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ABSTRACT.We establish the existence of viable solutions of quantum stochastic differential equa-

tions (QSDE) within the framework of Hudson and Parthasarathy formulation of quantum stochastic

calculus. The main results are established for QSDE whose coefficients are Lipschitzian and quasi-

compact. This work extends the Nagumo viability results for classical differential equations on finite

dimensional Euclidean spaces. Viable solutions of QSDE in the present formulation take values in

some closed subsets of the infinite dimensional locally convex spaces of non-commutative stochastic

processes.
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1. INTRODUCTION

This work initiates the study of viable solutions of quantum stochastic differen-

tial equations within the framework of Hudson-Parthasarathy formulation of quantum

stochastic calculus [15] and using the notations of previous works in [5, 6, 7, 8, 9, 11,

13, 14]. Viability theory concerning solutions of differential equations is important

since it addresses the question of dynamic adaptation of real life systems to environ-

ments defined by constraints. It is well known that when modelling physical systems

that are susceptible to quantum noise, quantum stochastic differential equations (QS-

DEs) often arise.

In analogy to the classical context, quantum systems and other physical sys-

tems are sometimes subject to some constraints. The temporal evolution of such

systems maybe modelled by means of a noncommutative stochastic calculus [Hudson-

Parthasarathy] [15] that generalises the classical Ito stochastic calculus. To be able

to take account of the temporal evolutions of the observables of the quantum systems

subject to some constraints, a viability theory needs to be developed in parallel to
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the classical theory. In this paper, we exploit the notion of a viable solution of QSDE

taking values in some closed subset of the space of quantum stochastic processes.

In the classical settings , existence of viable solutions of differential equations

defined on Euclidean spaces have been well studied see [1, 2, 3, 17, 18, 19, 20]. How-

ever, the viability problem for quantum stochastic differential equation have not been

well studied. The existence of solutions of quantum stochastic differential equations

and inclusions in which the coefficients are Lipschitzian have been established in

[4, 5, 9, 11, 13]. In these previous works, the solutions were established in the global

space of the quantum processes without any constraint. Our present efforts are partly

aimed at provoking extensive study of the viability theory with respect to diverse

topologies on the space of quantum stochastic processes as itemized in [12].

In the present paper, viable solutions of quantum stochastic differential equations

are established subject to the coefficients being Lipschitzian and quasi compact. This

is done by restricting the solutions to some closed subset of the global locally convex

space.

We employ the properties of some cones that are tangent to the set of matrix

elements of a closed subset of the space of stochastic processes. This enables us to

establish the existence of solutions of the QSDE whose matrix elements are viable

with respect to the given closed set.

The organization of the paper is as follows. Section 2 highlights some of the

fundamental notions and notations which are used throughout the discussion. Sec-

tion 3 introduces the quantum stochastic differential equations under consideration.

Section 4 describes the notion of viable solutions with respect to the weak topology

on the space of the observables generated by a family of seminorms while section 5 is

devoted to the main results of this paper.

2. PRELIMINARIES

Let D be an inner product space and H, the completion of D. We denote by

L+(D,H), the set {X : D → H : X is a linear map satisfying Dom X∗ ⊇ D, where

X∗ is the operator adjoint of X}.
We remark that L+(D,H) is a linear space under the usual notions of addition and

scalar multiplication of operators.

In what follows, ID is some inner product space with R as its completion, and γ

is some fixed Hilbert space.
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For each t ∈ R+, we write L2
γ(R+),(resp. L2

γ([0, t)) resp. L2
γ([t,∞))), for the

Hilbert spaces of square integrable, γ-valued maps on R+ ≡ [0,∞), (resp. [0, t); resp.

[t,∞)). Then we introduce the following spaces:

(i) A ≡ L+(ID⊗ IE, R⊗ Γ(L2
γ(R+)).

(ii) At ≡ L+(ID⊗ IEt,R⊗ Γ(L2
γ([0, t)))⊗ 1t .

(iii) At ≡ 1t ⊗ L+(ID⊗ IEt,R⊗ Γ(L2
γ([t,∞))), t > 0

where ⊗ denotes algebraic tensor product and 1t (resp. 1t) denotes the identity

map on R⊗ Γ(L2
γ([0, t)))(resp.Γ(L2

γ([t,∞))), t > 0. We note that At and At, t > 0,

may be naturally identified with subspaces of A. For η, ξ ∈ ID⊗ IE, define ‖ · ‖ηξ on

A by ‖x‖ηξ = |〈η, xξ〉|, x ∈ A. Then {‖ · ‖ηξ, η, ξ ∈ ID⊗ IE} is a family of seminorms

on A; we write τw for the locally convex Hausdorff topology on A determined by this

family. We denote by Ã, Ãt and Ãt the completions of the locally convex topological

spaces (A, τw), (At, τw) and (At, τw), t > 0, respectively.

We remark that the net {Ãt; t ∈ R+} is a filtration of Ã. Denoting by Clos(Ã), the

family of closed subsets of the topological space Ã we adopt the Hausdorff topology

on clos(Ã) as described in [4, 5, 6, 7, 8, 9, 11, 13, 14].

Definition 2.1: Let I ⊆ R+,

(i) A map X : I → Ã is called a stochastic process indexed by I.

(ii) A stochastic process X is called adapted if X(t) ∈ Ãt for each t ∈ I.

We denote by Ad(Ã) the set of all adapted stochastic processes indexed by I.

