
Neural, Parallel, and Scientific Computations 29(2021), No.1, 21 - 38

A PARALLEL IMPLEMENTATION OF THE ROTATIONAL
COMPENSATOR PHASE UNWRAPPING ALGORITHM

FATMA GAMAL1, MOSTAFA SOLIMAN2, AND SAMIA HESHMAT3

1 2 Computer and Systems Section -3Communication and Electronic Section,
Electrical Engineering Department, Aswan University, Aswan, Egypt.

2Computer Science and Engineering Department,
Egypt-Japan University of Science and Technology, Egypt.

ABSTRACT. Phase unwrapping algorithms are essential in image processing for optical mea-
surements. Many research fields used phase unwrapping algorithms to recover phase data in a 2D
phase data map. The rotational compensator phase unwrapping algorithm (RC) has high accuracy
compared to other algorithms. However, RC takes a long time to execute. In this paper, parallel
processing techniques such as SIMD and multithreading are exploited on multicore processors to
accelerate the RC algorithm. Exploiting SIMD instructions inside multiple threads on a machine
with Intel Xeon gold 6140 processor accelerates the RC algorithm by 3.11. Moreover, implementing
a mathematical approximation of arctangent beside the parallel RC algorithm increases the speedup
by 4.36 times over the original algorithm.

AMS (MOS) Subject Classification. 39A10.

1. INTRODUCTION

Two-dimensional (2D) phase unwrapping is a key data-processing chains in var-
ious applications used in many research fields, such as optics, magnetic resonance
imaging, and synthetic aperture radar interferometry [1–7]. The phase unwrapping
process has a direct influence on the accuracy of final results; this is why many
algorithms have been proposed [7–19]. The rotational compensator phase unwrap-
ping algorithm (RC) has high accuracy compared to other phase unwrapping algo-
rithms [1, 6]. However, it takes a long time to execute. The time is an important
factor in the applications that use the phase unwrapping algorithms.

Parallel processing plays a critical role in reducing execution time in multimedia
applications by processing multiple instructions simultaneously. Single instruction
multiple data (SIMD), multithreading, and blocking are substantial parallel process-
ing techniques that run on multicore processors to accelerate applications on it [20].
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SIMD is used to accelerate applications that have an enormous amount of data par-
allelisms such as multimedia applications [21–28]. The goal of the multithreading
technique is to improve the utilization of a single core or a single processor by using
thread-level parallelism [29]. Blocking depends on space loops iterations into smaller
chunks or blocks to reduce cache miss overhead, and reuse the data [30].

This paper analyzes and profiles the RC algorithm to exploit multicore systems
for accelerating RC algorithm as follows:

• Develop and implement an approximation mathematical equation of arctan func-
tion
• Implement the SIMD version of the RC algorithm by using AVX2 and AVX512
instructions
• Exploit multicore processors by developing the multithreading version of RC
algorithm
• Exploit memory hierarchy by dividing the data of the RC algorithm into blocks
to fit into cache memory
• Put all these techniques together to get a speedup close to the ideal value

We have got that the parallel RC algorithm speedup is 4.36 times on average over the
original RC algorithm. Where, the time of processing 1000x1000 image is reduced
from 8248 seconds (2.29 hours) to 1842 seconds (0.51 hour). The remainder of this
paper is organized as follows: Section 2 presents related work. The phase unwrapping,
the problem that the RC algorithm solves, and the profiling of the RC algorithm are
described in details in Section 3. Section 4 presents the parallel implementation of
the RC phase unwrapping and the arctan function approximation used. Section 5
represents the results. Finally, Section 6 summarizes this paper.

