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1. INTRODUCTION

Motivated by ideas in [4, 12, 13] in this paper we present some new collectively

fixed and coincidence type results. Then using these results we establish some new

maximal type element theorems for families of majorized type maps [4, 6] in the

compact setting. In this paper we discuss the Φ⋆ maps from the literature [2] and also

admissible maps in the sense of of Gorniewicz [9]. We present collectively coincidence

results bewteen classes of maps (the first result is between the same classes and the

second result is between different classes).

Now we describe the maps considered in this paper. Let H be the C̆ech homology

functor with compact carriers and coefficients in the field of rational numbers K from

the category of Hausdorff topological spaces and continuous maps to the category of

graded vector spaces and linear maps of degree zero. Thus H(X) = {Hq(X)} (here

X is a Hausdorff topological space) is a graded vector space, Hq(X) being the q–

dimensional C̆ech homology group with compact carriers of X. For a continuous

map f : X → X, H(f) is the induced linear map f⋆ = {f⋆ q} where f⋆ q : Hq(X)→
Hq(X). A space X is acyclic if X is nonempty, Hq(X) = 0 for every q ≥ 1, and

H0(X) ≈ K.
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Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued

map p : Γ → X is called a Vietoris map (written p : Γ ⇒ X) if the following two

conditions are satisfied:

(i). for each x ∈ X, the set p−1(x) is acyclic

(ii). p is a perfect map i.e. p is closed and for every x ∈ X the set p−1(x) is

nonempty and compact.

Let ϕ : X → Y be a multivalued map (note for each x ∈ X we assume ϕ(x) is

a nonempty subset of Y ). A pair (p, q) of single valued continuous maps of the form

X
p← Γ

q→ Y is called a selected pair of ϕ (written (p, q) ⊂ ϕ) if the following two

conditions hold:

(i). p is a Vietoris map

and

(ii). q (p−1(x)) ⊂ ϕ(x) for any x ∈ X.

Now we define the admissible maps of Gorniewicz [9]. A upper semicontinu-

ous map ϕ : X → Y with compact values is said to be admissible (and we write

ϕ ∈ Ad(X,Y )) provided there exists a selected pair (p, q) of ϕ. An example of an

admissible map is a Kakutani map. A upper semicontinuous map ϕ : X → K(Y ) is

said to Kakutani (and we write ϕ ∈ Kak(X, Y )); here K(Y ) denotes the family of

nonempty, convex, compact subsets of Y .

The following class of maps will play a major role in this paper. Let Z and W

be subsets of Hausdorff topological vector spaces Y1 and Y2 and G a multifunction.

We say G ∈ Φ⋆(Z,W ) [2] if W is convex and there exists a map S : Z → W with

S(x) ⊆ G(x) for x ∈ Z, S(x) ̸= ∅ and has convex values for each x ∈ Z and the fibre

S−1(w) = {z ∈ Z : w ∈ S(z)} is open (in Z) for each w ∈ W .

Let Q be a class of topological spaces. A space Y is an extension space for Q

(written Y ∈ ES(Q)) if for any pair (X,K) in Q with K ⊆ X closed, any continuous

function f0 : K → Y extends to a continuous function f : X → Y . A space Y is an

approximate extension space for Q (written Y ∈ AES(Q)) if for any α ∈ Cov (Y ) and

any pair (X,K) in Q with K ⊆ X closed, and any continuous function f0 : K → Y

there exists a continuous function f : X → Y such that f |K is α–close to f0.

Let V be a subset of a Hausdorff topological vector space E. Then we say

V is Schauder admissible if for every compact subset K of V and every covering

α ∈ CovV (K) there exists a continuous functions πα : K → V such that

(i). πα and i : K → V are α–close;

(ii). πα(K) is contained in a subset C ⊆ V with C ∈ AES(compact).

Our first result is taken from [1, 10].
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Theorem 1.1. Let X be a Schauder admissible subset of a Hausdorff topological

vector space and Ψ ∈ AD(X,X) a compact map. Then there exists a x ∈ X with

x ∈ Ψ(x).

Remark 1.2. Other variations of Theorem 1.1 can be found in [11].

We recall that a point x ∈ X is a maximal element of a set valued map F from

a topological space X to another topological space Y if F (x) = ∅.

2. MAXIMAL ELEMENT RESULTS

We begin by establishing a new collectively fixed point result (motivated in part

from [12, 14]).

