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ABSTRACT. In this article, we consider a new uniqueness results for a periodic boundary value

problem of fuzzy fractional differential equations (FFDES) involving Caputo generalized Hukuhara

differentiability with the Krasnoselskii-Krein condition. To this purpose, the equivalent integral forms

of FFDEs are determined and then these are used to study the convergence of the Picard successive

approximations.
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1. INTRODUCTION

Fractional differential equation is an important mathematical tool to simulate dy-

namic system, which can objectively explain and reveal natural phenomena and laws

[1]-[4]. Inaccuracies of different types of variables, parameters and data are often en-

countered when dealing with practical problems. For example, randomness and uncer-

tainty. The theory of stochastic differential equations has been developed for stochastic

problems. Therefore, it is necessary to consider the uncertainty factor when dealing

with the problem of dynamic system. The random differential equation on real number

space is extended to fuzzy number space, that is, fuzzy random differential equation.

L. A. Zadeh [5] proposed the fuzzy set theory, which provided an important theoretical

basis for dealing with uncertain problems. Since then, fuzzy mathematics has made

great progress in both theory and application. In theory, there are important branches

of fuzzy analysis, fuzzy topology, fuzzy algebra, etc., and their applications cover artifi-

cial intelligence, system control, cluster analysis, pattern recognition, image processing,

decision analysis and optimization, etc.
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Fuzzy differential equations are an effective tool to simulate dynamical systems

with uncertainty. By using the Hukuhara derivative (H-derivative) of the fuzzy valued

function defined by M. Puri and D. Ralescu [7], O. Kaleva [6] introduced the fuzzy

differential equation, and established the existence and uniqueness theory of the solution

of the initial value problem. Subsequently, many scholars at home and abroad have

conducted in-depth studies on the existence and uniqueness of solutions for differential

and integral equations of different types under this framework [8]-[11] . In 1990, J. P.

Aubin [12] proposed fuzzy differential inclusion based on the differential inclusion theory

of set-valued functions. Recently, the literature [13] used the method of differential

inclusion to discuss the periodicity and boundedness of the solutions for first-order linear

fuzzy differential equations. Although this method has certain advantages, it lacks the

concept of derivative or differentiation of fuzzy value functions under the environment of

differential inclusion. Therefore, this research method cannot promote the development

of fuzzy value function calculus theory. In order to overcome these shortcomings, B. Bede

and S. G. Gal [14] proposed the concept of strong generalized derivative (gH-derivative)

with the help of H-difference and unilaterally defined derivatives, and studied the initial

value problem of fuzzy differential equations.

In 2013, B. Bede and L. Stefanini [15] introduced the generalized H-derivative with

the help of the generalized H-difference (gH- difference) [16] of fuzzy numbers. At the

same time, they prove that gH-differentiable is equivalent to gH-differentiable when the

switching point is limited.When dealing with practical problems, the switching points

of the functions encountered are usually limited. Therefore, it is still necessary to study

fuzzy differential equations under gH-differentiable condition. In recent years, many

scholars have devoted themselves to the study of the existence and uniqueness of solu-

tions of fuzzy differential equations under gH- derivatives [17]-[22]. E. J. Villamizar-Roa

et al. [23] proved the existence and uniqueness of solutions of fuzzy initial value prob-

lems under gH- differentiability by means of fixed-point theorems for weakly contractive

mappings on posets. R. Alikhani and F.Bahrami [24] proved the existence and unique-

ness of global solutions for first order nonlinear fuzzy Integro-differential equations in

the case of gH- differentiability by using the method of upper and lower solutions. From

the above statement, it can be seen that the current researches on the theory of fuzzy

differential equations mainly focus on the existence and uniqueness of the solutions for

equations under gH-derivative or gH-derivative.

As a further work, we consider in this paper the uniqueness of the solution for a

class of fuzzy fractional differential equations as follows

(1)

{
C
gHD

α
∗ y(x) = f(x, y(x)), x ∈ (0, T ],

y(0) = λy(T ),
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where f : [0, T ]×RF → RF , is continuous fuzzy-valued function, λ ∈ (0, 1)∪(1,+∞), and

d(f(x, y(x)), 0) ≤ M on E0, E0 = {(x, y(x)) : x ∈ [0, T ], d(y(x), y(0)) ≤ b}, MT ≤
b, where d Hausdorff distance.

The purpose of this paper is to introduce the generalized Hukuhara differentiability

of fuzzy Caputo fractional differential equation and discuss the krasnoselskii-Krein type

unique results of FFDES (1).