(iii) A member X of Ad(Ã) is called

(a) weakly absolutely continuous if the map t→ 〈η,X(t)ξ〉, t ∈ I, is absolutely

continuous for arbitrary η, ξ ∈ ID⊗ IE. We denote this subset of Ad(Ã) by

Ad(Ã)wac.

(b) locally absolutely p-integrable if ‖X(·)‖pηξ is Lebesgue measurable and inte-

grable on [t0, t) ⊆ I for each t ∈ I, p ∈ (0,∞) and arbitrary η, ξ ∈ ID⊗ IE.

We denote this subset of Ad(Ã) by Lploc(Ã).

In what follow, we adopt stochastic integration in the frameworks of [11, 15].
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3. QUANTUM STOCHASTIC DIFFERENTIAL EQUATIONS

Definition 3.1: Let E,F,G,H ∈ L2
loc(I × Ã) and (t0, X0) be a fixed point of

I × Ã. Then a relation of the form

dX(t) = E(t,X(t))dΛπ(t) + F (t,X(t))dAf (t) +G(t,X(t))dA+
g (t) +H(t,X(t))dt

X(t0) = X0

}
(3.1)

almost all t ∈ I is called a quantum stochastic differential equation (QSDE) with

coefficients E,F,G,H and initial data (t0, X0) if X(t0) = X0.

equation (3.1) is understood in integral form as:

X(t) = X0 +
∫ t
t0

(E(s,X(s)dΛπ(s) + F (s,X(s)dAf (s)

+G(s,X(s))dA+
g (s) +H(s,X(s))ds), t ∈ I,

}
(3.2)

with coefficients E,F,G,H and initial data (t0, X0).

An equivalent form of (3.1) has been established in Theorem 6.2 in [11], and is given by

d

dt
〈η,X(t)ξ〉 = P (t,X(t))(η, ξ)

〈η,X(t0)ξ〉 = 〈η, x0ξ〉

 (3.3)

for arbitrary η, ξ ∈ ID⊗ IE and almost all t ∈ I.

Hence the existence of solution of (3.1) implies the existence of solution of (3.2) and

vice-versa.

As explained in Ekhaguere [11], the sesquilinear form valued map P:

P (t, x)(η, ξ) 6= P̃ (t, 〈η, xξ〉)

For some complex-valued multifunction P̃ defined on I × C for t ∈ I, x ∈ Ã, η, ξ ∈
D⊗ IE.

The notion of solution of (3.1) or equivalently (3.2) is defined as follows:

Definition 3.2 : By a solution of (1.1) or equivalently (3.3), we mean a stochas-

tic process ϕ ∈ Ad(Ã)wac ∩ L2
loc(Ã) such that

dϕ(x) = E(t, ϕ(t))dΛπ(t) + F (t, ϕ(t))dAf (t) +G(t, ϕ(t))dA+
g (t) +H(t, ϕ(t))dt

ϕ(t0) = ϕ0 almost all t ∈ I.

or equivalently

d

dt
〈η, ϕ(t)ξ〉 = P (t, ϕ(t))(η, ξ)

〈η, ϕ(t0)ξ〉 = 〈η, ϕ0ξ〉
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for almost η, ξ ∈ D⊗IE.
Definition 3.3

(i) We denote the space of sesquilinear forms on ID⊗ IE by sesq(ID⊗ IE). Thus,

sesq(ID⊗ IE) = {a : ID⊗IE × ID⊗IE → |C| the map (η, ξ) → a(η, ξ) is linear in ξ

and conjugate linear in η, ∀ η, ξ ∈ ID⊗ IE}.
(ii) Let I ⊆ R+, we denote by L0(I, ID⊗IE) the set of all sesq(ID⊗IE)-valued maps

on I, i.e.,

L0(I, ID⊗ IE) = {u : I → sesq(ID⊗IE)}.

Definition 3.4: We define K(η, ξ) as follows:

Given any subset K ∈ clos(Ã), and any pair of elements η, ξ ∈ ID⊗IE,

K(η, ξ) = {< η, xξ >: x ∈ K}.

Hence, K(η, ξ) ⊆ C.

4. VIABLE SOLUTIONS OF QUANTUM STOCHASTIC

DIFFERENTIAL EQUATIONS

Definition 4.1: Let P : I ×Ã −→ sesq(D⊗ IE)2 be a sesqulinear valued funtion,

then the subset K of Ã is viable with respect to P if for every (t0, x0) ∈ I ×K there

exists T ∈ I, T > t0 such that equation (3.3) have at least one solution X ∈ K and

that < η,Xξ >∈ K(η, ξ).

Definition 4.2 :For K ∈ clos(Ã, we assume that K(η, ξ) is locally closed. That

is, for each x ∈ K, < η, xξ >:= xη,ξ ∈ K(η, ξ), there exists ρ > 0 such that

D(xη,ξ, ρ) ∩K(η, ξ) is closed for arbitrary pair η, ξ ∈ D⊗E.

Here, D(xη,ξ, ρ) := {Xη,ξ : |xη,ξ| ≤ ρ}.

Next we define tangent cone as it applies to our present non commutative settings.

We shall make use of the notion of the Bouligand- Severi tangency as in [17].

Definition 4.3: Let K ⊂ Ã, E ⊂ Ã and x ∈ K. Then that xη,ξ ∈ K(η, ξ). The set

E(η, ξ) is said to be tangent to the set K(η, ξ) at the point xηξ if

lim inf
h7→0

1

h
d(xη,ξ + hE(η, ξ);K(η, ξ)) = 0.