Theorem 2.1. Let {Xi}Ni=1 be a family of convex compact sets each in a Hausdorff

topological vector space Ei. For each i ∈ {1, ..., N} suppose Fi : X ≡
∏N

i=1Xi → Xi

and in addition there exists a map Si : X → Xi with Si(x) ⊆ Fi(x) for x ∈ X, Si(x)

has convex values for x ∈ X and S−1
i (w) is open (in X) for each w ∈ Xi. Finally

suppose for each x ∈ X there exists a i ∈ {1, ..., N} with Si(x) ̸= ∅. Then there exists

a x ∈ X and a i ∈ {1, .., N} with xi ∈ Fi(x) (here xi is the projection of x on Xi).

Proof. Note Ai = {x ∈ X : Si(x) ̸= ∅}, i ∈ {1, .., N} is an open covering of X (recall

the fibres of Si are open). Now since X is compact (so in particular paracompact)

then from [8, Lemma 5.1.6, pp301] there exists a covering {Bi}Ni=1 of X where Bi is

closed and Bi ⊂ Ai for all i ∈ {1, ..., N}. For each i ∈ {1, .., N} let Gi : X → Xi and

Ti : X → Xi be given by

Gi(x) =

{
Fi(x), x ∈ Bi

Xi, x ∈ X\Bi

and Ti(x) =

{
Si(x), x ∈ Bi

Xi, x ∈ X\Bi.

We claim for i ∈ {1, ..., N} that Gi ∈ Φ⋆(X,Xi). Note first for i ∈ {1, ..., N} that

Ti(x) ̸= ∅ for x ∈ X. Also for x ∈ X and i ∈ {1, ..., N} then if x ∈ Bi we have

Ti(x) = Si(x) ⊆ Fi(x) = Gi(x) whereas if x ∈ X\Bi we have Ti(x) = Xi = Gi(x).

Also note if y ∈ Xi then

T−1
i (y) = {z ∈ X : y ∈ Ti(z)}

= {z ∈ X\Bi : y ∈ Ti(z) = Xi} ∪ {z ∈ Bi : y ∈ Ti(z)}

= (X\Bi) ∪ {z ∈ Bi : y ∈ Si(z)} = (X\Bi) ∪ [Bi ∩ {z ∈ X : y ∈ Si(z)}]

= (X\Bi) ∪
[
Bi ∩ S−1

i (y)
]
= X ∩

[
(X\Bi) ∪ S−1

i (y)
]
= (X\Bi) ∪ S−1

i (y)

which is open in X (note S−1
i (y) is open in X and Bi is closed in X). Thus for

i ∈ {1, ..., N} we have Gi ∈ Φ⋆(X,Xi).
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Now sinceX is compact for each i ∈ {1, ..., N} from [2, 5] there exists a continuous

(single valued) selection fi : X → Xi of Gi with fi(x) ∈ Ti(x) ⊆ Gi(x) for x ∈ X and

also there exists a finite set Ci of Xi with fi(X) ⊆ co (Ci) ≡ Di. Let

D =
N∏
i=1

Di and f(x) =
N∏
i=1

fi(x), x ∈ D.

Now D is compact and convex, f : D → D and f(D) lies in a finite dimensional

subspace of E =
∏N

i=1 Ei. Brouwer’s fixed point theorem guarantees that there

exists a x ∈ D with x = f(x) i.e. xj = fj(x) ∈ Tj(x) ⊆ Gj(x) for each j ∈ {1, .., N}.
Now since {Bi}Ni=1 is a covering of X there exists a j0 ∈ {1, .., N} with x ∈ Bj0 so

xj0 ∈ Gj0(x) = Fj0(x).

Remark 2.2. Note one could replace {Xi}Ni=1 in Theorem 2.1 with {Xi}i∈I where I

is an index set. In Theorem 2.1 since X ≡
∏

i∈I Xi is compact (since we assume each

Xi is compact) then we could assume in the statement of Theorem 2.1 that there

exists a finite subset I0 of I and for each x ∈ X there exists a i ∈ I0 with Si(x) ̸= ∅ so
as a result one could rewrite the statement of Theorem 2.1. This remark could also

be applied to the other results in this paper.

Next we will rewrite Theorem 2.1 as a maximal type element result.

Theorem 2.3. Let {Xi}Ni=1 be a family of convex compact sets each in a Hausdorff

topological vector space. For each i ∈ {1, ..., N} suppose Fi : X ≡
∏N

i=1 Xi → Xi and

in addition there exists a map Si : X → Xi with Si(x) ⊆ Fi(x) for x ∈ X, Si(x) has

convex values for x ∈ X and S−1
i (w) is open (in X) for each w ∈ Xi. Now suppose

for all i ∈ {1, .., N} that xi /∈ Fi(x) for each x ∈ X. Then there exists a x ∈ X with

Si(x) = ∅ for all i ∈ {1, ..., N}.

