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1. Introduction

In this paper, we study the following initial value problem with weighted Duffing

equation with variable coefficients

(1.1){
−
∑i=N

i=1 D
α,ω,σ
0+

(
φpi
(
h. (a.u)′

))
(t) +Dβ,ω,σ

0+ (δ.u) (t) + p(t, u (t)) + q (t) f(t, u(t)) = 0, t > 0,

u(0) = 0,

where φpi (x) = |x|pi−2 .x, pi > 1, for i ∈ {1, .., N} , p (t, u) =
∑n=m

n=1 ηn (t)un, N,m ∈
N∗ with ηn : R+ → R+ is a function, Dµ,ω,σ

0+ is the σ−Hilfer fractional derivative of

order µ ∈ {α, β} and type 0 ≤ ω ≤ 1 with 0 < β < α < 1.

The study of solutions of the Duffing equations has been of great interest recently.

The Duffing equation named after George Duffing is a nonlinear second order differ-

ential equation
..
x+ δ

.
x+ αx+ βx3 = γ cos (ωt) where the (unknown) function x(t) is

the displacement at time t, the first derivative
.
x is the velocity, and the second time

..
x

derivative is acceleration. It used to model certain damped and driven oscillators with

a more complicated potential than in simple harmonic motion (which corresponds to

the case δ = β = 0).

The Duffing equations present in the frequency response the jump resonance

phenomenon that is a sort of frequency hysteresis behaviour, where δ controls the
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amount of damping, α controls the linear stiffness, β controls the amount of non-

linearity in the restoring force, γ is the amplitude of the periodic driving force and ω

is the angular frequency of the periodic driving force.

In most physical oscillation systems, the amplitude of excitation (force or moment)

usually varies over time, and some external and internal excitation impulses can occur.

For details, see [4, 5, 9, 10, 11, 12, 15], and references therein.

In [4], fractional Duffing’s equations were discussed by using homotopy analysis

method. In [15], asymptotic behavior of Solutions were studied by S. T. Wu. In

[13], Yao and Zhang give existence results for p-Laplacian neutral damped Duffing

equation.

Motivated by the cited papers, in the present article, we discuss the existence and

asymptotic stability of positive and exponentially growing solutions for the problem

(1.1).

Throughout the article, we assume that σ ∈ C1 (R+,R+) is increasing with

σ (0) = 0 and σ′ (t) 6= 0 for all t ≥ 0, p : R+ × R → R is a two variable polyno-

mial function and f : R+×R+ → R is a continuous function and there exists k ∈ N∗,
λ ≥ 0, ε > 0 and r > 0 such that for all x ∈ [0, r]

(1.2) 0 < f(t, ektx) ≤ λ.x+ ε, t ≥ 0

ηn : R+ → R+ is the measurable function for all n ∈ {1, 2...m}, a, h are absolutely

continuous on R+ with a (x) ≥ 1 ∀x ≥ 0, δ, q ∈ C (R+) do not vanish identically on

any subinterval of R+ and there exists k > 0 such that

(1.3)
1

h
∈ L1

loc

(
R+,R+

)
, lim
x→+∞

e−kx
∫ x

0

ds

h(s)
= 0, δ̂k ∈ Lα−βσ

(
R+,R+

)
and η̄n,k, q ∈ Lασ

(
R+,R+

)
where η̄n,k (s) = enksηn (s) and δ̂k (s) = eksδ (s) , and for µ > 0

Lµσ
(
R+,R+

)
=

{
u : R+ → R+, sup

x≥0

∫ x

0

σ′ (s) (σ (x)− σ (s))µ−1 u (s) ds <∞
}
.

The rest of the paper is organized as follows. In Section 2, some preliminary materials

to be used later are stated. In Section 3, we present and prove our main results

consisting of the existence of positive exponentially growing solution and asymptotic

stability results of the initial value problem (1.1). Finally, examples are given to

illustrate our results.

2. Preliminaries

For sake of completeness let us recall some basic facts needed in this paper. Let

E be a real Banach space equipped with its norm denoted ‖.‖. A nonempty closed

convex subset P of E is said to be a cone if P ∩ (−P ) = 0 and (tP ) ⊂ P for all t ≥ 0.
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It is well known that a cone P induces a partial order in the Banach space E. We

write for all x; y:∈ E; x ≤ y if y − x ∈ P.

The mapping L : E → E is said to be positive in P if L(P ) ⊂ P , and compact if

it is continuous and L (B) is relatively compact in E for all bounded subset B of E.

Definition 2.1. [14] Let a ∈ R+ and α > 0. Also, let σ (x) be an increasing and

positive function having a continuous derivative σ′ (x) on (a,+∞). Then the left-

sided fractional integral of a function u with respect to another function σ on R+ is

defined by

Iα,σa+ u(x) =
1

Γ (α)

∫ x

a

σ′ (t) (σ (x)− σ (t))α−1 u(t)dt.