We denote by TK(η,ξ) the class of all sets which are tangent to K(η, ξ) at the point

xη,ξ for arbitrary η, ξ ∈ D⊗ IE.

Proposition 4.1: The set TK(η,ξ)(xη,ξ) of all complex numbers which are tangent

to the set K(η, ξ) at the point xηξ is a closed cone.
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Proof

Let (xηξ) ∈ K(η, ξ);

by a preorder definition E(η, ξ) ∈ TK(η,ξ)(xηξ) if

lim inf
t7→0

1

t
d(xηξ + tE(η, ξ);K(η, ξ)) = 0

Let s > 0, then we have

lim inf
t7→0

1

t
d(xηξ + tsE(η, ξ);K(η, ξ)) = s lim inf

t7→0

1

ts
d(xηξ + tsE(η, ξ);K(η, ξ))

= s lim inf
τ 7→0

1

τ
d(xηξ + τE(η, ξ);K(η, ξ))

Hence, sE(η, ξ) ∈ TK(xηξ)

To complete the proof, we need to show that TK(xηξ) is a closed set.

Let N∗ be the set of strictly positive natural numbers.

Let (En(η, ξ))n∈N∗ be a sequence of elements in TK(xηξ), convergent to E(η, ξ) then

we have

1

t
d(xηξ + tE(η, ξ);K(η, ξ)) ≤ 1

t
|t(E(η, ξ)− En(η, ξ))|+ 1

t
d(xηξ + tEn(η, ξ);K(η, ξ))

= |E(η, ξ)− En(η, ξ)|+ 1

t
d(xηξ + tEn(η, ξ);K(η, ξ))

for every n ∈ N∗. So

lim inf
t7→0

1

t
d (xηξ + tE(η, ξ);K(η, ξ)) ≤ |E(η, ξ)− En(η, ξ)|

for every n ∈ N∗.
Since lim

n→∞
|E(η, ξ)− En(η, ξ)| = 0, then

lim inf
t7→0

1

t
d(xηξ + tE(η, ξ);K(η, ξ)) = 0

.

which shows that the set TK(η,ξ)(xηξ) is a closed cone.

Proposition 4.2: A set E(η, ξ) ∈ C belongs to the cone TK(η,ξ)(xη,ξ) if and only

if for every ε > 0 there exists h ∈ (0, ε) and qηξ,h ∈ Dη,ξ(0, ε) with the property

xηξ + h (E(η, ξ) + qηξ,h) ∈ K(η, ξ).

Proof

From the proof of proposition 4.1 we see that E(η, ξ) ∈ TK(η,ξ)(xηξ) if and only
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if

for every ε > 0 there exists h ∈ (0, ε) and pηξ,h ∈ K(η, ξ) such that

1

h
|xηξ + hE(η, ξ)− pηξ,h| ≤ ε

Now, let us define

qηξ,h =
1

h
(pηξ,h − xηξ − hE(η, ξ)),

and we observe that, we have both |qηξ,h| ≤ ε and

xηξ + h(E(η, ξ) + qηξ,h) = pηξ,h ∈ K(η, ξ).

Definition 4.4: Let K ∈ clos(Ã) and I ⊆ R+ .

(i) A map Φ : I×K −→ clos(Ã) will be called Lipschitzian if for each η, ξ ∈ ID⊗IE,

there exists kΦ
η,ξ : I → (0,∞) in L1

loc(I) such that

ρη,ξ(Φ(t, x),Φ(t, y)) ≤ kΦ
η,ξ(t)‖x− y‖η,ξ

for all x, y ∈ K and almost all t ∈ I
(ii) If Φ is a sesqulinear form valued multifunction then the map Φ : I × K −→

2sesq(ID⊗IE) will be said to be Lipschitzian (resp. continuous) if for arbitrary

η, ξ ∈ ID⊗ IE, the map (t, x) → Φ(t, x)(η, ξ) from I × K to 2|C is Lipschitzian

(resp. continuous).

(iii) If Φ : I × K −→ sesq(D⊗IE) will be said to be Lipschitzian if for arbitrary

η, ξ ∈ D⊗ IE, the map

|(Φ(t, x)(η, ξ)− Φ(t, y)(η, ξ)| ≤ kΦ
η,ξ(t)‖x− y‖η,ξ

Definition 4.5: A map P : I × K −→ sesq(D⊗IE) is said to be Lipschitzian and

quasi-compact if the following conditions are satisfied :

(Q1) there exists a continuous map P : I × K2 → sesq(D⊗IE) such that for each

(t, x) ∈ I ×K,

P (t, x)(η, ξ) = P(t, x, x)(η, ξ),

and for each t0 ∈ [t0, T ] and x0 ∈ K, there exists ρ > 0 such that D(x0, ρ)(η, ξ)∩
K(η, ξ) is closed.

(Q2) each sequence {xn}n, from D(x0, ρ) ∩ K has at least one subsequence {xnk}k
such that (P(t, xnk , y)(η, ξ)) is Cauchy for (t, y) ∈ [t0, T ]× (D(x0, ρ) ∩K).

That it is, for each ε > 0, there exists k(ε) > 0 such that for each k, p ≥ k(ε)

we have ∣∣P(t, xnk , y)(η, ξ)− P(t, xnp , y)(η, ξ)
∣∣ ≤ ε
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(Q3) there exists KPη,ξ : I → (0,∞), in L1
loc(I) such that

|Φ(t, x, y)(η, ξ)− Φ(t, x, w)(η, ξ)| ≤ kPηξ‖y − w‖ηξ

for each t ∈ [t0, T ] and x, y, w ∈ D(x0, ρ) ∩K .

