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1. INTRODUCTION

This paper is concerned with the existence of solutions of boundary value prob-

lems (BVP for short) for a fractional differential inclusion,

(1.1) c
HD

ry(t) ∈ F (t, y(t)), for a.e. t ∈ J = [1, T ], 0 < r ≤ 1,

(1.2) ay(1) + by(T ) = c,

where T > 1, c
HD

r is the Caputo–Hadamard fractional derivative of order 0 < r ≤ 1,

F : [1, T ] × R → P (R) is a multivalued map, P (R) is the family of all nonempty

subsets of R, a, b and c are real constants such that a+ b ̸= 0.

Differential equations of fractional order have recently proved to be valuable tool-

s in the modeling of many phenomena in various fields of science and engineering.

Indeed, we can find numerous applications in viscoelasticity, electrochemistry, con-

trol, porous media, electromagnetic, etc. (see [15, 24, 32, 33, 36]). However, the

literature on Hadamard-type fractional differential equations has not undergone as

much development; see [4]. Hadamard’s fractional derivative [22] of 1892 differs from

the aforementioned derivatives in the sense that the kernel of the integral in the

definition of the Hadamard derivative contains a logarithmic function of arbitrary ex-

ponent. Detailed descriptions of the Hadamard fractional derivative and integral can
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be found in [9, 10, 11]. Recently, Hadamard fractional calculus is getting attention

important to the theory of fractional calculus [28]. The works in [4, 9, 10, 11, 27, 30]

are major developments in the fundamental theory of Hadamard fractional calculus.

A Caputo-type modification of the Hadamard fractional derivative, which is called

the Caputo-Hadamard fractional derivative, was given in [25], and its fundamental

theorems were proved in [1, 20].

This paper is organized as follows. In Section 2 we introduce some preliminary

results needed in the following sections. In Section 3 we present an existence result for

the problem (1.1)-(1.2), when the right hand side is convex valued using the nonlinear

alternative of Leray-Schauder type. In Section 4,we give a result for nonconvex valued

right hand side where is based on a fixed point theorem due to Covitz and Nadler

[13]. An example is presented in the last section.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts that are

used in the remainder of this paper.

Let [a, b] be a compact interval, C([a, b],R) be the Banach space of all continuous

functions from [a, b] into R with the norm

∥y∥∞ = sup{|y(t)| : a ≤ t ≤ b}

and we denote by L1([a, b],R) the Banach space of functions y : [a, b] → R that are

Lebesgue integrable with norm

∥y∥L1 =b
a |y(t)|dt.

AC([a, b], R) is the space of functions y : [a, b] → R, which are absolutely continuous.

Let (X, ∥ · ∥) be a Banach space. Let Pcl(X) = {Y ∈ P (X) : Y is closed}, Pb(X) =

{Y ∈ P (X) : Y is bounded}, Pcp(X) = {Y ∈ P (X) : Y is compact} and Pcp,c(X) =

{Y ∈ P (X) : Y is compact and convex}. A multivalued map G : X → P (X) is

convex (closed) valued if G(X) is convex (closed) for all x ∈ X. G is bounded on

bounded sets if G(B) = ∪
x∈B

G(x) is bounded inX for all B ∈ Pb(X) (i.e. sup
x∈B

{sup{|y| :

y ∈ G(x)}} <∞).

G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0)

is a nonempty closed subset of X, and if for each open set N of X containing G(x0),

there exists an open neighborhood N0 of x0 such that G(N0) ⊆ N . G is said to be

completely continuous if G(B) is relatively compact for every B ∈ Pb(X).

If the multivalued map G is completely continuous with nonempty compact val-

ues, then G is u.s.c. if and only if G has a closed graph (i.e. xn → x∗, yn → y∗, yn ∈
G(xn) imply y∗ ∈ G(x∗)). G has a fixed point if there is x ∈ X such that x ∈ G(x).
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The fixed point set of the multivalued operator G will be denote by FixG. A multi-

valued map G : J → Pcl(R) is said to be measurable if for every y ∈ R, the function

t→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.