In the case α = 0, this integral is interpreted as the identity operator I0,σ
a+ u = u.

Definition 2.2. [14] Let α ∈ (n− 1, n) with n ∈ N, and u, σ ∈ Cn (R+,R) two

functions such that σ is increasing and σ′ (t) 6= 0, for all t ∈ R+. The σ-Hilfer

fractional derivative Dα,ω,σ
a+ of u of order n− 1 < α < n and type 0 ≤ ω ≤ 1 is defined

by

Dα,ω,σ
a+ u (x) = I

ω(n−α),σ

a+

(
1

σ′(x)

∂

∂x

)n
I

(1−ω)(n−α),σ

a+ u (x) .

Let’s also recall the following important result :

Theorem 2.3. [14] If u ∈ Cn (R+) , n− 1 < β < α < n, 0 ≤ ω ≤ 1 and

ξ = α + ω (n− α) ,

then

Iα,σa+ .D
α,ω,σ
a+ u (x) = u(x)−

n∑
k=1

(σ(x)− σ(a))ξ−k

Γ (ξ − k + 1)

(
1

σ′(x)

∂

∂x

)n−k
I

(1−ω)(n−α),σ

a+ u
(
a+
)
.

Moreover, Iβ,σa+ I
α−β,σ
a+ (u) = Iα−β,σa+ Iβ,σa+ (u) = Iα,σa+ (u) and HDα,ω,σ

a+ Iα,σa+ (u) = u.

Remark 2.4. In this paper, we assume that σ (x) is increasing and positive with

σ (0) = 0, having a continuous derivative σ′ (x) on R+ and σ′ (x) 6= 0, for all x ∈ R+.

If α ∈ (0, 1) , then n = 1 and for x > 0

Iα,σ0+ .D
α,ω,σ
0+ u (x) = u(x)− (σ (x))ξ−1

Γ (ξ)

(
I

(1−ω)(1−α),σ

0+ u
) (

0+
)
.

Moreover, if u : R+ → R is continuous, then

lim
x→0+

(
I

(1−ω)(1−α),σ

0+ u
)

(x) = 0

and so Iα,σ0+ .
HDα,ω,σ

0+ u (x) = u(x).
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Definition 2.5. A positive solution u of problem (1.1) is said to be exponentially

growing solution, if there exists the constants c1, c2 > 0 and a positive and increasing

function v such that

u (x) ≥ c1 exp(v (x)) for all x ≥ c2.

In what follows, we use of the following Schauder Fixed-Point Theorem :

Theorem 2.6. [7] Let E be a Banach space, let C be a nonempty bounded convex

and closed subset of E, and let T : C → C be a compact and continuous map. Then

T has at least one fixed point in C.

We will use the following lemma concerning existence of fixed point for a compact

map T : P ∩ B̄ (0, r)→ P, where r > 0 and P is a cone in a Banach space F .

Lemma 2.7. [3] If ‖Tu‖ < ‖u‖ for all u ∈ P ∩∂B (0, r) , then T asmits a fixed point

u in P ∩ B̄ (0, r) .

Definition 2.8. [3] Solutions of ivp (1.1) are locally asymptotically stable in a cone

K of a Banach space E, if there exits a nonempty bounded convex and open subset

Ω of E such that, for any solutions u, v ∈ K ∩ Ω of ivp (1.1), we can write

(2.1) lim
x→+∞

(u(x)− v(x)) = 0

uniformly with respect to K∩Ω. Moreover, if (2.1) is verified for all solutions u, v ∈ K,

(1.1) is said to be asymptotically stable.

For k ∈ N∗ given in (1.3), let E be a real Banach space defined as

E =

{
u ∈ C(R+,R) : lim

|t|→∞
e−ktu(t) = 0

}
equipped with the norm ‖·‖, where for u ∈ E, ‖u‖ = supt∈R+

(
e−kt |u(t)|

)
, and

let

K =
{
u ∈ E : u (0) = 0 and u(t) ≥ 0 for all t ∈ R+

}
be the cone in E.

Lemma 2.9. [3] A non empty subset M of E is relatively compact if the following

conditions hold :

1. M is bounded in E,

2. The set
{
e−ktu, u ∈M

}
is locally equicontinuous on [0,+∞), and

3. The set
{
e−ktu, u ∈M

}
is equiconvergent, that is, for any given ε > 0, there

exists A > 0 such that

∣∣∣∣e−kxu(x)− lim
y→+∞

e−kyu(y)

∣∣∣∣ < ε, for any x > A, u ∈M.
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3. Main results

We consider the operator T : E → C1 (R+) defined by

Tu(x) =
1

a (x)

∫ x

0

1

h(t)
ψ
(
Iα−β,σ0+ (δ.u) + Iα,σ0+ (p(., u) + q.f(., u))

)
(t)dt

where ψ = φ−1 : R → R is the inverse function of sum of pi-Laplacian operators

φ =
∑i=N

i=1 φpi , with φpi (x) = |x|pi−2 .x and ψpi is the inverse function of φpi .