(Q4) the map {x −→ P(t, x, y)(η, ξ) : (t, y) ∈ [t0, T ] × D(x0, ρ) ∩ K} is uniformly

equicontinuous on D(x0, ρ) ∩K i.e given ε > 0, there exists δ(ε) > 0 such that

|P(t, x, y)(η, ξ)− P(t, x̄, y)(η, ξ)| ≤ ε

for each t ∈ [t0, T ] and x, x̄, y ∈ D(x0, ρ) ∩K(η, ξ) with ‖x− x̄‖ηξ ≤ δ(ε).

5. MAIN RESULTS ON THE EXISTENCE OF VIABLE SOLUTIONS

This section concerns the establishment of the existence of viable solutions of

quantum stochastic differential equation in which the coefficients are Lipschitzian

and quasi compact. In so doing, a number of auxilliary results will be needed. The

following results will be used to establish the main results of this paper.

Theorem 5.1[Brezis - Browder ordering principle] [17]

Let S be a non empty set, � a preorder on S and let M : S −→ R ∪ {+∞} be a

function. Suppose that :

(i) for any increasing sequence (ζk)k in S, there exists some η ∈ S such that ζk � η

for all k ∈ N;

(ii) the function M is increasing.

Then for each ζ0 ∈ S there exists an M-maximal element ζ̄ ∈ S satisfying

ζ0 � ζ̄.

Theorem 5.2. Suppose K ⊂ Ã, satisfying the following

(a) K ∈ clos(Ã), K 6= ∅.
(b) P (t0, x0)(η, ξ) ∈ TK(η,ξ)(x0,ηξ) for each pair (t0, x0) ∈ I ×K.

Then, for each ε ∈ (0, 1), there exists a non decreasing function σ : [t0, T ]→ [t0, T ] and

two stochastic processes g : [t0, T ]→ Ã and ϕ : [t0, T ]→ Ã lying inAd(Ã)wac∩L2
loc(Ã)

such that the corresponding sesquilinear form valued maps associated with any pair

of η, ξ ∈ D⊗IE) defined by g : [t0, T ]→ sesq(D⊗IE)2 where g(t)(η, ξ) = 〈η, g(t)ξ〉
and ϕ : [t0, T ] → sesq(D⊗IE)2 where ϕ(t)(η, ξ) = 〈η, ϕ(t)ξ〉 satisfy the following for

every t ∈ [t0, T ],

(i) t− ε ≤ σ(t) ≤ t, |gηξ(t)| ≤ ε,

(ii) ϕηξ(σ(t)) ∈ D(x0, ρ)(η, ξ) ∩K(η, ξ) and ϕηξ(T ) ∈ D(x0, ρ)(η, ξ) ∩K(η, ξ)
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(iii) ϕ satisfies

〈η, ϕ(t)ξ〉 = 〈η, x0ξ〉+

∫ t

t0

P (σ(s), ϕ(σ(s))(η, ξ)ds+

∫ t

t0

g(s)(η, ξ)ds

for every t ∈ [t0, T ].

Remark. A pair of the triple (σ, g, ϕ) with the associated complex valued functions

(σ, gηξ, ϕηξ) satisfying (i), (ii), (iii) will be called an ε- approximate solution to the

problem (3.3) on the interval [t0, T ]

Proof of the Existence of Approximate Solutions :

Let (t0, x0) ∈ I × K then (t0, x0,ηξ) ∈ I × K(η, ξ). Let ρ > 0, then D(x0, ρ)(η, ξ) ∩
K(η, ξ) is closed in the set of complex numbers. There exists a constant Mηξ > 0,

such that

|P (t, x)(η, ξ)| ≤Mηξ, (5.2)

for every t ∈ [t0, T ] and x ∈ D(x, ρ) ∩K and

< η, xξ >:= xηξ ∈ D(x0, ρ)(η, ξ) ∩K(η, ξ)

where

(T − t0)(Mηξ + 1) ≤ ρ (5.3)

Let t0 ∈ I, x0,ηξ ∈ K(η, ξ) and let ρ > 0,Mηξ > 0 be as above. Let ε ∈ (0, 1).

We first establish the existence of an ε- approximate solution on an interval [t0, c]

with c ∈ (t0, T ]. Since for every

(t0, x0,ηξ) ∈ I ×K(η, ξ), P (t0, x0)(η, ξ) ∈ TK(η,ξ)(x0,ηξ),

from Proposition (2), it follows that there exists

c ∈ (t0, T ], c− t0 ≤ ε, and qηξ,h ∈ C with | qηξ,h | ≤ ε

such that

x0,ηξ + (c− t0)P (t0, x0)(η, ξ) + (c− t0)qηξ,h ∈ K(η, ξ).
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Let Ic = [t0, c] , we now define the function σ : [t0, c] −→ [t0, c], and stochastic

processes g : [t0, c] −→ Ã and ϕ : [t0, c] −→ Ã lying in Ad(Ã)wac ∩ L2
loc(Ã) satisfying

σ(t) = t0 for t ∈ [t0, c],,

gηξ(t) = qηξ for t ∈ [t0, c],

ϕηξ(t) = x0,ηξ + (t− t0)P (t0, x0)(η, ξ) + (t− t0)qηξ, for t ∈ [t0, c].