2. THE OPERATOR THEORETIC FORMULATION

In this section, we briefly introduce some definitions, notations and results related

to fuzzy functions, which will be referred to throughout this paper.

The basic definition of fuzzy numbers is given in [21].

We denote the set of all real numbers by R and the set of all fuzzy numbers on R

is indicated by RF . A fuzzy number is a mapping u : R → [0, 1] with the following

properties:

(a) u is upper semi-continuous;

(b) u is fuzzy convex, i.e., u(λx+ (1− λ)y) ≥ min{u(x), u(y)} for all x, y ∈ R, λ ∈
[0, 1];

(c) u is normal, i.e., ∃x0 ∈ R for which u(x0) = 1;

(d)supp u = {x ∈ R|u(x) > 0} is the support of the u, and its closure cl(suppu) is

compact.

A fuzzy number function defined on the real set R and valued in RF is called a fuzzy-

valued function, that is, f : R → RF . For r ∈ (0, 1] denote [u]r = {x ∈ R|u(x) ≥ r}
and [u]0 = cl{x ∈ R|u(x) > 0}. Then it is well-known that the r-level set of u,

[u]r = [u−(r), u+(r)], is a closed interval for all r ∈ [0, 1]. For u, v ∈ RF , and k ∈ R, the

addition and scalar multiplication are defined by

[u+ v]r = [u]r + [v]r, [k · u]r = k · [u]r, ∀r ∈ [0, 1].

Let u, v ∈ RF . If there exists w ∈ RF such that u = v + w, then w is called the

H-difference of u and v, and it is denoted by u	 v. In this paper, the sign ”	 ” always

stands for H-difference, and also note that u	v 6= u+(−1)v. The generalized Hukuhara

difference of two fuzzy number u, v ∈ RF (gH-difference for short) is defined as follows:

u	gH v = w ⇔

{
(i) u = v + w, or

(ii) v = u+ (−1)w.

The Hausdorff distance between fuzzy numbers given by RF ×RF → [0,+∞),

d(u, v) = sup
r∈[0,1]

max{|u−(r)− v−(r)|, |u+(r)− v+(r)|}.
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Then it is easy to see that d is a metric in RF and the following properties of the metric

d are valid(see [25]):

(1) d(u+ w, v + w) = d(u, v), ∀u, v, w ∈ RF ;

(2) d(ku, kv) = |k|d(u, v), k ∈ R, u, v ∈ RF ;

(3) d(u+ v, w + z) ≤ d(u,w) + d(v, z), ∀u, v, w, z ∈ RF ;

(4) (d,RF) is a complete metric space.

Let r-level representation of fuzzy-valued function f : [a, b] → RF expressed by

f(x; r) = [f−(x; r), f+(x; r)], x ∈ [a, b], r ∈ [0, 1]. Say that the fuzzy-valued function

f is integrable on [a, b], if the function f is continuous in the metric d, and its definite

integral exists, we have∫ b

a

f(x; r)dx =
[ ∫ b

a

f−(x; r)dx,

∫ b

a

f+(x; r)dx
]
.

Definition 2.1. ([26],[27]) The generalized Hukuhara derivative of a fuzzy-valued

function f : (a, b)→ RF at x0 is defined as

f
′

gH(x0) = lim
h→0

f(x0 + h)	gH f(x0)

h
.

If f
′
gH(x0) ∈ RF , we say that f is generalized Hukuhara differential (gH-differentiable

for short) at x0. Also, we say that f is (i)-gH differentiable at x0, if f
′
gH(x0; r) =

[f
′−(x0; r), f

′+(x0; r)], r ∈ [0, 1], and f is (ii)-gH differentiable at x0, if f
′
gH(x0; r) =

[f
′+(x0; r), f

′−(x0; r)], r ∈ [0, 1].

Definition 2.2. ([28]) Let f : [a, b] → RF , the fuzzy Riemann-Liouville integral of

fuzzy-valued function f is defined as follows:

(=αaf)(x) =
1

Γ(α)

∫ x

a

f(t)

(x− t)1−αdt, α ∈ (0, 1].

Definition 2.3. ([29]) Consider f : [a, b] → RF , fractional derivative of f(t) in the

Caputo sense is defined as

(CDα
∗ f)(x) =

1

Γ(m− α)

∫ x

a

(x− t)m−α−1fm(t)dt, m− 1 < α < m, m ∈ N.

Let us denote CRF [a, b] as the space of all continuous fuzzy-valued functions on [a, b],

and we denote the space of all Lebesgue integrable fuzzy-valued functions on interval

[a, b] ⊂ R by LRF [a, b].