Remark 3.1. Let p− = min {p1, p2...pN} and p+ = max {p1, p2...pN}. For all x ≥ 0,

i ∈ {1, 2...N}

φpi (x) ≤ φ (x) ≤ N.φ+ (x)

where

φ+ (x) =

{
φp+ (x) if x ≥ 1

φp− (x) if x ≤ 1

and so, we conclude that

(3.1) ψ+
( x
N

)
≤ ψ (x) ≤ ψpi (x)

where

ψ+
( x
N

)
=

{
ψp+

(
x
N

)
if x ≥ 1

ψp−
(
x
N

)
if x ≤ 1.

For p ∈ {p1, p2...pN}, let

Λr (p) = sup
x≥0

ψp

(
Iα−β,σ0+

(
δ̂k

)
+ Iα,σ0+

(
n=m∑
n=1

η̄n,k.r
n−1 +

(
λ+

ε

r

)
.q

))
,

where r > 0 is the constant given in (1.2). Hypothesis (1.3) gives that that Λr <∞.

Lemma 3.2. u ∈ C1 (R+) is solution of ivp (1.1) if and only if u is fixed point of T

(i.e Tu = u).

Proof. Let u ∈ E be a fixed point of T , then u ∈ C1 (R+) , u(0) = 0 and

φ
(
h. (a.u)′

)
(t) = Iα−β,σ0+ (δ.u) + Iα,σ0+ (p(t, u) + q.f(., u)) (t)

then it follows from Theorem (2.3) that

(3.2) Dα,ω,σ
0+ φ

(
h. (a.u)′

)
(t) = Dα,ω,σ

0+ Iα−β,σ0+ (δ.u) (t) + p(t, u) + q.f(., u) (t)

The continuity of the function t 7→ δ (t) .u (t) gives that

lim
t→0+

(
I

(1−ω)(1−β),σ

0+ (δ.u)
)

(t) = 0
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and so

Dα,ω,σ
0+ Iα−β,σ0+ (δ.u) = Dα,ω,σ

0+ Iα−β,σ0+

(
Iβ,σ0+ D

β,ω,σ
0+ (δ.u) +

(σ(x))ξ−1

Γ (ξ)

(
I

(1−ω)(1−α),σ

0+ (δ.u)
) (

0+
))

= Dα,ω,σ
0+ Iα−β,σ0+

(
Iβ,σ0+ D

β,ω,σ
0+ (δ.u)

)
= Dα,ω,σ

0+ Iα,σ0+

(
Dβ,ω,σ

0+ (δ.u)
)

= Dβ,ω,σ
0+ (δ.u)

then equation (3.2) means that u is solution of ivp (1.1).

Conversely, assume that u ∈ C1 (R+) is solution of the ivp (1.1) then u (0) = 0 and

Dα,ω,σ
0+

(
φ
(
h. (a.u)′

))
(t) = Dβ,ω,σ

0+ (δ.u) (t) + p(t, u (t)) + q (t) f(t, u(t)) = 0, t > 0.

By using the Theorem (2.3) and with the fact that n = 1, I
(1−ω)(1−α),σ

0+

(
φ
(
h. (a.u)′

))
(0+) =

0 and I
(1−ω)(1−β),σ

0+ (δ.u) (0+) = 0 we obtain

Iα,σ0+ .D
α,ω,σ
0+

(
φ
(
h. (a.u)′

))
(t) = φ (h.u′) (t) = Iα,σ0+ D

β,ω,σ
0+ (δ.u) (t) + Iα,σ0+ (p(., u) + q.f(., u)) (t)

= Iα−β,σ0+ Iβ,σ0+ D
β,ω,σ
0+ (δ.u) (t) + Iα,σ0+ (p(., u) + q.f(., u)) (t)

= Iα−β,σ0+ (δ.u) (t) + Iα,σ0+ (p(., u) + q.f(., u)) (t)

leading to

(a.u)′ (t) =
1

h (t)
ψ
(
Iα−β,σ0+ (δ.u) (t) + Iα,σ0+ (p(., u) + q.f(., u))

)
(t) .

Therefore, the solution of ivp (1.1) is

u (x) =
1

a (x)

∫ x

0

1

h(t)
ψ
(
Iα−β,σ0+ (δ.u) + Iα,σ0+ (p(., u) + q.f(., u))

)
(t)dt,

which completes the proof. �

In what follows, the restriction mapping T\K ∩ B̄ (0, r) is also denoted by T .

Lemma 3.3. Assume that Hypothesis (1.2) and (1.3) hold true.