The triple (σ, gηξ, ϕηξ) is an ε− approximate solution to problem (3.3) on the interval

[t0, c]. This shows that conditions (i), (ii) and (iv) are satisfied, we now show that

condition (iii) is also satisfied by uniqueness of solutions, using (5.2),(5.3) and (i).

From (i) σ(t) = t0 and 〈η,X(t0)ξ〉 = 〈η, x0ξ〉, by equation (3.3)then

〈η, ϕ(σ(t))ξ〉 = 〈η, x0ξ〉.

Therefore we have

ϕ(σ(t))(η, ξ) ∈ D(x0,ηξ, ρ) ∩K(η, ξ) ∀t ∈ [t0, c].

Therefore,

ϕ(c)(η, ξ) ∈ K(η, ξ).

Moreover, by (5.2) and (5.3),we have

|ϕ(c)(η, ξ)−ϕ0(η, ξ)| ≤ (c− t0) |P (t0, ϕ0)(η, ξ)|+(c− t0) |qηξ| ≤ (T − t0)(Mηξ+1) ≤ ρ.

For every t ∈ [t0, c]. Thus (iii) is also satisfied.

We now define the ε− approximate solution on the whole interval I. We make use of

Brezis-Browder Theorem

Let S be the set of all ε - approximate solutions to the problem (4.3) defined on

the interval [t0, c] with c ∈ (t0, T ].

On S we define the relation “ �′′ by (σ1, g1,ηξ, ϕ1,ηξ) � (σ2, g2,ηξ, ϕ2,ηξ) if the do-

main of definition [t0, c1] of the first triple is included in the domain of definition

[t0, c2] of the second triple, and the two ε - approximate solutions coincide on the

common part of the domains. Then, “preceq′′is a pre-order relation on S.
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Firstly, we show that each increasing sequence ((σm, gm,ηξ, ϕm,ηξ))m is bounded from

above .

Let ((σm, gm,ηξ, ϕm,ηξ))m be an increasing sequence, and let

c∗ = limmcm

where [t0, cm] denotes the domain of definition of (σm, gm,ηξ, ϕm,ηξ). Then c∗ ∈ (t0, T ].

We will show that there exists at least one element, (σ∗, g∗ηξ, ϕ
∗
ηξ) ∈ S, defined on

[t0, c
∗] and satisfying

(σm, gm,ηξ, ϕm,ηξ) � (σ∗, g∗ηξ, x
∗
ηξ)

for each m ∈ N. In order to do this, we first prove that there exists

lim
m
ϕm(cm)(η, ξ).

For each m,n ∈ N,m ≤ n we have ϕm(s) = ϕn(s) for all s ∈ [t0, cm]. Taking into

account (iii), (iv) and (5.2), we have

| ϕm(cm)(η, ξ)− ϕn(cn)(η, ξ) |

≤
∫ cn

cm

| P (σn(s), ϕn(σn(s)))(η, ξ) | ds+

∫ cn

cm

| gn(s)(η, ξ) | ds

≤ (Mηξ + ε) | cn − cm |

for every m,n ∈ N, which shows that there exists

lim
m7→∞

ϕm(cm)(η, ξ) ∈ D(x0, ρ)(η, ξ) ∩K(η, ξ).

Furthermore, because all the functions in the set {σm : m ∈ N} are non de-

creasing, with values in [t0, c
∗], and satisfy σm(cm) ≤ σp(cp) for every m, p ∈ N,

there exists lim
m7→∞

σm(cm) and belongs to [t0, c
∗]. We now define a triple function

(σ∗, g∗ηξ, ϕ
∗
ηξ) : [t0, c

∗] −→ [t0, c
∗]× C× C by

σ∗(t) =


σm(t) for t ∈ [t0, cm],m ∈ N,

lim
m 7→∞

σm(cm) for t = c∗,

g∗ηξ(t) =


gm(t)(η, ξ) for t ∈ [t0, cm],m ∈ N, for any η, ξ ∈ D⊗IE),

0 for t = c∗,

ϕ∗ηξ(t) =


ϕm(t)(η, ξ) for t ∈ [t0, cm],m ∈ N, for any η, ξ ∈ D⊗IE),

lim
m 7→∞

ϕm(cm)(η, ξ) for t = c∗,
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This shows that (σ∗, g∗ηξ, ϕ
∗
ηξ) is an ε- approximate solution which is an upper

bound for ((σm, gm,ηξ, ϕm,ηξ))m. Applying (ii) of Brezis-Browder theorem(5.1), we

define the function

M : S −→ R ∪ {+∞}. Then, for each ζ0 ∈ S there exists an M- maximal element

ζ̄ ∈ S satisfying ζ0 � ζ̄. This shows that

M((σ, gηξ, ϕηξ)) = c

, where [t0, c] is the domain of definition of (σ, gηξ, ϕηξ). This shows that M satisfies

the hypothesis of Brezis- Browder theorem (5.1).

Then S contains at least one M- maximal element (σ̄, ḡηξ, ϕ̄ηξ) defined on [t0, c̄].