Definition 2.4. Let f
(m)
gH ∈ CRF [a, b] ∩ LRF [a, b]. The fuzzy Caputo gH-fractional dif-

ferentiability of fuzzy-valued function f is defined as following

(2) (CgHD
α
∗ f)(x) = =m−αa (f

(m)
gH )(x) =

1

Γ(m− α)

∫ x

a

(x− t)m−α−1(f
(m)
gH )(t)dt,

where m− 1 < α < m, m ∈ N, x > a.
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In this paper, we only consider Caputo gH-fractional differentiability of order 0 <

α ≤ 1 for fuzzy-valued function f , so equation (2) can be written as the following form

(CgHD
α
∗ f)(x) = =1−α

a (f
′

gH)(x) =
1

Γ(1− α)

∫ x

a

(x− t)−α(f
′

gH)(t)dt.

Definition 2.5. Let f : [a, b]→ RF be Caputo gH-differentiable at x0 ∈ (a, b). We say

that f is C [(i)− gH] differentiable at x0, if

(CgHD
α
∗ f)(x0; r) = [(CDα

∗ f
−)(x0; r), (CDα

∗ f
+)(x0; r)], r ∈ [0, 1],

and f is C [(ii)− gH] differentiable at x0, if

(CgHD
α
∗ f)(x0; r) = [(CDα

∗ f
+)(x0; r), (CDα

∗ f
−)(x0; r)], r ∈ [0, 1].

where (CDα
∗ f
−)(x0; r) = 1

Γ(1−α)

∫ x
a
f−
′
(t;r)

(x−t)α dt, (CDα
∗ f

+)(x0; r) = 1
Γ(1−α)

∫ x
a
f+
′
(t;r)

(x−t)α dt.

Theorem 2.6. Let λ ∈ (0, 1) and α ∈ (0, 1], if y is C [(i)− gH] differentiable, then (1)

is equivalent to the following integral equation

(3) y(x)

=
λ

(1− λ)Γ(α)

∫ T

0

(T − s)α−1f(s, y(s))ds+
1

Γ(α)

∫ x

0

(x− s)α−1f(s, y(s))ds, x ∈ [0, T ].

Proof. Let y(0) = y0 ∈ RF . According to [30], if y is C [(i)−gH] differentiable, equation

(1) has a differentiable solution

(4) y(x) = y0 +
1

Γ(α)

∫ x

0

(x− s)α−1f(s, y(s))ds, x ∈ [0, T ].

Since the boundary value condition y(x) = y0 is satisfied, then (4) must satisfy

y0 = λ(y0 +
1

Γ(α)

∫ T

0

(T − s)α−1f(s, y(s))ds),

we have,

(5) y0 =
λ

(1− λ)Γ(α)

∫ T

0

(T − s)α−1f(s, y(s))ds.

By (4) and (5), we obtain equation (3).

Theorem 2.7. Let λ ∈ (1,+∞) and α ∈ (0, 1], if y is C [(ii)− gH] differentiable, then

(1) is equivalent to the following integral equation

(6) y(x)

=
λ

(1− λ)Γ(α)

∫ T

0

(T − s)α−1f(s, y(s))ds	 −1

Γ(α)

∫ x

0

(x− s)α−1f(s, y(s))ds, x ∈ [0, T ].

Proof. The proof is similar to Theorem 2.6, so it is omitted.
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3. MAIN RESULTS

Theorem 3.1. Suppose for any z1, z2, the fuzzy-valued function f in problem (1) satisfies

the following Krasnoselskii-Krein type conditions

(H1) d(f(x, z1), f(x, z2)) ≤ KηΓ(α)d(z1,z2)
Tα

, for x 6= 0, Kη ≤ α(1− λ), K > 1;

(H2) d(f(x, z1), f(x, z2)) ≤ β[d(z1, z2)]γ, 0 < γ < 1, K(1− γ) < 1, and β > 0 is a

constant.

Then, the following successive approximations given by

(7) yn+1(x)

=
λ

(1− λ)Γ(α)

∫ T

0

(T − s)α−1f(s, yn(s))ds+
1

Γ(α)

∫ x

0

(x− s)α−1f(s, yn(s))ds,

for case C [(i)− gH] differentiability, and

(8) ỹn+1(x)

=
λ

(1− λ)Γ(α)

∫ T

0

(T − s)α−1f(s, ỹn(s))ds	 −1

Γ(α)

∫ x

0

(x− s)α−1f(s, ỹn(s))ds,

for case C [(ii) − gH] differentiability, converge uniformly to two unique solutions y(x)

and ỹ(x) of problem (1) on [0, T̃ ] respectively, where T̃ = min{T, ( b(Γ(1+α))
M

)
1
α}. M being

the bound of f on E0, i.e., d(f, 0) ≤M.