Proof. Suppose the conclusion is false. Then for each x ∈ X there exists a i ∈
{1, ..., N} with Si(x) ̸= ∅. Now Theorem 2.1 guarantees a x ∈ X and a i ∈ {1, .., N}
with xi ∈ Fi(x), a contradiction.

We now discuss a generalization of majorized mappings in the literature (see [3,

4, 6, 15]). Let Z and W be sets in a Hausdorff topological vector space with W

convex and Z compact. Suppose H : Z →W , J : Z → W and for each y ∈ Z assume

there exists a map Ay : Z →W and an open set Uy containing y with H(z) ⊆ Ay(z)

for every z ∈ Uy, Ay is convex valued, (Ay)
−1(x) is open (in Z) for each x ∈ W and

J(w)∩Ay(w) = ∅ for w ∈ Z. We now claim that there exists a map T : Z → W with

H(z) ⊆ T (z) for z ∈ Z, T is convex valued, T−1(x) is open (in Z) for each x ∈ W

and J(w) ∩ T (w) = ∅ for w ∈ Z. To see this note {Uy}y∈Z is an open covering of

Z and since Z is compact there exists [7, 8] a finite set {y1, ..., yn} (with yi ∈ Z for
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i ∈ {1, ..., n}) and an open covering {Vyi}ni=1 of Z with yi ∈ Vyi and Ωyi = Vyi ⊆ Uyi

for i ∈ {1, ..., n}. Fix i ∈ {1, ..., n} and let

Qyi(z) =

{
Ayi(z), z ∈ Ωyi

W, z ∈ Z\Ωyi .

Now Qyi is convex valued and H(z) ⊆ Qyi(z) for every z ∈ Z (note if z ∈ Ωyi then

since Ωyi ⊆ Uyi and since H(w) ⊆ Ayi(w) for w ∈ Uyi we have H(z) ⊆ Qyi(z) whereas

if z ∈ Z\Ωyi then it is immediate since Qyi(z) = W ). Also note the argument in

Theorem 2.1 guarantees for any x ∈ W that

(Qyi)
−1(x) = (Z\Ωyi) ∪ (Ayi)

−1(x)

which is open in Z. Let T : Z →W be given by

T (z) =
n∩

i=1

Qyi(z) for z ∈ Z.

Now T is convex valued, H(z) ⊆ T (z) for every z ∈ Z and for x ∈ W we have

T−1(x) = {z ∈ Z : x ∈ T (z)} =

{
z ∈ Z : x ∈

n∩
i=1

Qyi(z)

}

=
n∩

i=1

{z ∈ Z : x ∈ Qyi(z)} =
n∩

i=1

(Qyi)
−1(x)

which is open in Z. Finally we note J(w) ∩ T (w) = ∅ for w ∈ Z. To see this let

w ∈ Z and note there exists a k ∈ {1, ..., n} with yk ∈ Z and w ∈ Ωyk , so

T (w) =
n∩

i=1

Qyi(w) ⊆ Qyk(w) = Ayk(w)

(since w ∈ Ωyk) and thus J(w) ∩ T (w) ⊆ J(w) ∩ Ayk(w) = ∅.

Now we will combine the above discussion with Theorem 2.3.

Theorem 2.4. Let {Xi}Ni=1 be a family of convex compact sets each in a Hausdorff

topological vector space. For each i ∈ {1, ..., N} suppose Hi : X ≡
∏N

i=1Xi → Xi

and for each x ∈ X assume there exists a map Ai,x : X → Xi and an open set Ui,x

containing x with Hi(z) ⊆ Ai,x(z) for every z ∈ Ui,x, Ai,x is convex valued, (Ai,x)
−1(z)

is open (in X) for each z ∈ Xi and wi /∈ Ai,x(w) for each w ∈ X. Then there exists

a x ∈ X with Hi(x) = ∅ for all i ∈ {1, ..., N}.