Let A be a subset of [0, T ] × R. A is l ⊗ β measurable if A belongs to the

σ−algebra generated by all sets of the form J ×D where J is Lebesgue measurable

in [0, T ] and D is Borel measurable in R. A subset A of L1([0, T ],R) is decomposable

if for all u, v ∈ A and J ⊂ [0, T ] measurable,uχJ + vχ[a,b]−J ∈ A, where χ stands for

the characteristic function.

Definition 2.1. A function F : [a, b]× R → P (R) is said to be Caratheódory if

(1) t→ F (t, u) is measurable for each u ∈ R;
(2) u→ F (t, u) is upper semicontinuous for almost all t ∈ [a, b].

For each y ∈ C([a, b],R), define the set of selections of F by

SF,y = {v ∈ L1([a, b],R) : v(t) ∈ F (t, y(t)) a.e. t ∈ [a, b]}.

Let (X, d) be a metric space induced from the normed space (X, | · |). Consider

Hd : P (X)× P (X) → R+ ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pb,cl(X), Hd) is a metric space

and (Pcl(X), Hd) is a generalized metric space (see [29]).

Definition 2.2. A multivalued operator N : X → Pcl(X) is called

(1) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

(2) a contraction if and only if it is γ-Lipschitz with γ < 1.

The following lemma will be used in the sequel.

Lemma 2.3. (Covitz-Nadler [13]) Let (X, d) be a complete metric space. If N : X →
Pcl(X) is a contraction, then FixN ̸= ∅.

Theorem 2.4. (Arzela-Ascoli theorem)[?] Let A be a subset of C(J ;E);A is relatively

compact in C(J ;E) if and only if the following conditions are met:

(a) The set A is bounded ie :

∃k > 0 : ∥f(x)∥ ≤ k, ∀x ∈ J and ∀f ∈ A.

(b) Set A is equicontinuous ie :

∀ϵ > 0,∃δ > 0 : |t1 − t2| < δ ⇒ ∥f(t1)− f(t2)∥ ≤ ϵ for all t1, t2 ∈ J and all f ∈
A.
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(c) For all x ∈ J : set {f(x), f ∈ A} ⊂ E is relatively compact.

Theorem 2.5. (Mazur) Let {xn} be a weakly convergent sequence to x in a Banach

space E. Then, there is a sequence of convex combination of elements of {xn} which

converges strongly to x.

Definition 2.6. ([28]) The Hadamard fractional integral of order α > 0 for a function

h : [a, b] → R, where a, b ≥ 0, is defined by

Iαa h(t) = 1Γ(α)ta (log ts)
α−1 h(s)sds,

provided the integral exists.

Definition 2.7. ([25]). Let ACn
δ [a, b] = {g : [a, b] → C, δn−1g ∈ AC[a, b]} where

δ = tddt, 0 < a < b < ∞ and let α ∈ C, such that Re(α) ≥ 0. For a function

g ∈ ACn
δ [a, b] the Caputo-Hadamard derivative of fractional order α is defined as

follows

(i): If α /∈ N, and n− 1 < α < n such that n = [Re(α)] + 1, then

(CHDα
a g)(t) = 1Γ(n− α) (tddt)na

t (log ts)n−α−1 δng(s)
ds

s
,

(ii): If α = n ∈ N, then (CHDα
a g)(t) = δng(t),

where in both cases, [Re(α)] denotes the integer part of the real number Re(α) and

log(·) = loge(·).

Lemma 2.8. ([25]) Let y ∈ ACn
δ [a, b] or C

n
δ [a, b] and α ∈ C. Then

(2.1) Iαa (
CHDα

a y)(t) = y(t)−
n−1∑
k=0

δky(a)

k!

(
log

t

a

)k

.

Let us now recall the nonlinear alternative of Leray-Schauder.

Theorem 2.9. [21] Let X be a Banach space and C a nonempty convex subset of

X. Let U a nonempty open subset of C with 0 ∈ U and T : U → C continuous and

compact operator.

Then either

(a) T has fixed points. Or

(b) There exist u ∈ ∂U and λ ∈ [0, 1] with x = λT (x).

3. MAIN RESULTS

3.1. The convex case. Let us start by defining what we mean by a solution of the

problem (1.1)-(1.2).