If (σ̃, g̃ηξ, ϕ̃ηξ) ∈ S, defined on [t0, c̃], satisfies (σ̄, ḡηξ, ϕ̄ηξ) � (σ̃, g̃ηξ, ϕ̃ηξ), then we

necessarily have c̄ = c̃. We will show next that c̄ = T . we assume by contradiction

that c̄ < T . Then, taking into account the fact that ϕ̄ηξ(c̄) ∈ D(x0, ρ)(η, ξ)∩K(η, ξ),

we have

| ϕ̄ηξ(c̄)− x0,ηξ |

≤
∫ c̄

t0

| P (σ̄(s), ϕ̄(σ̄(s)))(η, ξ) | ds+

∫ c̄

t0

| ḡ(η, ξ)(s) | ds

≤ (c̄− t0)(Mηξ + ε)

≤ (c̄− t0)(Mηξ + 1) < (T − t0)(Mηξ + 1) ≤ ρ

Then, as ϕ̄ηξ(c̄) ∈ K(η, ξ) and P (c̄, ϕ̄(c̄))(η, ξ) ∈ TK(ϕ̄(c̄))(η, ξ), there exists

δ(0, T − c̄), δ ≤ ε and qηξ ∈ C such that | qηξ |≤ ε and

ϕ̄ηξ(c̄) + δP (c̄, ϕ̄(c̄))(η, ξ) + δqηξ ∈ K(η, ξ)

From the inequality above we have

| ϕ̄(c̄)(η, ξ) + δP (c̄, ϕ̄(c̄))(η, ξ) + qηξ]− ϕ0(η, ξ) |≤ ρ

We now define the functions

σ : [t0, c̄+ δ] −→ [t0, c̄+ δ] and g : [t0, c̄+ δ] −→ C by

σ(t) =


σ̄(t) for t ∈ [t0, c̄],

c̄ for t ∈ [c̄, c̄+ δ],

gηξ(t) =


ḡηξ(t) for t ∈ [t0, c̄], and for any η, ξ ∈ D⊗E),

q for t ∈ [c̄, c̄+ δ],
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so | gηξ(t) |≤ ε for every t ∈ [t0, c̄+δ]. In addition, for every t ∈ [t0, c̄+δ], σ(t) ∈ [t0, c̄]

and therefore ϕ̄(σ(t)) is well-defined and belongs to the set D(x0, ρ)(η, ξ) ∩K(η, ξ).

Accordingly, we can define ϕηξ : [t0, c̄+ δ] −→ C by

〈η, ϕ(t)ξ〉 = 〈η, ϕ0ξ〉+

∫ t

t0

P (σ(s), ϕ̄(σ(s)))(η, ξ)ds+

∫ t

t0

g(η, ξ)(s)ds

for every t ∈ [t0, c̄ + δ]. clearly, ϕη,ξ coincides with ¯ϕη,ξ on [t0, c̄] since the domain

[t0, c̄] is included in the domain of [c̄, c̄+ δ] and then it readily follows that ϕη,ξ, σ and

gη,ξ satisfy all the conditions in (i) and (ii). In order to prove (iii) and (iv) we observe

that

ϕηξ(t) ∈


ϕ̄ηξ(t) for t ∈ [t0, c̄].

ϕηξ(c̄) + (t− c̄)P (c̄, ϕ̄(c̄))(η, ξ) + (t− c̄)q for t ∈ [c̄, c̄+ δ]

Then ϕηξ satisfies the equation in (iv). since

ϕηξ(σ(t)) ∈

ϕ̄ηξσ̄(t) for t ∈ [t0, c̄].

ϕ̄ηξ(c̄) for t ∈ [t0, c̄+ δ]

it follows that ϕηξ(σ(t)) ∈ D(x0, ρ)(η, ξ)∩K(η, ξ). Furthermore, from the choice of δ

and qηξ, we have both

ϕηξ(c̄+ δ) ∈ ϕ̄ηξ(c̄)(η, ξ) + δP(c̄, ϕ̄(c̄))(η, ξ) + δq ∈ K(η, ξ) and

| ϕ(c̄+ δ)(η, ξ)− x0(η, ξ) |

≤ | ϕ̄(c̄)(η, ξ) + δP (c̄, ϕ̄(c̄))(η, ξ) + δq − x0(η, ξ) |

≤ ρ

and consequently, ϕηξ satisfies (iii). Thus (σ, gηξ, ϕηξ) ∈ S.

Furthermore, since (σ̄, ḡηξ, ϕ̄ηξ) � (σ, gηξ, ϕηξ) and c̄ < c̄+δ, it follows that (σ̄, ḡηξ, ϕ̄ηξ)

is not aM- maximal element. But this is absurd, we can eliminate this contradiction,

only if each maximal element in the set S is defined on [t0, T ]. Hence c̄ = T

We now establish the main theorem of this paper.

Theorem 5.3

Let K ⊂ Ã ,K 6= ∅ and K(η, ξ) = {〈η, xξ〉 : x ∈ K, η, ξ ∈ D⊗IE)}
Assume that the following conditions hold:

(i) The map (t, x) −→ P (t, x)(η, ξ) associated with the right hand-side of (3.3) is

Lipschitzian and quasi-compact.

(ii) There exists Mηξ > 0 such that |P (t, x)(η, ξ)| ≤ Mηξ for every t ∈ [t0, T ] and

x ∈ D(x0, ρ) ∩K
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(iii) (T − t0)(Mηξ + 1) ≤ ρ

Then K(η, ξ) is viable with respect to P if and only if for every (t0, x0) ∈ I ×K we

have P (t0, x0)(η, ξ) ∈ TK(η,ξ)(x0,ηξ)

Proof

Suppose K is viable with respect to P , then there exists a solution ϕ that satisfy

equation (3.3).

Let (t0, x0) ∈ I ×K, then (t0, x0,ηξ) ∈ I ×K(η, ξ) .