Proof. We prove for case C [(i) − gH] differentiability. The successive approximations

{yn(x)}, n = 0, 1, · · · . given by (7) is well defined and continuous on [0, T̃ ] where T̃ =

min{T, ( b(Γ(1+α))
M

)
1
α}. Now, for n = 1, 2, . . . , by induction, we have

d(yn(x), 0̃) ≤ λ

(1− λ)Γ(α)

∫ T

0

(T − s)α−1f(s, yn−1(s))ds

+
1

Γ(α)

∫ x

0

(x− s)α−1f(s, yn−1(s))ds

≤ 1

1− λ
· MTα

Γ(α + 1)
≤ b

1− λ
.

Note that (7) is equivalent to

(9) C
gHD

α
∗ yn+1(x) = f(x, yn(x)), yn(0) = λyn(T ).

So we need to prove that

(10) lim
n→∞

d(CgHD
α
∗ yn+1(x), f(x, yn(x))) = 0.

In view from condition(H2), we have K(1 − γ) < 1, 0 < γ < 1, i.e. K < 1 + γΣ∞i=0γ
i,

and there exists an integer N > 1 such that K < 1 + γΣN−1
i=0 γ

i. According to (9) and

our assumption d(f(x, y(x))) ≤M on E0, we get

(11) d(CgHD
α
∗ y1(x), f(x, y1(x))) = d(f(x, y0(x)), f(x, y1(x))) ≤ 2M,
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so, for n = 1, 2, · · · ,

d(CgHD
α
∗ yn(x), f(x, yn(x))) = d(f(x, yn(x)), f(x, yn−1(x))) ≤ 2M.

From (7), (9) and (H2), we have

d(CgHD
α
∗ yi+1(x), f(x, yi+1(x))) = d(f(x, yi(x)), f(x, yi+1(x))) ≤ β[d(yi(x), yi+1(x))]γ

≤ β[
λ

(1− λ)Γ(α)

∫ T

0

(T − s)α−1d(CgHD
α
∗ yi(s), f(s, yi(s)))ds

+
1

Γ(α)

∫ x

0

(x− s)α−1d(CgHD
α
∗ yi(s), f(s, yi(s)))ds]

γ.

By induction, we find that

(12) d(CgHD
α
∗ yn+1(x), f(x, yn+1(x))) ≤ R(T )ρ,

where ρ = αq, q = ΣN−1
i=0 γ

i, N > 1 such that K < 1 + q and

(13) R = (β1+γ+γ2+...+γN−1

)(2M)γ
N

(
1

(1− λ)Γ(α + 1)
)γ+γ2+...+γN .

Well, in view of (H1), for j = 0, 1, . . ., x ∈ (0, T ], we obtain

d(CgHD
α
∗ yN+j+1(x), f(x, yN+j+1(x)))

≤ KηΓ(α)

Tα
d(yN+j+1(x), yN+j(x))

≤ KηΓ(α)

Tα
λ

(1− λ)Γ(α)

∫ T

0

(T − s)α−1d(CgHD
α
∗ yN+j+1(s), f(s, yN+j(s)))ds

+
1

Γ(α)

∫ x

0

(x− s)α−1d(CgHD
α
∗ yN+j+1(s), f(s, yN+j(s)))ds.

From (12), we get for j = 0, 1, . . . and x ∈ [0, T ],

(14) d(CgHD
α
∗ yN+j+1(x), f(x, yN+j+1(x))) ≤ (

Kη

α(1− λ)
)jRT ρ ≤ RµjT ρ.

Due to Kη
α(1−λ)

< 1, which is µ < 1, then the claim (10) is proved, where the constants

R, ρ,N are determined by (13), CgHD
α
∗ yn(x) is continuous on [0, T ].