Definition 3.1. A function y ∈ AC1
δ (J,R) is said to be a solution of (1.1)-(1.2), if

there exists a function v ∈ C(J,R) with v(t) ∈ F (t, y(t)), for a.e.t ∈ J such that
c
HD

ry(t) = v(t), and the function y satisfies condition (1.2).
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To prove the existence of a solution to (1.1)-(1.2), we need the following auxiliary

lemma

Lemma 3.2. Let h : [1,+∞) → R be a continuous function. A function y is a

solution of the fractional integral equation

(3.1) y(t) = 1Γ(r)t1 (log ts)
r−1 h(s)dss− bΓ(r)(a+ b)T1 (log Ts)r−1 h(s)dss+ c(a+ b)

if and only if y is a solution of the fractional boundary value problem,

(3.2) c
HD

ry(t) = h(t), 0 < r ≤ 1,

(3.3) ay(1) + by(T ) = c,

Proof: Assume y satisfies (3.2). Then Lemma (2.8) implies that

y(t) =H Irh(t) + y(1).

The boundary condition (3.3)implies that

ay(1) + by(T ) =c
H Irh(t) + (a+ b)y(1) = c.

y(1) = ca+ b− bHI
rh(t)a+ b.

Finally, we obtain the solution (3.1)

y(t) =H Irh(t)− ba+ bHI
rh(t) + ca+ b.

Conversely it is clear that if y satisfies equation (3.1), then equations (3.2)-(3.3) hold.

�

Theorem 3.3. Assume the following hypotheses hold:

(H1) F : J × R −→ Pcp,c(R) is a Carathéodory multi-valued map;

(H2) There exist p ∈ C(J,R+) and ψ : [0,∞) → (0,∞) continuous and nondecreasing

such that

∥F (t, u)∥P ≤ p(t)ψ(|u|) for t ∈ J and each u ∈ R;

(H3) There exists l ∈ L1(J,R), with Irl <∞ such that

Hd(F (t, u), F (t, u)) ≤ l(t)|u− u| for every u, u ∈ R,

and

d(0, F (t, 0)) ≤ l(t), a.e. t ∈ J.

(H4) There exists a number M > 0 such that

(3.4) M [1 + |b||a+ b|]ψ(M)HI
rp(T ) + |c||a+ b| > 1.

Then the BVP (1.1)–(1.2) has at least one solution on J.
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Proof Transform the problem (1.1)–(1.2) into a fixed point problem. Consider

the multivalued operator

N(y(t)) =

{
h ∈ C(J,R) :

h(t) = 1Γ(r)t1 (log ts)
r−1 v(s)dss

− 1a+ b
[
bΓ(r)T1 (log Ts)r−1 v(s)dss− c

]
, v ∈ SF,y.

}
Remark 3.4. Clearly, from Lemma (3.2), the fixed points of N are solutions to

(1.1)–(1.2).

We shall show that N satisfies the assumptions of the nonlinear alternative of

Leray-Schauder type . The proof will be given in several steps.

Step 1: N(y) is convex for each y ∈ C(J,R).

Indeed, if h1, h2 belong to N(y), then there exist v1, v2 ∈ SF,y such that for each

t ∈ J we have

hi(t) = 1Γ(r)t1 (log ts)
r−1 vi(s)dss

− 1a+ b
[
bΓ(r)T1 (log Ts)r−1 vi(s)dss− c

]
, i = 1, 2.

Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(dh1 + (1− d)h2)(t) = 1Γ(r)t1(log
t
s
)r−1[dv1(s) + (1− d)v2(s)]

ds
s

− 1a+ b
[
bΓ(r)T1 (log

T
s
)r−1[dv1(s) + (1− d)v2(s)]

ds
s
− c

]
.

Since SF,y is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ N(y).

Step 2: N maps bounded sets into bounded sets in C(J,R).

Let Bη∗ = {y ∈ C(J,R) : ∥y∥∞ ≤ η∗} be bounded set in C(J,R) and y ∈ Bη∗ .

Then for each h ∈ N(y), there exists v ∈ SF,y such that

h(t) = 1Γ(r)t1 (log ts)
r−1 v(s)dss

− 1a+ b
[
bΓ(r)T1 (log Ts)r−1 v(s)dss− c

]
.