Proof. Let i ∈ {1, ..., N}. From the discussion after Theorem 2.3 (with Z = X, W =

Xi, H = Hi, J = Projection of X on Xi, Ay = Ai,x) there exists a map Ti : X → Xi

with Hi(w) ⊆ Ti(w) for w ∈ X, Ti is convex valued, (Ti)
−1(z) is open for each z ∈ Xi

and wi /∈ Ti(w) for each w ∈ X; here for a i ∈ {1, ..., N} we have that {Ui,x}x∈X
is an open covering of X so there exists a finite set {yi,1, ..., yi,ni

} (with yi,j ∈ X for
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j ∈ {1, ..., ni}) and an open covering {Vi,yi,j}
ni
i=1 of X and Ωi,yi,j = Vi,yi,j ⊆ Ui,yi,j for

j ∈ {1, ..., ni} and for fixed j ∈ {1, ..., ni},

Qi,yi,j(z) =

{
Ai,yi,j(z), z ∈ Ωi,yi,j

Xi, z ∈ X\Ωi,yi,j

and

Ti(z) =

ni∩
j=1

Qi,yi,j(z) for z ∈ X.

Now we will apply Theorem 2.3 with Fi = Si = Ti and so there exists a x ∈ X

with Tj(x) = ∅ for all j ∈ {1, ..., N}. Now since Hj(w) ⊆ Tj(w) for w ∈ X then we

have Hj(x) = ∅ for all j ∈ {1, ..., N}.

Next we will discuss collectively coincidence points motivated in part by [4, 13].

Theorem 2.5. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff

topological vector space Ei with
∏N

i=1Xi paracompact and in addition {Yi}N0
i=1 is also

a family of compact sets. For each i ∈ {1, ..., N0} suppose Fi : X ≡
∏N

i=1Xi → Yi

and there exists a map Ti : X → Yi with Ti(x) ⊆ Fi(x) for x ∈ X, Ti(x) has

convex values for each x ∈ X and T−1
i (w) is open (in X) for each w ∈ Yi. For each

j ∈ {1, ....N} suppose Gj : Y ≡
∏N0

i=1 Yi → Xj and there exists a map Sj : Y → Xj

with Sj(y) ⊆ Gj(y) for y ∈ Y , Sj(y) has convex values for each y ∈ Y and S−1
j (w)

is open (in Y ) for each w ∈ Xj. Finally suppose for each x ∈ X there exists a

i ∈ {1, ..., N0} with Ti(x) ̸= ∅ and suppose for each y ∈ Y there exists a j ∈ {1, ..., N}
with Sj(y) ̸= ∅. Then there exists a x ∈ X, a y ∈ Y , a j0 ∈ {1, ..., N0} and a

i0 ∈ {1, ..., N} with yj0 ∈ Fj0(x) and xi0 ∈ Gi0(y).

Proof. Note Ai = {x ∈ X : Ti(x) ̸= ∅}, i ∈ {1, .., N0} is an open covering of X so

from [8, Lemma 5.1.6, pp301] there exists a covering {Bi}N0
i=1 of X where Bi is closed

in X and Bi ⊂ Ai for all i ∈ {1, ..., N0}. Also Ci = {y ∈ Y : Si(y) ̸= ∅}, i ∈ {1, .., N}
is an open covering of Y and from [8, Lemma 5.1.6, pp301] there exists a covering

{Di}Ni=1 of Y where Di is closed in Y and Di ⊂ Ci for all i ∈ {1, ..., N}. Now for each

i ∈ {1, .., N0} let Hi : X → Yi and Ji : X → Yi be given by

Hi(x) =

{
Fi(x), x ∈ Bi

Yi, x ∈ X\Bi

and Ji(x) =

{
Ti(x), x ∈ Bi

Yi, x ∈ X\Bi.

Also for each i ∈ {1, .., N} let Mi : Y → Xi and Li : Y → Xi be given by

Mi(y) =

{
Gi(y), y ∈ Di

Xi, y ∈ Y \Di

and Li(y) =

{
Si(y), y ∈ Di

Xi, y ∈ Y \Di.

The reasoning in Theorem 2.1 guarantees that Hi ∈ Φ⋆(X, Yi) for i ∈ {1, ...., N0} and
Mi ∈ Φ⋆(Y,Xi) for i ∈ {1, ..., N}.
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Now since Y is compact for each i ∈ {1, ..., N} from [2, 5] there exists a continuous

(single valued) selection qi : Y → Xi of Mi with qi(y) ∈ Li(y) ⊆Mi(y) for y ∈ Y and

there exists a finite subset Ri of Xi with qi(Y ) ⊆ co (Ri) ≡ Qi. Let Q =
∏N

i=1 Qi (⊆
X) and note Q is compact. Let H⋆

i (respectively, J⋆
i ) denote the restriction of Hi

(respectively, Ji) to Q. Note for i ∈ {1, ..., N0} that H⋆
i ∈ Φ⋆(Q, Yi) since for y ∈ Yi

we have

(J⋆
i )