Then the operator T : K ∩ B̄ (0, r)→ K is compact, where r is the constant given in

(1.2).

Proof. We show that Au = a.Tu is compact in K ∩ B̄ (0, r) .

Let Mr = A (Ωr) , where Ωr = K ∩ B̄ (0, r) .

It’s clear that the continuity of the functions f and p and the hypothesis (1.3) make

the operator A : Ωr → E continuous.

Now, we show that Mr is relatively compact.

In first, we show that the set Mr = A (Ωr) is a subset of.E. Let u ∈ Ωr. For for x > 0

e−kxAu(x) = e−kx
∫ x

0

1

h(t)
ψ
(
Iα−β,σ0+ (δ.u) + Iα,σ0+ (p(., u) + q.f(., u))

)
(t)dt.
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Hypothesis (1.2) and inequality (3.1) of Remark (3.1) lead that for all i ∈ {1, 2...N}

e−kxAu(x) ≤ e−kx
∫ x

0

1

h(t)
ψpi

(
Iα−β,σ0+

(
δ̂k.ũk

)
+ Iα,σ0+

[(
n=m∑
n=1

η̄n,k (ũk)
n + λqũk + εq

)])
(t)dt

this is for all x ≥ 0, where ũk (s) = e−ksu(s) ∈ [0, r] . Then

‖Au‖ ≤ R = ψpi (r) Λr (pi) .sup
x≥0

{
e−kx

∫ x

0

dt

h(t)

}
proving the boundeness of Mr.

Let b1 ≤ t1 < t2 ≤ b2, b1, b2 ∈ R+ and set w(t) = e−kt. For all u ∈ Ωr we have

|w(t2)Au (t2)− w(t1)Au (t1)| ≤ w(t2) |Au (t2)− Au (t1)|

+Au (t1) |w(t2)− w(t1)|

≤ w(t2) |Au (t2)− Au (t1)|

+ekb2R |w(t2)− w(t1)|

with

w(t2) |Au (t2)− Au (t1)| = w(t2)

∫ t2

t1

1

h(t)
ψ
(
Iα−β,σ0+ (δ.u) + Iα,σ0+ (p(t, u) + q.f(., u))

)
(t)dt

≤
∫ t2

t1

1

h(t)
ψpi

(
Iα−β,σ0+

(
δ̂k,pi .ũk

)
+ Iα,σ0+

(
n=m∑
n=1

η̄n,k,pi . (ũk)
n + q̌k,pi (λũk + ε)

))
(t)dt

≤ ψpi (r) Λr (pi) .

∫ t2

t1

dt

h(t)
.

Because that w and x →
∫ x

0
dt
h(t)

are uniformly continuous on compact intervals,

the above estimates prove that
{
e−ktu, u ∈Mr

}
is locally equicontinuous on [0,+∞).

Now, let u ∈ Ωr, x ∈ R+. For y > x∣∣e−kxA(u) (x)− e−kyA(u) (y)
∣∣ ≤ e−ky |Au (x)− Au (y)|

+Au (x)
∣∣e−kx − e−ky∣∣

≤ ψpi (r) Λr (pi) .

∫ y

x

dt

h(t)

+ψpi (r) Λr (pi) .e
−kx
∫ x

0

dt

h(t)
.
∣∣1− e−k(y−x)

∣∣
then ∣∣∣∣e−ktA(u) (x)− lim

y→+∞
e−kyA(u) (y)

∣∣∣∣ ≤ ψpi (r) Λr (pi) .

∫ +∞

x

dt

h(t)

+ψpi (r) Λr (pi) .e
−kx
∫ x

0

dt

h(t)

with

lim
x→+∞

∫ +∞

x

dt

h(t)
= lim

x→+∞
e−kx

∫ x

0

dt

h(t)
= 0,
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so, the equiconvergence of
{
e−ktu, u ∈Mr

}
holds. By Lemma (2.9), we deduce that

Mr is relatively compact and so, T is compact.

Finally, we have from hypothesis (1.2) and (1.3) that for u ∈ Ωr the functions
1

a
, q.f(., u), η.p(u) and δ.u are positive, and so T

(
K ∩ B̄ (0, r)

)
⊂ K.

Proving our claim.

Remark 3.4. For u ∈ K and x > 0

Iα,σ0+ (u) (x) =
1

Γ (α)

∫ x

0

σ′ (t) (σ (x)− σ (t))α−1 (u) (t)dt

=
Γ (α− β)

Γ (α) .Γ (α− β)

∫ x

0

σ′ (t) (σ (x)− σ (t))α−β−1 (σ (x)− σ (t))β (u) (t)dt

≤ ν (x) .Iα−β,σ0+ (u) (x)

where

ν (x) =
Γ (α− β)

Γ (α)
(σ (x))β

and so

Tu(x) =

∫ x

0

1

h(t)
ψ
(
Iα−β,σ0+ (δ.u) + Iα,σ0+ (p(., u) + q.f(., u))

)
(t)dt

≤
∫ x

0

1

h(t)
ψ
(
Iα−β,σ0+ (δ.u) + ν (t) Iα−β,σ0+ (p(., u) + q.f(., u))

)
(t)dt.