2. RELATED WORK

Phase unwrapping is a mathematical problem-solving technique increasingly used
in synthetic aperture radar (SAR) interferometry, optical interferometry, adaptive op-
tics, and medical imaging [31]. López et al. method used multithreading to accelerate
Goldstein phase unwrapping algorithm. A machine with a four-core Intel corei7 pro-
cessor at 3.4 GHz working frequency and 11.7 GB of RAM is used [32]. This method
can be speeded up the execution time to 12 times over the sequential algorithm for
7202x7202 image size. Huang el al. method used multithreading with blocking to
accelerate Goldstein phase unwrapping algorithm [33]. In this method a machine has
an HPC cluster with two 2.67-GHz quad-core Intel Xeon 5550 processors, and 12 GB
of memory is used. The results can be generated by this method with more than 25



A PARALLEL IMPLEMENTATION OF THE RC PHASE UNWRAPPING ALGORITHM 23

times speedup over the serial implementation with the use of 64 processors. Mean-
while, in Barabadi et al. method multithreading is used to accelerate the dual-stage
phase unwrapping algorithm based on the branch-cut method [34]. A machine with
an Intel Core i7-8700 CPU 3.2 GHz with six physical cores and 32 GB of memory is
used. The speedup for this method is about 6.5 times than the original algorithm.

Furthermore, Karasev et al. method is used the GPU to accelerate the weighted
least-square phase unwrapping algorithm [35]. In this method a machine with an
NVIDIA Geforce 8800GTX video card having 768 MB video RAM and 1 GB of
system RAM is used. This algorithm is run for data grids ranging in size from
256x256 to 2048x2048 corresponds to GPU speedup of 5.3 to 34.5 relative to the
CPU. The method by Mistry et al. is used the GPU to accelerate the minimum LP

norm phase unwrapping algorithm on a machine with an NVIDIA GeForce 8800GTX
GPU with 16 multiprocessors and 128 scalar processors running on 1500 MHz [36].
The speedup of this method is 7.3 over the CPU. In the method by Wu et al. the
GPU is used to accelerate Goldstein’s phase unwrapping algorithm on a machine with
an Intel Xeon X5550 CPU and an NVIDIA Tesla C2050 GPU [37]. The GPU has 14
multiprocessors with 448 cores; each of the multiprocessors has 64KB cache/shared
memory. The speedup of this method is more than 780 times over the CPU.

The methods of Karasev et al. and Mistry et al. [35, 36] used the least-squares
algorithm with discrete cosine transforms. Moreover, the methods [32–34, 37] used
the Goldstein and the branch-cut algorithms. The performance evaluation of the RC
phase unwrapping algorithm among Goldstein and Least-Squares algorithms shows
that RC has higher accuracy [6]; though it has high time cost than them. How-
ever, the primary selection criterion for picking an algorithm is the quality of the
unwrapped results for the available data. Hence, we choose the RC phase unwrap-
ping algorithm to be the first contribution accelerating its process. Furthermore, the
methods implemented by López et al., Huang el al. and Barabadi et al. use machines
have a CPU to accelerate the phase unwrapping algorithms [32–34]. Meanwhile, the
used machines in the methods implemented by Karasev et al., Mistry et al. and Wu
et al. [35–37] have a GPU to accelerate the phase unwrapping algorithms. Therefore,
multicore systems have become more commercially prevalent; we prefer using CPU
in our work.

3. PROFILING ROTATIONAL COMPENSATOR PHASE
UNWRAPPING PROCESS

Due to the importance of the phase unwrapping process in multimedia applica-
tions, the need of accurate and robust unwrapping methods are essentials. In these
applications, the phase carries information about physical quantities. However, phase
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mapping is ambiguous because the extracted phase returned in a form that suffers
from 2π phase jumps. In this case, the phase data is unwrapped to fit for usage. Fur-
thermore, the presence of noise in the measured data has many problems to produce
accurate unwrapped results; since many singular points (SPs) are found. This noise
has an essential effect on the computational time of any unwrapping method.

3.1. Mathematical Background. Phase unwrapping algorithms are based on one
assumption that the true unwrapping phase data Φi is less than one-half cycle, which
progressively various enough to make the phase difference between the neighbour’s
values be within the one-half cycle (π rad) of each other, as shown in Eq.(3.1) [1].

(3.1) |∆Φi| = |φi+1 − φi| < π

Where |∆Φi| is the difference of the true phases. If this assumption is true everywhere
the unwrapping process can be applied by integrating wrapped phase differences or
gradient throw any path from one pixel to another one in the data; to generate the
unwrapped phase. The equation of the wrapped gradient phase difference between
two pixels is as shown in Eqs.(3.2) and (3.3), respectively [1].