Next, we prove that the sequence yn(x) converge uniformly on [0, T ], by (14), it is

easy to find that there is a continuous function ϕN+j+1(x) on [0,T], for any j = 0, 1, . . . ,

such that

(15) C
gHD

α
∗ yN+j+1(x) = f(x, yN+j+1(x)) + ϕN+j+1(x),

where d(ϕN+j+1(x), 0) ≤ RµjT ρ. From (7),

(16) yN+j+1(x) =
λ

(1− λ)Γ(α)

∫ T

0

(T − s)α−1[f(s, yN+j+1(s)) + ϕN+j+1(s)]ds

+
1

Γ(α)

∫ x

0

(x− s)α−1[f(s, yN+j+1(s)) + ϕN+j+1(s)]ds.
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Setting 4 = d(CgHD
α
∗ yN+j+1(x), C

gHD
α
∗ yN+i+1(x)), then

(17) d(yN+j+1(x), yN+j+1(x))

≤ λ

(1− λ)Γ(α)

∫ T

0

(T − s)α−1d(f(s, yN+j(s)), f(s, yN+i(s))) + d(ϕN+j+1(s), ϕN+i+1(s))ds

+
1

Γ(α)

∫ x

0

(x− s)α−1d(f(s, yN+j(s)), f(s, yN+i(s))) + d(ϕN+j+1(s), ϕN+i+1(s))ds.

By (15), (16) and (H2), we conclude that

4 ≤ β[d(yN+j+1(x), yN+j+1(x))]γ +R(µi + µj)T ρ.

By (17), αγ < αq and (µi + µj) ≤ 2, we get

4 ≤ β(
2M + 2RT ρ

Γ(α + 1)(1− λ)
)γ · Tαq + 2RT ρ.

Furthermore, due to ρ = αq, we have

(18) 4 ≤ β[(
2M + 2RT ρ

Γ(α + 1)(1− λ)
)γ + 2R] · Tαq ≡ R1.

Utilizing formula (18), we get a new estimate as follows

4 ≤ β[(
R1 + 2RT ρ

Γ(α + 1)(1− λ)
)γ + 2R] · T ρ ≡ R2T

ρ,

where R2 = β[( R1+2RT ρ

Γ(α+1)(1−λ)
)γ + 2R]. Repeat the above process N − 1 times, for i, j =

0, 1, . . . ,

(19) 4 ≤ RN−1T
ρ.

Now by using the condition (H1), we have

4 ≤ d(f(x, yN+j+1(x)), f(x, yN+i+1(x))) +R(µi + µj)T ρ

≤ KηΓ(α)

Tα(1− λ)
d(yN+j+1(x), yN+i+1(x)) +R(µi + µj)T ρ,

which means that

4 ≤ [
Kη

α(1− λ)
(RN−1 + 2RT ρ) +R(µi + µj)]T ρ.

Let R∗ = RN−1 + 2RT ρ, that is 4 ≤ [µR∗ +R(µi + µj)]T ρ. Then We have concluded

4 ≤ [µm−1R∗ +R(µi + µj)(µm−1 + µm−2 + . . .+ 1)]Tα

≤ [µm−1R∗ + (µi + µj)
R

1− µ
]Tα.

Therefore, by µ < 1, we get 4→ 0 as i, j,m→∞. Thus the sequences f(x, yn(x))

satisfies the Cauchy criterion, that is the sequences f(x, yn(x)) is uniformly convergent

on x ∈ [0, T ], and the sequence yn is also uniformly convergent on [0, T ].

Let y(x) be the limit function of yn(x), it is easy to see that y(x) is the solution of

problem (1) in the sense of C [(i)− gH] differentiability. If it’s not true, we will consider
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y1(x) and y2(x) are the solution of problem (1) if y1, y2 is C [(i)− gH] differentiable. Let

φ(x) = d(y1(x), y2(x)), by (3) and (H1), we obtain

φ(x) ≤ λ

(1− λ)Γ(α)

∫ T

0

(T − s)α−1d(f(s, y1(s)), f(s, y2(s)))ds

+
1

Γ(α)

∫ x

0

(x− s)α−1d(f(s, y1(s)), f(s, y2(s)))ds

≤ λkη

(1− λ)Γ(α)

∫ T

0

(T − s)α−1φ(s)

Tα
ds+ kη

∫ x

0

(x− s)α−1φ(s)

Tα
ds.

Next, we need to prove uniqueness. Let ψ(x) = φ(x)
Tα

, we only prove that ψ(x) ≡ 0,

that is φ(x) ≡ 0. In fact, let 0 < h = max[0,T̃ ] ψ(x) = ψ(x1), then we have

h = ψ(x1) ≤ λkηh

(1− λ)Tα

∫ T

0

(T − s)α−1ds+
kηh

Tα

∫ x1

0

(x1 − s)α−1ds

≤ kηh

(1− λ)α
≤ h,

which is a contradiction due to kη ≤ α(1 − λ). Therefore, we show that uniqueness of

solution of FFDES (1) in the sense of C [(i)− gH] differentiability.

For case C [(ii)− gH] differentiability is completely similar to previous one, hence is

omitted. The proof is complete.
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