�

Set H (x) = e−kx

h(x)ψ(Γ(α−β))
ψ
(∫ x

A
σ′ (t) (σ (x)− σ (t))α−β−1 δ (t) ektdt

)
and consider

the condition

(3.3)


there exists i ∈ {1, 2...N} such that

Λr (pi) ≤ r

pi − 2

pi − 1
(

sup
x≥0

{
e−kx

∫ x
0

dt
h(t)

})−1

,

where r > 0 is the constant given in (1.2).

Theorem 3.5. Assume that Hypothesis (1.2), (1.3) and (3.3) hold true.

Then ivp (1.1) admits at least one positive solution. Moreover, if the function a is

bounded, then the solutions of ivp (1.1) grow exponentially.

Proof. Let u ∈ K ∩ B̄ (0, r) , for x > 0

e−kxTu(x) =
e−kx

a (x)

∫ x

0

1

h(t)
ψ
(
Iα−β,σ0+ (δ.u) + Iα,σ0+ (p(., u) + q.f(., u))

)
(t)dt

≤ e−kx
∫ x

0

1

h(t)
ψ
(
Iα−β,σ0+ (δ.u) + Iα,σ0+ (p(., u) + q.f(., u))

)
(t)dt

≤ ψpi (r) Λr (pi) .sup
x≥0

{
e−kx

∫ x

0

dt

h(t)

}
≤ r
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then

‖Tu‖ ≤ ‖u‖ .

We have that the compact operator T maps the closed bounded convex set K∩B̄ (0, r)

into itself. So, Schauder’s fixed point theorem guarantees existence of a fixed point u

of T , which is a positive solution of ivp (1.1). Moreover, u is nontrivial since f(., 0)

does not vanish identically on any subinterval of R+.

Now, we have to prove that the solution u grows exponentially at ∞. As

lim
x→+∞

e−kxu(x) = 0,

there exists A, θ > 0, such that the function e−kxu(x) is nonincreasing on [A,+∞) and

such that for x > A, u(x) ≥ θ. Then

(a.u)′ (x) = (a.Tu)′ (x) =
1

h(x)
ψ
(
Iα−β,σ0+ (δ.u) + Iα,σ0+ (p(., u) + q.f(., u))

)
(x)

≥ 1

h(x)
ψ
(
Iα−β,σ0+ (δ.u)

)
(x)

≥ 1

h(x)ψ (Γ (α− β))
ψ

(∫ x

A

σ′ (t) (σ (x)− σ (t))α−β−1 δ (t)u(t)dt

)
≥ θ.H (x)u(x) ≥ θ.H (x)

a (x)
(a.u) (x)

where

H (x) =
e−kx

h(x)ψ (Γ (α− β))
ψ

(∫ x

A

σ′ (t) (σ (x)− σ (t))α−β−1 δ (t) ektdt

)
It follows that there exists c > 0 such that for all x ≥ A,

(a.u) (x) ≥ c exp

(∫ x

A

θ.H (t)

a (t)
dt

)
leading to

u (x) ≥ c0 exp

(∫ x

A

θ0.H (t) dt

)
,

where

c0 =
c

sup
x≥0
{a (x)}

and θ0 =
θ

sup
x≥0
{a (x)}

which means that u is an exponentially growing solution. �

We consider the following hypothesis

(3.4)
There exist g0 : R+ → R+, r > 0 and i ∈ {1, 2...N} such that for all x ∈ (0, r] and all t > 0

p(t, ektx) + q.f(t, ektx) ≤ g0 (t) .x and there exists i ∈ {1, 2...N} such that

(r)

2− pi
pi − 1 sup

x≥0

{
e−kx

∫ x
0

1
h(t)

ψpi

(
Iα−β,σ0+

(
δ̂k

)
+ ν (t) Iα−β,σ0+ (g0)

)
(t)dt

}
≤ 1.
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Theorem 3.6. If Hypothesis (1.2), (1.3) and (3.4) hold true, then ivp (1.1) admits

at least one positive solution.

