

when 𝑛 = 𝑚 = 3, the wiener index 𝑊(𝑍∗(𝐽)) of 𝐺(𝑍∗(𝐽)) is obtained by 384. 

                                             4.APPLICATION  

Let U be the set of symptoms namely Dry cough (𝑢1), fever (𝑢2), shortness of breath (𝑢3), 

fatigue (𝑢4), runny nose (𝑢5), nasal congestion (𝑢6), diarrhea (𝑢7), body aches (𝑢8), sore throat 

(𝑢9), head ache (𝑢10), loss of appetite (𝑢11), new loss of taste or smell (𝑢12),  respiratory issues 

(𝑢13), nausea (𝑢14), vomiting (𝑢15), high temperature (𝑢16), sleeping disorders (𝑢17), difficulty 

of breathing (𝑢18)  and sudden weight loss (𝑢19). 
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𝑋1 = {𝑢1, 𝑢2}; 𝑋2 = {𝑢3, 𝑢11, 𝑢18}; 𝑋3 = {𝑢7, 𝑢14, 𝑢15}; 𝑋4 = {𝑢5, 𝑢12, 𝑢16, 𝑢17}; 

𝑋5 = {𝑢6, 𝑢8, 𝑢9, 𝑢13}; 𝑋6 = {𝑢4, 𝑢10}; 𝑋7 = {𝑢19} 

Let D be the set of diseases Influenza 𝑑1,  Common cold 𝑑2 , COVID-19 𝑑3,Pneumonia 

𝑑4, Asthma 𝑑5, Acute bronchitis 𝑑6, and Malaria 𝑑7. 

If 𝑋 = {𝐶𝑜𝑢𝑔ℎ, 𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑠}  then 𝑅𝑆(𝑋) = (∅, 𝑋1 ∪ 𝑋1)  means two symptoms 

together cannot confirm 𝑑1 and 𝑑3 but these two are the symptoms possibility of either 𝑑1 or 𝑑3. 

𝑋 = {𝐶𝑜𝑢𝑔ℎ, 𝑐𝑜𝑙𝑑, 𝑠𝑜𝑟𝑒 𝑡ℎ𝑟𝑜𝑎𝑡}  then 𝑅𝑆(𝑋) = (𝑋1, 𝑋1)   means confirms 𝑑3 . A similar 

interpretation can be given for all the Rough sets in 𝑇∗. If 𝑅𝑆(𝑋) is any vertex in 𝐺(𝑍∗(𝐽)) then 

among the symptoms in 𝑈 we are able to identify a subset 𝑌 that does not have any common 

symptoms with 𝑋 along with 𝐽 such elements are connected in 𝐺(𝑍∗(𝐽)). Also people who have a 

symptom associated with other symptom of disease is distance 2 and people who have a symptom 

not associated with other symptom of disease is distance 1. 

                                             5.CONCLUSION  

The focus of this study was to develop an innovative methodology for finding Degree, Distance 

and Wiener index of a Rough Co-zero divisor graph using partition graph. All aforesaid concepts 

are illustrated through examples. Our forthcoming work is to explore this partition graph to Rough 

Co-zero divisor graph. 
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