By (H2) we have for each t ∈ J ,

|h(t)| ≤ 1Γ(r)t1 (log ts)
r−1 |v(s)|dss

+ |b|Γ(r)|a+ b|T1 (log Ts)r−1 |v(s)|dss+ |c||a+ b|

≤ 1Γ(r)t1 (log ts)
r−1 |p(s)ψ(|y(s)|)dss

+ |b|Γ(r)|a+ b|T1 (log ts)r−1 p(s)ψ(|y(s)|)dss+ |c||a+ b|

≤ ψ(η∗)HI
r(p)(T ) + |b|ψ(η∗)HIr(p)(T )|a+ b|+ |c||a+ b|.

Thus
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∥h∥∞ ≤ (1 + |b||a+ b|η∗)ψ(η∗)HIrp(T ) + |c||a+ b| := l

Step 3: N maps bounded sets into equicontinuous sets of C(J,R).

Let t1, t2 ∈ J, t1 < t2, Bη∗ be a bounded set of C(J,R+) as in Step 2, let y ∈ Bη∗

and h ∈ N(y), then

|h(t2)− h(t1)| =
∣∣∣1Γ(r)t11 [

(log t1s)
r−1 − (log ts)r−1] v(s)dss

+1Γ(r)t2t1 (log ts)
r−1 |v(s)dss

∣∣∣
≤ ∥p∥∞ψ(η∗)Γ(r)t11

[
(log t1s)

r−1 − (log t2s)
r−1 |

]
dss

+|p∥∞ψ(η∗)Γ(r)t2t1 (log t2s)
r−1 dss

≤ ∥p∥∞ψ(η∗)Γ(r + 1)[(log(t2)− log(t1))
r + log(t1)

r − log(t2)
r] + ∥p∥∞ψ(η∗)Γ(r + 1)(log t2 − log t1)

r

≤ ∥p∥∞ψ(η∗)Γ(r + 1)(log(t2)− log(t1))
r + ∥p∥∞ψ(η∗)Γ(r + 1)(log(t1)

r − log(t2)
r).

As t1 −→ t2, the right-hand side of the above inequality tends to zero. As a conse-

quence of Steps 1 to 3 together with the Arzela-Ascoli theorem, we can conclude that

N : C(J,R+) −→ P (C(J,R)) is completely continuous.

Step 4: N has a closed graph.

Let yn → y∗, hn ∈ N(yn) and hn → h∗. We need to show that h∗ ∈ N(y∗).

hn ∈ N(yn) means that there exists vn ∈ SF,yn such that, for each t ∈ J ,

hn(t) = 1Γ(r)t1 (log ts)
r−1 vn(s)dss

− 1a+ b
[
bΓ(r)T1 (log ts)r−1 vn(s)

ds
s
− c

]
.

We must show that there exists v∗ ∈ SF,y∗ such that, for each t ∈ J ,

h∗(t) = 1Γ(r)t1 (log ts)
r−1 v∗(s)dss

− 1a+ b
[
bΓ(r)T1 (log ts)r−1 v∗(s)dss− c

]
.

Since F (t, ·) is upper semicontinuous, then for every ε > 0, there exist n0(ϵ) ≥ 0 such

that for every n ≥ n0, we have

vn(t) ∈ F (t, yn(t)) ⊂ F (t, y∗(t)) + εB(0, 1), a.e. t ∈ J.

Since F (·, ·) has compact values, then there exists a subsequence vnm(·) such that

vnm(·) → v∗(·) as m→ ∞

and

v∗(t) ∈ F (t, y∗(t)), a.e. t ∈ J.

For every w ∈ F (t, y∗(t)), we have

|vnm(t)− v∗(t)| ≤ |vnm(t)− w|+ |w − v∗(t)|.
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Then

|vnm(t)− v∗(t)| ≤ d(vnm(t), F (t, y∗(t)).

By an analogous relation, obtained by interchanging the roles of vnm and v∗, it follows

that

|vnm(t)− v∗(t)| ≤ Hd(F (t, yn(t)), F (t, y∗(t))) ≤ l(t)∥yn − y∗∥∞.

Then

|hn(t)− h∗(t)| ≤ 1Γ(r)t1 (log ts)
r−1 |vnm(s)− v∗(s)|dss

+ |b||a+ b|1Γ(r)T1 (log Ts)r−1 |vnm(s)− v∗(s)|dss

≤ 1Γ(r)t1 (log ts)
r−1 l(s)

ds

s
∥ynm − y∗∥∞

+ |b||a+ b|1Γ(r)T1 (log Ts)r−1 l(s)dss∥ynm − y∗∥∞.