We prove that

lim
h7→0

1

h
d(x0,ηξ + hP (t0, x0)(η, ξ);K(η, ξ)) = 0

and a stochastic process ϕ ∈ K with 〈η, ϕ(t0)ξ〉 ∈ K(η, ξ) satisfying equation (3.3).

Let

ϕηξ(t0 + h) = 〈η, ϕ(t0 + h)ξ〉

and

ϕηξ(t0) = 〈η, ϕ(t0)ξ〉

then

ϕηξ(t0 + h)− ϕηξ(t0) = 〈η, ϕ(t0 + h)ξ〉 − 〈η, ϕ(t0)ξ〉

= 〈η, [ϕ(t0 + h)− ϕ(t0)] ξ〉

d(x0,ηξ + hP (t0, x0)(η, ξ);K(η, ξ))

≤ |x0,ηξ + hP (t0, x0)(η, ξ)− 〈η, ϕ(t0)ξ〉|

= lim
h7→0

1

h
|x0,ηξ + hP (t0, x0)(η, ξ)− 〈η, ϕ(t0 + h)ξ〉|

= lim
h7→0

∣∣∣∣P (t0, ϕ(t0))(η, ξ)− 〈η, (ϕ(t0 + h)− ϕ(t0))ξ〉
h

∣∣∣∣
=

∣∣∣∣P (t0, ϕ(t0))(η, ξ)− lim
h7→0

〈η, (ϕ(t0 + h)− ϕ(t0))ξ〉
h

∣∣∣∣
=

∣∣∣∣P (t0, ϕ(t0))(η, ξ)− d

dt
〈η, ϕ(t)ξ〉

∣∣∣∣
t=t0

= 0

This shows that the stochastic process ϕ is a solution to equation (3.3) and belongs

to K.

Suppose P (t0, x0)(η, ξ) ∈ TK(η,ξ) then we prove that P is viable to K

This concerns the existence and convergence of approximate solutions.
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Theorem 5.2 above has established the existence of approximate solution.

Next, we prove the convergence of a suitably chosen sequence of approximate

solutions.

Let {εn}n∈N be a sequence in (0, 1) decreasing to 0 and let (σn, gn,ηξ, ϕn,ηξ)n∈N be

a sequence of εn - approximate solutions of (3.3) defined on [t0, T ] .

We will show first that (ϕn,ηξ(σn))n∈N has at least one Cauchy subsequence.

For n,m ∈ N and s ∈ [t0, T ], let

pn,m(s)(η, ξ) = P(s, ϕn(σn(s)), ϕm(σm(s)))(η, ξ),

then we have

|ϕn(σn(t))(η, ξ)− ϕm(σm(t))(η, ξ)|

≤

∣∣∣∣∣
∫ σn(t)

t0

pn,n(s)(η, ξ)ds−
∫ σm(t)

t0

pm,m(s)(η, ξ)ds

∣∣∣∣∣
+

∫ σn(t)

t0

|gn(s)(η, ξ)|ds+

∫ σm(t)

t0

|gm(s)(η, ξ)|ds

≤
∫ t0

σn(t)

|pn,n(s)(η, ξ)| ds−
∫ t0

σm(t)

|pm,m(s)(η, ξ)| ds

+

∫ T

t0

|pn,n(s)(η, ξ)− pm,m(s)(η, ξ)|ds+

∫ σn(t)

t0

|gn(s)(η, ξ)|ds

+

∫ σm(t)

t0

|gm(s)(η, ξ)ds|

From (i) and (ii) in Theorem (5.1) we have both

t− σ(t) ≤ εn and |gηξ,n(s)| ≤ εn.

Also, from definition (Q3), we have

|pn,n(s)(η, ξ)− pm,m(s)(η, ξ)| ≤ kPη,ξ‖ϕn(σn(t))− ϕm(σm(t))‖η,ξ

for each n,m ∈ N , from the inequality above and (5.2) we obtain

|ϕn(σn(t))(η, ξ)− ϕm(σm(t))(η, ξ)|

≤ (T − t0 +M)(εn + εm) + kPη,ξ

∫ t

t0

‖ϕn(σn(s))− ϕm(σm(s))‖η,ξds

+

∫ T

t0

|pn,n(s)(η, ξ)− pm,m(s)(η, ξ)|ds


(5.4)
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Using the above inequality and Gronwall’s Lemma we have

|ϕn(σn(t))(η, ξ)− ϕm(σm(t))(η, ξ)| ≤ [(T − t0 +M)(εn + εm)

+

∫ T

t0

|pn,n(s)(η, ξ)− pm,m(s)(η, ξ)|ds
]
ek

Pη,ξ (T−t0)

 (5.5)

We complete the proof with the following compactness lemma

Lemma 5.4. By the hypothesis of Theorem 5.3, for each subsequence of approx-

imate solutions of equation (3.3), (σn, gn,ηξ, ϕn,ηξ)n, there exists one subsequence of

(ϕn,ηξ)n, denoted again by (ϕn,ηξ)n, such that for each ε > 0 there exists

k(ε) ∈ N such that, for each k, p ∈ N, k, p ≥ k(ε) we have∫ T

t0

|P(s, ϕk(σk(s)), y(s))(η, ξ)− P(s, ϕp(σp(s)), y(s))(η, ξ)| ds ≤ ε

uniformly for all maps y : [t0, T ] −→ Dηξ(x0, ρ) ∩K.

This makes the map

s −→ |P(s, ϕn(σn(s)), y(s))(η, ξ)| integrable for n ∈ N .