(3.2) ∇Ψi = ∆Ψi − Int[∆Ψi

2π
]2π

(3.3) ∆Ψi = Ψi+1 −Ψi

Where, Ψi is the wrapped phase at pixel i, and ∇Ψi is the wrapped gradient phase
difference.

In the absence of discontinuity sources, the unwrapped result is independent of the
unwrapping path. Therefore, the unwrapped phase map is consistent. Considering
that a path consists of M points, the points are numbered from 0 to M − 1. If the
difference of the true unwrapped phases satisfies this relation |∆Φi| < π [1], where
the wrapped gradient is identical to the difference of the true phases ∇Ψi=∆Φi, we
can retrieve the true unwrapped phase as follows:

(3.4) ΦM = Φ0 +
M−1∑
i=0

∇Ψi

In the 2D phase unwrapping, there are paths with a loop, which means that the
last point can be considered the first point. In the case where point M is identical
to point 0, if the relation |∆Φi| < π is satisfied, the summation of ∇Ψi for all points
(from 0 to M − 1) must equal to zero. See [1] for more details.

Due to discontinuity, the path of integration becomes dependent. It isn’t possible
to choose a path randomly. If Eq.(3.4) used to retrieve the unwrapped phase, it suffers
from multiples of 2π addition or subtraction fault that affect all over the phase map.
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Restrictions are applied to the unwrapping path in the corrupted areas, which result
in the path being dependent. To avoid this situation; corrupted areas or SPs must be
identified, balanced, and isolated from the rest of the non-singular pixels using barriers
(branch cuts) in the phase map. Once SPs are isolated, phase unwrapping process
will take an independent path avoiding these branch cuts; therefore, it retrieves the
true phase [1].

The phase unwrapping process has a direct influence on the accuracy of final
results; therefore, many algorithms have been proposed. The RC is a phase unwrap-
ping approach for noisy wrapped phase maps of continuous objects, the performance
evaluation of the RC phase unwrapping algorithm among other algorithms shows that
RC has higher accuracy [1, 6].

3.2. Rotational Compensator. The idea of the compensator is proposed to com-
pensate and cancel the singularity effect. One of the methods is the RC method.
This method computes the compensator by superposing the impact of each SP. The
RC can cancel the singularity of each SP by adding an integral of isotropic singular
function along with any loops. When a closed-loop includes SP, the integral along
the loop will have a value of 2πS, where S is the residue of the SP, as shown in the
following equation [1]:

(3.5)
3∑

i=0

∇Ψi = 2πS

Representing an integral of segment i, which is a member of the loop comprising
N segments, as Ci, we can reduce Eq.(3.5) to:

(3.6)
3∑

i=0

(∇Ψi + Ci) = 0

These suggest that the singularity of Ψi regularized by compensator Ci, and phase
unwrapping becomes an independent path. The RC for the ith segment, which is a
path from ri to ri+1 that cancel the singularity of the SPs, RCi

j represented as follows:

(3.7) RCi
j = −Sj(Θi+1j −Θij)

Where Sj denotes the residue of the jth SP, and Θi+1j with Θij are azimuthal angles
of both ends of the ith segment, where the origin is located at the jth SP. When the
measured data contains several SPs [1], the total compensator of the ith segment is
estimated as the summation of the RCi

j for j [1]:
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(3.8) RCi =
N∑
j=1

RCj
i

Consequently, we can retrieve the true unwrapped phase data by summing the phase
differences between the adjoining pixels and the total compensator as follows:sss

(3.9) ΦM = Φ0 +
M−1∑
i=0

(∇Ψi + Ci)

Where Ci is equal RCi
j and the path is composed from 0 to M − 1 segment [1].

3.3. Profiling RC Method. The RC method is divided into three stages as shown
in Figure 1. In the singular point computations stage, the position of SPs in the image
is computed to detect the places of each SP in the data. Meanwhile, SP positioning
and pairing stage, the effect of the compensator is confined to a smaller region and
to determine the dipole pairs. However, the RC stage can remove the inconsistency
by canceling the singularity effect [1]. Therefore, to produce the unwrapped image,
the wrapped image is entered the system and goes through the stages.