Hence

∥hnm − h∗∥∞ ≤ 1Γ(r)t1 (log ts)
r−1 l(s)dss∥ynm − y∗∥∞

+ |b||a+ b|1Γ(r)T1 (log Ts)r−1 l(s)dss∥ynm − y∗∥∞ → 0 as m→ ∞.

Step 5: A priori bounds on solutions.

Let y be a possible solution of the problem (1.1)–(1.2). Then, there exists v ∈ SF,y

such that, for each t ∈ J ,

|y(t)| ≤ 1Γ(r)t1 (log ts)
r−1 |v(s)|dss

+ |b|Γ(r)|a+ b|T1 (log Ts)r−1 |v(s)|dss+ |c||a+ b|

≤ 1Γ(r)t1 (log ts)
r−1 p(s)ψ(|y(s)|)dss

+ |b|Γ(r)|a+ b|T1 (log Ts)r−1 p(s)ψ(|y(s)|)dss+ |c||a+ b|

≤ ψ(∥y∥∞)Γ(r)t1 (log ts)
r−1 p(s)dss

+ |b|ψ(∥y∥∞)Γ(r)|a+ b|T1 (log Ts)r−1 p(s)dss+ |c||a+ b|

≤ ψ(∥y∥∞)(HI
rp)(T ) + |b|ψ(∥y∥∞)(HI

rp)(T )|a+ b|+ |c||a+ b|.

Thus

y(t) = 1Γ(r)t1 (log ts)
r−1 v(s)dss

− 1a+ b
[
bΓ(r)T1 (log Ts)r−1 v(s)dss− c

]
.

This implies by (H2) that, for each t ∈ J , we have

∥y∥∞[1 + |b||a+ b|]ψ(∥y∥∞)HI
rp(T ) + |c||a+ b| < 1.

Then by condition (3.8), there exists M such that ∥y∥∞ ̸=M.
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Let

U = {y ∈ C(J,R) : ∥y∥∞ < M}.

The operator N : U → P (C(J,R)) is upper semicontinuous and completely contin-

uous. From the choice of U , there is no y ∈ ∂U such that y ∈ λN(y) for some

λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray-Schauder type, we

deduce that N has a fixed point y in U which is a solution of the problem (1.1)–(1.2).

This completes the proof.

3.2. The Nonconvex case. We present now a result for the problem (1.1)-(1.2)

with a nonconvex valued right hand side. Our considerations are based on the fixed

point theorem for contraction multivalued maps given by Covitz and Nadler [13].

Theorem 3.5. Assume (H3) and the following hypothesis holds:

(H5) F : J × R −→ Pcp(R) has the property that F (·, u) : J → Pcp(R) is measurable

for each u ∈ R;

If

(3.5) ∥HIrl∥∞ (1 + |b||a+ b|) < 1

then the BVP (1.1)-(1.2) has at least one solution on J .

Remark 3.6. For each y ∈ C(J,R), the set SF,y is nonempty since by (H5), F has a

measurable selection (see [12], Theorem III.6).

Proof. We shall show that N satisfies the assumptions of Lemma 2.3. The proof

will be given in two steps.

Step 1: N(y) ∈ Pcl(C(J,R)) for each y ∈ C(J,R).

Indeed,let (yn)n≥0 ∈ N(y) such that yn −→ ỹ in C(J,R). Then, ỹ ∈ C(J,R) and
there exists vn ∈ SF,y such that, for each t ∈ J,

yn(t) = 1Γ(r)t1 (log ts)
r−1 vn(s)dss

− 1a+ b
[
bΓ(r)T1 (log Ts)r−1 vn(s)dss− c

]
.

Using the fact that F has compact values and from (H3), we may pass to a subse-

quence if necessary to get that vn converges weakly to v in L1
w(J,R). ( the space

endowed with the weak topology) An application of Mazur’s theorem implies that vn

converges strongly to v and hence v ∈ SF,y. Then, for each t ∈ J,

yn(t) −→ ỹ(t) = 1Γ(r)t1 (log ts)
r−1 v(s)dss

− 1a+ b
[
bΓ(r)T1 (log Ts)r−1 v(s)dss− c

]
.