Proof. For u ∈ K ∩ B̄ (0, r)

Tu(x) ≤
∫ x

0

1

h(t)
ψ
(
Iα−β,σ0+ (δ.u) + Iα,σ0+ (p(., u) + q.f(., u))

)
(t)dt

≤
∫ x

0

1

h(t)
ψ
(
Iα−β,σ0+ (δ.u) + ν (t) Iα−β,σ0+ (p(., u) + q.f(., u))

)
(t)dt

and then

e−kxTu(x) ≤ e−kx
∫ x

0

1

h(t)
ψ
(
Iα−β,σ0+ (δ.u) + ν (t) Iα−β,σ0+ (p(., u) + q.f(., u))

)
(t)dt

≤ e−kx
∫ x

0

1

h(t)
ψpi

(
Iα−β,σ0+

(
δ̂k.ũk

)
+ ν (t) Iα−β,σ0+ (g0.ũk)

)
(t)dt

≤ ψpi (r) e−kx
∫ x

0

1

h(t)
ψpi

(
Iα−β,σ0+

(
δ̂k

)
+ ν (t) Iα−β,σ0+ (g0)

)
(t)dt

≤ (r)

1

pi − 1 sup
x≥0

{
e−kx

∫ x

0

1

h(t)
ψpi

(
Iα−β,σ0+

(
δ̂k

)
+ ν (t) Iα−β,σ0+ (g0)

)
(t)dt

}
≤ r

So, Schauder’s fixed point theorem guarantees existence of a fixed point u of T , which

is a positive solution of ivp (1.1). �

Now, we consider the following hypothesis

(3.5)
There exist a function ρ : R+ → R+, such that for all t > 0, if x, y ∈ [0, r] then∣∣f(t, ektx)− f(t, ekty)

∣∣ ≤ ρ (t) . |x− y| and such that

lim
x→+∞

1

a (x)

∫ x
0

Ar (t)

h (t)

(
Iα−β,σ0+

(
δ̂k

)
+ Iα,σ0+ (

∑n=m
n=1 n.η̄n,k + q.ρ)

)
(t)ds = 0,

where r is the constant given in hypothesis (1.2),

Ar (t) =
1∑i=N

i=1 (pi − 1)
(
ψ
(
N

(i)
r (t)

))(pi−2)
,

with

N (i)
r (t) =

{
Iα−β,σ0+

(
δ̂k.r

)
(t) + Iα,σ0+ (

∑n=m
n=1 η̄n,k.r

n + (λ.r + ε) .q) (t) , if 1 < pi ≤ 2

Iα,σ0+ (q) .min
{
f (t, x) , (t, x) ∈ R+ ×

[
0, ektr

]}
if pi > 2

Theorem 3.7. Assume that Hypothesis (1.2), (1.3) and (3.5)hold true and one of

the conditions (3.3) or (3.4) is satisfied.

Then the positive solutions of problem (1.1) are locally asymptotically stable in K.
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Proof. We have from theorems 3.5 and 3.6 that T admits a fixed point in K∩B̄ (0, r),

which is a solution of ivp (1.1) in B̄ (0, r) .

Now, we show that the solutions are locally asymptotically stable in K. We

assume that u, v ∈ K ∩B (0, r) are solutions of ivp (1.1) such that u 6= v. For x > 0,

let

w (x) = u (x)− v (x) .

We have

w (x) = u(x)− v(x) = Tu(x)− Tv(x) =
1

a (x)

∫ x

0

1

h(t)
(ψ (Bu)− ψ (Bv)) (t) dt

where

Bu (t) = Iα−β,σ0+ (δ.u) + Iα,σ0+

(
n=m∑
n=1

ηn. (u)n + q.f (t, u)

)
.

Moreover, there exists a function χ ∈ [min (Bu,Bv) ,max (Bu,Bv)] such that

|ψ (Bu)− ψ (Bv)| (x) = A (χ (t))
(
Iα−β,σ0+ (δ. (u− v))

)
(t)

+A (χ (t))
(
Iα,σ0+ (p (., u)− p (., v))

)
(t)

+A (χ (t)) Iα,σ0+ (q. [f(., u)− f (., v)]) (t)

where

A (χ (t)) =
1∑i=N

i=1 (pi − 1) (ψ (χ (t)))(pi−2)
.

For w ∈ {u, v} and t ∈ [0, x]

Bw (t) = Iα−β,σ0+ (δ.w) + Iα,σ0+

(
n=m∑
n=1

ηn. (w)n + q.f (t, w)

)

≤ Iα−β,σ0+

(
δ̂k.w̃

)
+ Iα,σ0+

(
n=m∑
n=1

η̄n,k. (w̃)n + λq.w̃ + qε

)

≤ Iα−β,σ0+

(
δ̂k.r

)
+ Iα,σ0+

(
n=m∑
n=1

η̄n,k. (r)
n + q (λ.r + ε)

)

and

Bw (t) ≥ Iα,σ0+ (q.f (t, w))

≥ Iα,σ0+ (q) .min
{
f (t, x) , (t, x) ∈ R+ ×

[
0, ekt.r

]}
,
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where w̃ (s) = e−ksw (s) ∈ [0, r] .