−1(y) = {z ∈ Q : y ∈ J⋆
i (z)} = {z ∈ Q : y ∈ Ji(z)}

= Q ∩ {z ∈ X : y ∈ Ji(z)} = Q ∩ J−1
i (y)

which is open in Q ∩ X = Q. Now since Q is compact (in particular paracompact)

for each i ∈ {1, ..., N0} from [2, 5] there exists a continuous (single valued) selection

hi : Q→ Yi of H
⋆
i with hi(x) ∈ J⋆

i (x) ⊆ H⋆
i (x) for x ∈ Q. Let

h(x) =

N0∏
i=1

hi(x) for x ∈ Q and q(y) =
N∏
i=1

qi(y) for y ∈ Y

and note h : Q → Y and q : Y → Q are continuous. Consider the continuous map

θ : Q → Q given by θ(x) = q(h(x)) for x ∈ Q. Note Q is a compact convex subset

in a finite dimensional subspace of E =
∏N

i=1 Ei so Brouwer’s fixed point theorem

guarantees that there exists a x ∈ Q with x = θ(x) = q(h(x)). Let y = h(x) so

x = q(y). Then since x ∈ Q we have yj = hj(x) ∈ J⋆
j (x) ⊆ H⋆

j (x) i.e. yj ∈ Hj(x) for

j ∈ {1, ..., N0} and xi = qi(y) ∈ Li(y) ⊆ Mi(y) for i ∈ {1, ..., N}. Next since {Bi}N0
i=1

is a covering of X there exists a j0 ∈ {1, .., N0} with x ∈ Bj0 so yj0 ∈ Hj0(x) = Fj0(x).

Finally we note since {Di}Ni=1 is a covering of Y there exists a i0 ∈ {1, .., N} with

x ∈ Di0 so xi0 ∈Mi0(y) = Gi0(y).

Theorem 2.6. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff

topological vector space with
∏N

i=1Xi paracompact and in addition {Yi}N0
i=1 is also a

family of compact sets. For each i ∈ {1, ..., N0} suppose Fi : X ≡
∏N

i=1Xi → Yi

and there exists a map Ti : X → Yi with Ti(x) ⊆ Fi(x) for x ∈ X, Ti(x) has

convex values for each x ∈ X and T−1
i (w) is open (in X) for each w ∈ Yi. For each

j ∈ {1, ....N} suppose Gj : Y ≡
∏N0

i=1 Yi → Xj and there exists a map Sj : Y → Xj

with Sj(y) ⊆ Gj(y) for y ∈ Y , Sj(y) has convex values for each y ∈ Y and S−1
j (w)

is open (in Y ) for each w ∈ Xj. Now suppose either for all j ∈ {1, ..., N0} we have

yj /∈ Fj(x) for each (x, y) ∈ X × Y or for all i ∈ {1, ..., N} we have xi /∈ Gi(y)

for each (x, y) ∈ X × Y . Then either there exists a x ∈ X with Ti(x) = ∅ for all

i ∈ {1, ..., N0} or there exists a y ∈ Y with Sj(y) = ∅ for all j ∈ {1, ..., N}.

Proof. Suppose the conclusion is false. Then for each x ∈ X there exists a i ∈
{1, ..., N0} with Ti(x) ̸= ∅ and for each y ∈ Y there exists a j ∈ {1, ..., N} with

Sj(y) ̸= ∅. Now Theorem 2.5 guarantees a x ∈ X, a y ∈ Y , a j0 ∈ {1, ..., N0} and a

i0 ∈ {1, ..., N} with yj0 ∈ Fj0(x) and xi0 ∈ Gi0(y), a contradiction.
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Theorem 2.7. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex compact sets each in a

Hausdorff topological vector space. For each i ∈ {1, ..., N0} and for each j ∈ {1, ..., N}
suppose Hi : X ≡

∏N
i=1Xi → Yi and Ψj : Y ≡

∏N0

i=1 Yi → Xj and for each x ∈ X

assume there exists a map Ai,x : X → Yi and an open set Ui,x containing x with

Hi(z) ⊆ Ai,x(z) for every z ∈ Ui,x, Ai,x is convex valued, (Ai,x)
−1(z) is open (in X)

for each z ∈ Yi and for each y ∈ Y assume there exists a map Bj,y : Y → Xj and

an open set Oj,y containing y with Ψj(z) ⊆ Bj,y(z) for every z ∈ Oj,y, Bj,y is convex

valued, (Bj,y)
−1(z) is open (in Y ) for each z ∈ Xj and also assume either for all

i ∈ {1, ..., N0} we have vi /∈ Ai,x(u) for each (u, v) ∈ X × Y or for all j ∈ {1, ...., N}
we have uj /∈ Bj,y(v) for each (u, v) ∈ X × Y . Then either there exists a x ∈ X

with Hi(x) = ∅ for all i ∈ {1, ..., N0} or there exists a y ∈ Y with Ψj(y) = ∅ for all

j ∈ {1, ..., N}.