So, ỹ ∈ N(y).
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Step 2: There exists γ < 1 such that

Hd(N(y), N(y)) ≤ γ∥y − y∥∞ for each y, y ∈ C(J,R).

Let y, y ∈ C(J,R) and h1 ∈ N(y). Then, there exists v1(t) ∈ F (t, y(t)) such that

for each t ∈ J

h1(t) = 1Γ(r)t1 (log ts)
r−1 v1(s)dss

− 1a+ b
[
bΓ(r)T1 (log Ts)r−1 v1(s)dss− c

]
.

From (H3) it follows that

Hd(F (t, y(t)), F (t, y(t))) ≤ l(t)|y(t)− y(t)|.

Hence, there exists w ∈ F (t, y(t)) such that

|v1(t)− w| ≤ l(t)|y(t)− y(t)|, t ∈ J.

Consider U : J → P (R) given by

U(t) = {w ∈ R : |v1(t)− w| ≤ l(t)|y(t)− y(t)|}.

Since the multivalued operator V (t) = U(t)∩F (t, y(t)) is measurable (see Proposition

III.4 in [12]), there exists a function v2(t) which is a measurable selection for V . So,

v2(t) ∈ F (t, y(t)), and for each t ∈ J,

|v1(t)− v2(t)| ≤ l(t)|y(t)− y(t)|.

Let us define for each t ∈ J

h2(t) = 1Γ(r)t1 (log ts)
r−1 v2(s)dss

− 1a+ b
[
bΓ(r)T1 (log Ts)r−1 v2(s)dss− c

]
.

Then for t ∈ J

|h1(t)− h2(t)| ≤ 1Γ(r)t1 (log ts)
r−1 |v1(s)− v2(s)|dss

+ |b|Γ(r)|a+ b|T1 (log Ts)r−1 |v1(s)− v2(s)|dss

≤ 1Γ(r)t1 (log ts)
r−1 |l(s)||y(s)− y(s)|dss

+ |b|Γ(r)|a+ b|T1 (log Ts)r−1 |l(s)||y(s)− y(s)|ds
s
.

Thus

∥h1 − h2∥∞ ≤ [∥HIrl∥∞ (1 + |b||a+ b|)] ∥y − y∥∞.
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By an analogous relation, obtained by interchanging the roles of y and y, it follows

that

Hd(N(y), N(y)) ≤ [∥HIrl∥∞ (1 + |b||a+ b|)] ∥y − y∥∞.

So by (3.5), N is a contraction and thus, by Lemma 2.3, N has a fixed point y which

is solution to (1.1)–(1.2). The proof is complete.

3.3. An Example. As an application of the main results, we consider the fractional

differential inclusion

(3.6) H
CD

ry(t) ∈ F (t, yt), for a.e. t ∈ J = [1, e], 1 < r ≤ 2,

(3.7) y(1) + y(e) = 0

F : [1, e]× R → P (R) is a multivalued map satisfying

F (t, y) = {v ∈ R : f1(t, y) ≤ v ≤ f2(t, y)}

Where f1, f2 : [1, e] × R 7→ R. We assume that for each t ∈ [1, e], f1(t, ·) is lower

semi-continuous (i.e., the set {y ∈ R : f1(t, y) > µ1} is open for each µ1 ∈ R), and
assume that for each t ∈ [1, e], f2(t, ·) is upper semi-continuous (i.e., the set the set

{y ∈ R : f2(t, y) < µ2} is open for each µ2 ∈ R). Assume that there is a function

p ∈ C(J,R+) and ψ : [0,∞) → (0,∞) continuous and nondecreasing such that

∥F (t, y)∥P = sup{|v| : v(t) ∈ F (t, y)}
= max(|f1(t, y)|, |f2(t, y)|) ≤ p(t)ψ(|y|), for each t ∈ [1, e], y ∈ R.

Where

a = b = 1, c = 0, T = e

and there exists a number M > 0 such that

(3.8) M [32]ψ(M)HI
rp(e) > 1.

Since all the conditions of Theorem 3.3 are satisfied, problem (3.6)-(3.7) has at

least one solution y on [1, e].
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