Then inequality of hypothesis (3.5) gives for t > 0

|ψ (Bu)− ψ (Bv)| (t) ≤ A (χ (t))
(
Iα−β,σ0+ (δ. |u− v|) + Iα,σ0+ (|p (., u)− p (., u)|)

)
(t)

+A (χ (t)) Iα,σ0+ (q. |f (., u)− f (., v)|) (t)

≤ Ar (t)

(
Iα−β,σ0+

(
δ̂k. |ũ− ṽ|

)
+ Iα,σ0+

(
n=m∑
n=1

n.η̄n,k (r)n−1 |ũ− ṽ|

))
(t)

+Ar (t) Iα,σ0+ (q.ρ. |ũ− ṽ|) (t)

≤ rAr (t)

(
Iα−β,σ0+

(
δ̂k

)
+ Iα,σ0+

(
n=m∑
n=1

n.η̄n,k.r
n−1 + q.ρ

))
(t)

≤ max {1, rm} .Ar (t)

(
Iα−β,σ0+

(
δ̂k

)
+ Iα,σ0+

(
n=m∑
n=1

n.η̄n,k + q.ρ

))
(t)

where

Ar (t) =
1∑i=N

i=1 (pi − 1)
(
ψ
(
N

(i)
r (t)

))(pi−2)
.

Therefore, for x > 0 we have

|w (x)| ≤ max {1, rm}
a (x)

.

∫ x

0

1

h (t)
A1 (t)

(
Iα−β,σ0+

(
δ̂k

)
+ Iα,σ0+

(
n=m∑
n=1

n.η̄n,k + q.ρ

))
(x)

and from (3.5) we obtain limx→+∞w (x) = 0 and we conclude that limx→∞ |(u− v) (x)| =
0. �

Assume that Hypothesis (1.2), (1.3) hold true and one of the conditions (3.3) or

(3.4) is satisfied.

If

(3.6)
There exist a bounded function ρ0 : R+ → R+ such that for all t > 0, if x, y ∈ [0, r] then∣∣f(t, ektx)− f(t, ekty)

∣∣ ≤ ρ0 (t) . |x− y| and such that

lim
x→+∞

1

a (x)

∫ x
0

Ar (t)

h (t)
dt = 0,

then the positive solutions of problem (1.1) are locally asymptotically stable in K.

Proof. The boundness of ρ0 makes that (q.ρ0) ∈ Lασ (R+,R+) . As η̄n,k ∈ Lασ (R+,R+)

and δ̂k ∈ Lα−βσ (R+,R+) , we have

M = sup
t≥0

(
Iα−β,σ0+

(
δ̂k

)
(t) + Iα,σ0+

(
n=m∑
n=1

n.η̄n,k + q.ρ0

)
(t)

)
<∞.

Then

1

a (x)

∫ x

0

1

h (t)
Ar (t)

(
Iα−β,σ0+

(
δ̂k

)
+ Iα,σ0+

(
n=m∑
n=1

n.η̄n,k + q.ρ0

))
(t)dt ≤ θ (x)
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where

θ (x) = M.
1

a (x)

∫ x

0

1

h (t)
Ar (t) dt.

The condition (3.6) gives

lim
x→+∞

θ (x) = 0

which means that the condition (3.5) holds. We deduce from theorem (3.7) that the

positive solutions of problem (1.1) are locally asymptotically stable in K.

Remark 3.8. If we assume that the conditions (1.2), (1.3) and (3.5) hold for all r > 0

and one of the conditions (3.3) or (3.4) is satisfied then ivp (1.1) is asymptotically

stable in K.

Example 3.9. We consider the initial value problem

(3.7){
−D

1
2
,ω,σ

0+ (φp1 (et.u′) + φp2 (et.u′)) (t) +D
1
3
,ω,σ

0+ (δ.u) (t) + η (t) .u (t) + q (t) f(t, u(t)) = 0, t > 0,

u(0) = 0.

We have a (t) = 1, p (t, x) = η (t) .x (m = 1) , h (t) = et, α = 1
2

and β = 1
3
, with

σ (t) = 1− e−x, p1, p2 > 1,

δ (t) =
1

4
e−2tΓ (α− β + 1) , η (t) =

1

4
e−2tΓ (α + 1) , q = Γ (α + 1) ,

and the function f : R+ × R+ → R+ is defined as

f (t, x) =
e−2t

4
x+

1

4
.

The conditions (1.2) and (1.3) are satisfied for k = 2 and r = 1 because f (t, e2tx) =
1
4
x+ 1

4

(
λ = ε = 1

4

)
, and

Iα−β,σ0+

(
δ̂k

)
(x) =

1

4
Γ (α− β + 1) Iα−β,σ0+ (1) (x) =

1

4
(σ (x))α−β ≤ 1

4
<∞

Iα,σ0+ (η̄k) (x) =
1

4
Γ (α + 1) Iα,σ0+ (1) (x) =

1

4
(σ (x))α ≤ 1

4
<∞

Iα,σ0+ (q) (x) = Γ (α + 1) Iα,σ0+ (1) (x) = (σ (x))α ≤ 1 <∞

and
1

h (x)
= e−x ∈ L1

(
R+
)
⊂ L1

loc

(
R+
)
, and lim

x→+∞
e−2x

∫ x

0

dt

h (t)
= 0.