Proof. We will modify slightly the ideas in the discussion after Theorem 2.3. Fix

i ∈ {1, .., N0} (respectively, j ∈ {1, .., N}). Note {Ui,x}x∈X is an open covering

of X (respectively, {Oj,y}y∈Y is an open covering of Y ) so there exists a finite set

{xi,1, ..., xi,ni
} (with xi,j ∈ X for j ∈ {1, ..., ni}) and an open covering {Vi,xi,k

}ni
k=1 of

X with xi,k ∈ Vi,xi,k
and Ωi,xi,k

= Vi,xi,k
⊆ Ui,xi,k

(respectively, a finite set {yj,1, ..., yj,nj
}

and an open covering {Cj,yj,l}
nj

l=1 of Y with yj,l ∈ Cj,yj,l and Dj,yj,l = Cj,yj,l ⊆ Oj,yj,l)

and for fixed k ∈ {1, ...., ni},

Qi,xi,k
(z) =

{
Ai,xi,k

(z), z ∈ Ωi,xi,k

Yi, z ∈ X\Ωi,xi,k

and let Ti : X → Yi be

Ti(z) =

ni∩
k=1

Qi,xi,k
(z), z ∈ X

(respectively, for fixed l ∈ {1, ..., nj},

Rj,yj,l(z) =

{
Bj,yj,l(z), z ∈ Dj,yj,l

Xj, z ∈ Y \Dj,yj,l

and let Sj : Y → Xj be

Sj(w) =

nj∩
l=1

Rj,yj,l(w), w ∈ Y ).

The argument in the discussion after Theorem 2.3 guarantees that Hi(z) ⊆ Ti(z) for

every z ∈ X (respectively, Ψj(w) ⊆ Sj(w) for w ∈ Y ), Ti (respectively, Sj) is convex

valued and T−1
i (w) is open for each w ∈ Yi (respectively, S−1

j (z) is open for each

z ∈ Xj).

There are two cases to consider (see the statement of Theorem 2.7). Suppose first

that for each x ∈ X for all i ∈ {1, ..., N0} we have vi /∈ Ai,x(u) for each (u, v) ∈ X×Y .

Then for all i ∈ {1, ..., N0} we have vi /∈ Ti(u) for each (u, v) ∈ X × Y ; to see this fix
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i ∈ {1, ..., N0} and (u, v) ∈ X × Y and note there exists a xi,m (m ∈ {1, ..., ni}) with
u ∈ Ωi,xi,m

so

Ti(u) =

ni∩
k=1

Qi,xi,k
(u) ⊆ Qi,xi,m

(u) = Ai,xi,m
(u)

and as a result vi /∈ Ti(u) since vi /∈ Ai,xi,m
(u) and Ti(u) ⊆ Ai,xi,m

(u). Next consider

the case that for each y ∈ Y for all j ∈ {1, ...., N} we have uj /∈ Bj,y(v) for each

(u, v) ∈ X × Y . As in the first case (with Sj replacing Ti) we obtain for all j ∈
{1, ...., N} we have uj /∈ Sj(v) for each (u, v) ∈ X × Y .

Now apply Theorem 2.6 (with Fi = Ti and Gj = Sj) so either there exists a

x ∈ X with Ti(x) = ∅ for all i ∈ {1, ..., N0} or there exists a y ∈ Y with Sj(y) = ∅ for
all j ∈ {1, ..., N}, Now since Hi(z) ⊆ Ti(z), z ∈ X and Ψj(w) ⊆ Sj(w), w ∈ Y the

conclusion follows.

Remark 2.8. In Theorem 2.7 we could replace {Xi}Ni=1 is a family of compact sets

with the assumption that X ≡
∏N

i=1Xi in paracompact. The proof is as in Theorem

2.7 (see Theorem 2.6) once we describe the map Ti (i ∈ {1, ...., N0} fixed) as follows:
Note {Ui,x}x∈X is an open covering of X so there exists a locally finite open covering

{Vi,x}x∈X of X with x ∈ Vi,x and Ωi,x = Vi,x ⊆ Ui,x for each x ∈ X, and for each

x ∈ X let

Qi,x(z) =

{
Ai,x(z), z ∈ Ωi,x

Xi, z ∈ X\Ωi,x

(it is easy to see that Qi,x is convex valued and Hi(z) ⊆ Qi,x(z) for z ∈ X) and let

Ti : X → Yi be

Ti(z) =
∩
x∈X

Qi,x(z) for z ∈ X.