Figure 1. RC Stages

By analyzing and profiling the stages of the RC method we found that the com-
putation time is proportional to KN2, N denotes one-dimensional area size in pixels.
From Eq.(3.8), the cost of time to compute the RC for all segments equals the prod-
uct of SPs number and segments number of the compensated path. Since both are
proportional to the area size (αN2) [1]. The number of SPs isn’t exactly equaled the
number of rows multiply columns. Therefore we consider the number of SPs as K,
and we can represent the complexity of the RC method as O(KN2). By profiling
the RC functions we found that the function AdjustedSingularCompensator (ASC)
takes about 95.06% of the overall time. According to the principle "make the com-
mon case fast" [26], we focus on the ASC function which is the bottleneck of the RC
method. Figure 2(a) shows the profiling of the most time-consuming functions of the
RC method on a logarithmic scale.

The profiling of ASC function before performs parallel processing technique shows
that the function performs approximately 2N2 atan2() calculation, 2N2 for subtrac-
tion, division, multiplication and addition calculations, and 7N2 load/store operation.
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(a) RC Profiling

(b) ASC Function Profiling

Figure 2. Profiling RC Method

It is observed that the function is memory intensive with little computational inten-
sive.

The complexity of the ASC function is O(KN2). It depends on the number
of rows multiplied by the number of columns. Assuming the number of rows is
equal to the number of columns (rows=cols=N). While the number of SPs isn’t
constant, varying from image to another and increasing with image size (assuming it
K). Therefore, the total complexity of the adjusted singular compensator function is
O(KN2). From profiling and analyzing ASC function it can be found that we can run
horizontal compensator calculation in parallel with vertical compensator calculation
which we call parallel portion. The parallel portion takes 83.64% from ASC function
time and 79.51% from RC time. Figure 2(b) shows ASC function profiling on a
logarithmic scale.

According to Amdahl’s law [38], if P is the proportion of a system or program that
can run parallel, and 1− P is the proportion that remains serial, then the maximum
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speedup achieved using N number of processors is:

(3.10) Speedup(N) =
1

1− P + P
N

If N tends to infinity, then the maximum speedup tends to 1/(1-P ). Therefore the
maximum speedup that the RC method can reach is 4.88.

4. PARALLEL IMPLEMENTATION OF RC PHASE UNWRAPPING

This paper aims to accelerate the RC without affecting the accuracy of the al-
gorithm exploiting parallel processing techniques on multicore processors. Investing
multicore processors has many challenges such as implement the SIMD version of the
RC algorithm, develop the multithreading version of the RC algorithm, exploit mem-
ory hierarchy by dividing the data of the RC algorithm into blocks to fit into cache
memory, and put all these techniques together to get a speedup close to the ideal
value. Algorithm 1 shows the parallel implementation of the RC phase unwrapping.

1 Function ASC
input : Image, Singular
output: Compensate

2 Compensate←− Allocate with size of Image

3 Comp←− Allocate with size of Image

4 dh←− Allocate with size of NumOfCols

5 dv ←− Allocate with size of NumOfRows

6 Theta0←− 0.0

7 Theta1←− 0.0

8 Sing ←− user define data type

9 //Compensate is user define data type

10 //Image contains NumOfCols and NumOfRows

11 for Col = 0 to NumOfCols− 1 do
12 for Row = 0 to NumOfRows− 1 do
13 Compensate[Col][Row].Horizontal = 0

14 Compensate[Col][Row].V ertical = 0

15 for i = 0 to Singular.Length− 1 do
16 Sing = SingularData[i]

17 //horizontal and vertical compensator can run in parallel

Algorithm 1: Parallel RC Algorithm
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18 thread begin 0 to N − 1