Proof. Let ε > 0, δ(ε) > 0 be given by definition (iii) above and let S be a countable

dense subset in [t0, T ] with t0, T ∈ S .

Using definition (i) above we find a subsequence of (ϕn,ηξ(σn))n, denoted for simplicity

again by (ϕn,ηξ(σn))n, such that, for each θ ∈ S, (P(s, (ϕn(σn(θ))(η, ξ), yηξ)n is Cauchy,

for each s ∈ [t0, T ] and uniformly with respect to yηξ ∈ D(x0, ρ)(η, ξ) ∩K(η, ξ).

Let 4 : t0 = t1 < t2 < ... < tm(ε) = T be a partition of [t0, T ], with t1 ∈ S for

i = 1, 2, ...m(ε)− 1 and

ti+1 − t1 ≤
δ(ε)

2(M + 1)

where δ(ε) is given by definition (Q4). So, for the very same ε > 0, there exists

k(ε) ∈ N such that, for each n,m ∈ N, n,m ≥ k(ε), each j = 1, 2, ...m(ε) and each

(s, y) ∈ D(x0, ρ)(η, ξ) ∩K(η, ξ), we have

|P(s, ϕn(σn(tj)), y)(η, ξ)− P(s, ϕm(σm(tj)), y)(η, ξ)| ≤ ε

Now, taking a greater k(ε) if necessary, we may assume that for each n ∈ N, n ≥
k(ε), we have

εn ≤
δ(ε)

4(M + 1)

from (i) and (ii) in Theorem (5.2) and equation (5.2), we have for each n ∈ N, n ≥
k(ε),

|ϕn(σn(s))(η, ξ)− ϕn(σn(ti))(η, ξ)| ≤ (M + 1)|σn(s)− σn(ti)|
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≤ (M + 1)(|σ(s)− s|+ |s− ti|+ |ti − σ(ti)|) ≤ δ(ε)

for each i = 1...m(ε)− 1 and each s ∈ [ti, ti+1]. Accordingly, for each k, p ∈ N, k, p ≥
k(m, ε) = k(ε) and each y : [t0, T ] −→ D(x0, ρ)(η, ξ) ∩ K(η, ξ) making the map

s −→ P(s, ϕn(σn(s)), y(s)(η, ξ)) integrable for each n ∈ N , we have∫ T

t0

|P(s, ϕk(σk(s)), y(s))− P(s, ϕp(σp(s)), y(s))(η, ξ)|ds

≤
m(ε)−1∑
i=1

∫ ti+1

ti

|(P(s, ϕk(σk(s)), y(s)(η, ξ)− P(s, ϕk(σk(ti)), y(s))(η, ξ)|ds

+

m(ε)−1∑
i=1

∫ ti+1

ti

|(P(s, ϕk(σk(s)), y(s)(η, ξ))− P(s, ϕp(σp(ti))(η, ξ), yηξ(s)))|ds

+

m(ε)−1∑
i=1

∫ ti+1

ti

|(P(s, ϕk(σk(s)), y(s)(η, ξ))− P(s, ϕp(σp(ti)), y(s))(η, ξ)|ds

≤ (T − t0)ε+ (T − t0)ε+ (T − t0)ε = 3(T − t0)ε

the result above holds true uniformly for each map y : [t0, T ] −→ D(x0, ρ)(η, ξ) ∩
K(η, ξ) with s −→ P(s, ϕn(σn(s))(η, ξ), yηξ(s)) integrable for each p ∈ N and this

complete the proof of the Lemma 5.4.

We now complete the proof of Theorem 5.3 by using Lemma 5.4 and Gronwall’s

inequality

Using Lemma 5.4, we assume that for each ε > 0 there exists n0(ε) ∈ N such that for

each n,m ∈ N, n,m ≥ n0(ε), we have∫ T

t0

|(pn,m(s)− pm,m(s))(η, ξ)|ds ≤ ε

Moreover, since limn→∞ ε = 0, for the same ε > 0, there exists n1(ε) such that, for

each n,m ∈ N, n,m ≥ n1(ε), we have

(T − t0 +M)(εn + εm) ≤ ε

So, if n,m ∈ N, n,m ≥ n(ε) = max{n0(ε), n1(ε)}, then from (4.12) we conclude

|(ϕn(σn(t))(η, ξ)− ϕm(σm(t)))(η, ξ)| ≤ 2εek
P
ηξ(T−t0)

which means that (ϕn,ηξ(σn(.)))n is a sequence with respect to the seminorm. There-

fore there exists

|ϕ(t)(η, ξ)| = lim
n→∞

|ϕn(σn(t))(η, ξ)|
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uniformly for t ∈ [t0, T ] which, in view of (i) in Theorem (5.1) and from the continuity

of P, there exist successively

lim
n→∞

|ϕn(s)(η, ξ)| = |ϕ(s)(η, ξ)|

and

lim
n→∞

|P (s, ϕn(σn(s)))(η, ξ)| = |P (s, ϕ(s)(η, ξ)|

for s ∈ [t0, T ]. So, using the limit n→∞ in (iv) of Theorem (5.2) to obtain

|ϕηξ(t)| ∈ |x0,ηξ|+
∫ t

t0

|P (s, ϕ(s))(η, ξ)|ds

and ϕηξ(t) ∈ D(x0, ρ)(η, ξ) ∩ K(η, ξ) for each s ∈ [t0, T ]. Thus ϕηξ is a solution of

(4.3) on [t0, T ] satisfying

|ϕηξ(t0)| = |x0,ηξ|

and this completes the proof.
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