Note Hi(z) ⊆ Ti(z) for z ∈ X and Ti is convex valued. It remains to show T−1
i (y) is

open for each y ∈ Yi. Fix y ∈ Yi and let u ∈ T−1
i (y). Since {Vi,x}x∈X is locally finite

there exists an open neighborhood Nu of u such that {x ∈ X : Nu ∩ Vi,x ̸= ∅} =

{xi,1, ...., xi,mi
} (a finite set). Now if x /∈ {xi,1, ...., xi,mi

} then ∅ = Vi,x∩Nu = Ωi,x∩Nu

so Qi,x(z) = Yi for all z ∈ Nu, and as a result

Ti(z) =
∩
x∈X

Qi,x(z) =

mi∩
j=1

Qi,xi,j
(z) for all z ∈ Nu.

Now T−1
i (y) = {z ∈ X : y ∈ Ti(z)} but note

{z ∈ Nu : y ∈ Ti(z)} =

{
z ∈ Nu : y ∈

mi∩
j=1

Qi,xi,j
(z)

}
= Nu ∩

[
∩mi

j=1 (Qi,xi,j
)−1(y)

]
so

u ∈ Nu ∩
[
∩mi

j=1 (Qi,xi,j
)−1(y)

]
⊆ T−1

i (y)

so T−1
i (y) is open. To finish the proof in Theorem 2.7 there is as before two cases to

consider (see the statement of Theorem 2.7). Suppose first that for each x ∈ X for
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all i ∈ {1, ..., N0} we have vi /∈ Ai,x(u) for each (u, v) ∈ X × Y . Fix i ∈ {1, ..., N0}
and (u, v) ∈ X × Y and note there exists a x⋆ ∈ X with u ∈ Ωi,x⋆ so

Ti(z) =
∩
x∈X

Qi,x(z) ⊆ Qi,x⋆(u) = Ai,x⋆(u)

so vi /∈ Ti(u). Thus for all i ∈ {1, ..., N0} we have vi /∈ Ti(u) for each (u, v) ∈ X × Y .

Next consider the case that for each y ∈ Y for all j ∈ {1, ...., N} we have uj /∈ Bj,y(v)

for each (u, v) ∈ X × Y . Then as in the proof of Theorem 2.7 we have for all

j ∈ {1, ...., N} that uj /∈ Sj(v) for each (u, v) ∈ X × Y . Now apply Theorem 2.6.

Now we consider a collectively coincidence result between the Φ⋆ and Ad classes.

Theorem 2.9. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff

topological vector space Ei and in addition {Yi}N0
i=1 is also a family of compact sets.

For each i ∈ {1, ..., N0} suppose Fi : X ≡
∏N

i=1Xi → Yi and Fi ∈ Ad(X, Yi). For each

j ∈ {1, ....N} suppose Gj : Y ≡
∏N0

i=1 Yi → Xj and there exists a map Sj : Y → Xj

with Sj(y) ⊆ Gj(y) for y ∈ Y , Sj(y) has convex values for each y ∈ Y and S−1
j (w)

is open (in Y ) for each w ∈ Xj. Finally suppose for each y ∈ Y there exists a

j ∈ {1, ..., N} with Sj(y) ̸= ∅. Then there exists a x ∈ X, a y ∈ Y , a i0 ∈ {1, ..., N}
with yj ∈ Fj(x) for all j ∈ {1, ..., N0} and xi0 ∈ Gi0(y).

Proof. For each i ∈ {1, ..., N} let Ci, Di, Mi and Li be as in Theorem 2.5 and note

Mi ∈ Φ⋆(Y,Xi). Now since Y is compact for each i ∈ {1, ..., N} from [2, 5] there exists

a continuous (single valued) selection qi : Y → Xi of Mi with qi(y) ∈ Li(y) ⊆ Mi(y)

for y ∈ Y and there exists a finite subset Ri of Xi with qi(Y ) ⊆ co (Ri) ≡ Qi. Let

Q =
∏N

i=1 Qi (⊆ X) and note Q is compact. Let F ⋆
i denote the restriction of Fi to Q

and let F ⋆(x) =
∏N0

i=1 F ⋆
i (x) for x ∈ Q. Since Ad is closed under compositions and

also since a finite product of Ad maps is an Ad map [9] then F ⋆ ∈ Ad(Q, Y ). Let

q(y) =
∏N

i=1 qi(y) for y ∈ Y and note q : Y → Q since qi : Y → Qi for i ∈ {1, ..., N}.
Thus q F ⋆ ∈ Ad(Q,Q) and note Q is a compact convex subset in a finite dimensional

subspace of E =
∏N

i=1 Ei so Theorem 1.1 guarantees a x ∈ Q with x ∈ q (F ⋆(x)).