Moreover, we have

sup
x≥0

e−2x

∫ x

0

dt

h (t)
= sup

x≥0
e−2x

(
1− e−x

)
=

4

27
< 1

for p ∈ {p1, p2}

Λr=1 (p) = sup
x≥0

ψp

(
Iα−β,σ0+

(
δ̂k

)
+ Iα,σ0+

(
η̄k +

(
λ+

ε

r

)
.q
))

≤ ψp (1) = 1 ≤
(

sup
x≥0

{
e−2x

∫ x

0

dt

h (t)

})−1

.
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This means that the condition (3.3) holds. Then we deduce from theorem (3.5) that

ivp (3.7) admits at least one exponentially growing solution.

Example 3.10. We consider the following initial value problem (p(j))

(p(j)){
−D

1
2
,ω,t

0+

(
φp1
(
et. (aj.u)′

)
+ φp2 (et.u′)

)
(t) +D

1
3
,ω,t

0+ (δ.u) (t) + η (t) .u (t) + q (t) f(t, u(t)) = 0, t > 0,

u(0) = 0.

We have σ (t) = t, aj (t) = (t+ 1)j , j > 1, p (t, x) = η (t) .x (m = 1) , h (t) =

(x+ 1)−
1
4 , α = 1

2
and β = 1

3
, with p1 = 3

2
< 2 < p2 = 3,

δ (t) =
µ

4θ1 (1 + t)2 e
−2tΓ (α− β + 1) , η (t) =

µ

4θ2 (1 + t)2 e
−2tΓ (α + 1) , q = µ.

Γ (α + 1)

θ2 (1 + t)2 ,

where

θ1 = sup

{∫ x

0

(x− t)α−β−1

(1 + t)2 dt, x ≥ 0

}
, θ2 = sup

{∫ x

0

(x− t)α−1

(1 + t)2 dt, x ≥ 0

}
and

µ = φp

(
sup
x≥0

{
e−2x

∫ x

0

(x+ 1)
1
4 dt

})−1

2
.

The function f : R+ × R+ → R+ is defined as

f (t, x) =
e−2t

4
x+

1

4
.

As in the proof of the first example, we can easily show that (1.2), (1.3) and (3.3) are

satisfied for k = 2, p = p1 = 3
2

and r = 1. Now, we show that the condition (3.6) of

the corollary (3) holds.

For x, y ∈ [0, 1] ∣∣f (t, e2tx
)
− f

(
t, e2ty

)∣∣ = ρ0 (t) |x− y|

where

ρ0 (t) =
1

4
.

And

Ar=1 (t) =
1

(p1 − 1)
(
ψ
(
N

(1)
1 (t)

))(p1−2)

+ (p2 − 1)
(
ψ
(
N

(2)
1 (t)

))(p2−2)

=
1

1
2

(
ψ
(
N

(1)
1 (t)

))− 1
2

+ 2
(
ψ
(
N

(2)
1 (t)

))
≤ 1

2

(
ψ
(
N

(2)
1 (t)

))−1

,
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where

N
(1)
1 (t) = Iα−β,σ0+

(
δ̂k

)
(t) + Iα,σ0+ (η̄k + (λ+ ε) .q) (t)

=
1

4
(σ (t))α−β +

3

4
(σ (t))α

N
(2)
1 (t) = Iα,σ0+ (q) .min

{
f (t, x) , (t, x) ∈ R+ ×

[
0, ektr

]}
=

1

4
Iα,σ0+ (q) (t)

=
1

4
(σ (t))α =

tα

4

and for x > 16∫ x

0

Ar (t)

h (t)
dt ≤

∫ x

0

1

2h (t)ψ
(
N

(2)
1 (t)

)dt =

∫ 16

0

1

2h (t)ψ
(
N

(2)
1 (t)

)dt+

∫ x

16

1

2h (t)ψ
(
N

(2)
1 (t)

)dt
≤

∫ 16

0

1

2h (t)ψ
(
N

(2)
1 (t)

)dt+

∫ x

16

1

2h (t)

(
tα

8

) 1
2

dt

≤
∫ 16

0

(t+ 1)
1
4

2ψ
(
N

(2)
1 (t)

)dt+
√

2

∫ x

16

(t+ 1)
1
4

t
1
4

dt

Thus

lim
x→+∞

1

aj (x)

∫ x

0

Ar (t)

h (t)
dt = 0.

Consequently, for all j > 1, the ivp (p(j)) is locally asymptotically stable.
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