Now let y ∈ F ⋆(x) with x = q(y). Note y ∈ F (x) so yj ∈ Fj(x) for all j ∈ {1, ..., N0}.
Also since x ∈ Q we have xi = qi(y) ∈ Li(y) ⊆ Mi(y) for i ∈ {1, ..., N}. Now

since {Di}Ni=1 is a covering of Y then there exists a i0 ∈ {1, ..., N0} with y ∈ Di0 so

xi0 ∈Mi0(y) = Gi0(y).

Theorem 2.10. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff

topological vector space and in addition {Yi}N0
i=1 is also a family of compact sets. For

each i ∈ {1, ..., N0} suppose Fi : X ≡
∏N

i=1Xi → Yi and Fi ∈ Ad(X, Yi). For each

j ∈ {1, ....N} suppose Gj : Y ≡
∏N0

i=1 Yi → Xj and there exists a map Sj : Y → Xj

with Sj(y) ⊆ Gj(y) for y ∈ Y , Sj(y) has convex values for each y ∈ Y and S−1
j (w)

is open (in Y ) for each w ∈ Xj. Now suppose either for all i ∈ {1, ..., N} we have
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xi /∈ Gi(y) for each (x, y) ∈ X × Y or for each (x, y) ∈ X × Y there exists a

j ∈ {1, ..., N0} with yj /∈ Fj(x). Then there exists a y ∈ Y with Si(y) = ∅ for all

i ∈ {1, ..., N}.

Proof. Suupose the conclusion is false. Then for each y ∈ Y there exists a j ∈
{1, ..., N} with Sj(y) ̸= ∅. Now Theorem 2.9 guarantees a x ∈ X, a y ∈ Y , a i0 ∈
{1, ..., N} with yj ∈ Fj(x) for all j ∈ {1, ..., N0} and xi0 ∈ Gi0(y), a contradiction.

Theorem 2.11. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff

topological vector space and in addition {Yi}N0
i=1 is also a family of compact sets. For

each i ∈ {1, ..., N0} suppose Fi : X ≡
∏N

i=1Xi → Yi and Fi ∈ Ad(X, Yi). For each

j ∈ {1, ....N} suppose Ψj : Y ≡
∏N0

i=1 Yi → Xj and for each y ∈ Y assume there exists

a map Bj,y : Y → Xj and an open set Oj,y containing y with Ψj(z) ⊆ Bj,y(z) for

every z ∈ Oj,y, Bj,y is convex valued and (Bj,y)
−1(z) is open (in Y ) for each z ∈ Xj.

Also suppose either for each y ∈ Y for all j ∈ {1, ...., N} we have uj /∈ Bj,y(v) for

each (u, v) ∈ X × Y or for each (x, y) ∈ X × Y there exists a i ∈ {1, ..., N0} with

yi /∈ Fi(x). Then there exists a y ∈ Y with Ψj(y) = ∅ for all j ∈ {1, ...., N}.

Proof. Let j ∈ {1, ..., N} and create {yj,1, ...., yj,nj
}, Cj,yj,l ,Dj,yj,l , Rj,yj,l (l ∈ {1, ..., nj})

and Sj as in Theorem 2.7. We now claim that for all j ∈ {1, ...., N} we have uj /∈ Sj(v)

for each (u, v) ∈ X × Y if in the statement of Theorem 2.11 we have for each y ∈ Y

for all j ∈ {1, ...., N} we have uj /∈ Bj,y(v) for each (u, v) ∈ X × Y . Note for a fixed

j ∈ {1, ..., N} and (u, v) × X × Y note there exists a yj,m (m ∈ {1, ...., nj}) with

v ∈ Dj,yj,m so

Sj(v) =

nj∩
l=1

Rj,yj,l(v) ⊆ Rj,yj,m(v) = Bj,yj,m(v)

so uj /∈ Sj(v). Thus our claim is true. Now apply Theorem 2.10 (with Gj = Sj) so

there exists a y ∈ Y with Si(y) = ∅ for all i ∈ {1, ..., N}. The result follows since

Ψj(w) ⊆ Sj(w), w ∈ Y .
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