19 //horizontal compensator

20 for Col = 0 to NumOfCols− 1 do
21 do in parallel
22 Load n elements in dv

23 Theta0[0] = atan2(−dv[0], dh[0])
...

24 Theta0[n− 1] = atan2(−dv[n− 1], dh[0])

25 for Row = 0 to NumOfRows− 1 do
26 do in parallel
27 Load n elements in dh

28 Theta1[0] = atan2(−dv[Col], dh[0])
...

29 Theta1[n− 1] = atan2(−dv[Col], dh[n− 1])

30 do in parallel
31 Comp[Col][Row] = (Theta1− Theta0)/2π

32 Repeat from line 28 to 31 for k elements

33 //vertical compensator

34 for Row = 0 to NumOfRows− 1 do
35 do in parallel
36 Load n elements in dh

37 Theta0[0] = atan2(−dv[Col], dh[Row])
...

38 Theta0[n− 1] = atan2(−dv[Col], dh[Row + n− 1])

39 for Col = 0 to NumOfCols− 1 do
40 do in parallel
41 Load n elements in dv

42 Theta1[0] = atan2(−dv[0], dh[Row])
...

43 Theta1[n− 1] = atan2(−dv[n− 1], dh[Row])

44 do in parallel
45 Comp[Col][Row] = (Theta1− Theta0)/2π

46 Repeat from line 42 to 45 for k elements

Algorithm 1: Parallel RC Algorithm (Continued)

4.1. Arctangent Approximation. As shown in Algorithm 1 the ASC function per-
forms approximately 2N2 atan2(), the evaluation of the arctangent function (atan2)
is commonly encountered in real-time multimedia applications. The most direct solu-
tion is based on the Taylor series. However, this series converges slowly for arguments
close to one and hence is inefficient [39]. The atan2 function in the math library helps
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to find the trigonometric arctangent of multiple parameters. It is used to calculate
the trigonometric arctangent of y/x and returns the angle in radius from the x-axis
to the specified point (y,x). In terms of the standard arctan function, whose range is
(−π, π) rad, it can be expressed as follows:

(4.1) atan2(y, x) =



arctan(y/x), if x > 0

arctan(y/x) + π, if x < 0 & y ≥ 0

arctan(y/x)− π, if x < 0 & y < 0

π/2, if x = 0 & y > 0

−π/2, if x = 0 & y < 0

undefined, if x = 0 & y = 0

Where the arctan function is the inverse of the tangent function, it returns the angle
whose tangent is a given number, the built-in function based on the Taylor series
expansion, and it takes time to calculate the angle [39]. To avoid the overhead of
atan2 implementing an approximate version of the function is the appropriate solu-
tion. There is lot of mathematical atan2 approximation, implementing the following
approximation with a maximum absolute error of 0.0038 rad (0.22 degree) [39]:

(4.2) arctan(x) ≈ 4πx+ 0.273x(1− |x|), −1 ≤ x ≤ 1

The arctan in Eq.(4.2) applicable for angles in the range of −π/4 to π/4. , we
implement the arctan and extends the angular range to −π to π to calculate the
four-quadrant using Eq.(4.1) (see [39] for more details about the mathematical ap-
proximation of arctan function).

The speedup of atan2 approximation is 1.54 over the built-in function and the
overall speedup of the RC algorithm is 1.43, Figure 3 shows the speedup of the
atan2 approximation over the built-in function with various sizes of images. After

Figure 3. RC Speedup by Atan2 Approximation
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replacing the built-in arctan function with the approximation one the accuracy of RC
is decreased by an acceptable factor.

4.2. Technical Environment. The environment used to execute the algorithm is
Unix FreeBSD 64 bit operating system, using c language, on Intel Xeon gold 6140
machine with 2.3 GHz frequency, 18 core with 36 Threads, 32 GB RAM, 32 KB level
1 cache, 1 MB level 2 cache, and 24.75 MB level 3 cache. We choose using Pthread
library for multi-threading than others to get more flexibility and using SIMD in-
structions inside it.

5. PERFORMANCE EVALUATION OF THE RC ALGORITHM ON
MULTI-CORE PROCESSORS

In this paper, we use AVX and AVX2 instructions to accelerate the RC algorithm.
We apply multithreading technique with 2, 4, 8, 16, and 32 threads to get the benefits
of the hyper-threading technology [29]. Merging SIMD with multithreading accelerate
the algorithm more than using one of them separately. The use of the blocking
technique also accelerates the algorithm due to the reduction of cache miss overhead
and reusing the data. We embed all together to get an efficient acceleration talking
the benefits of each technique.

The ASC function considers as 95.06% from the overall algorithm. However, the
portion of the function that had been executed in parallel is 83.64% of the function.
Therefore we can execute 79.51% of the RC algorithm in parallel. We use Amdahl’s
law in Eq.(3.10) to predict the possible speedup. The expected speedup of the RC
algorithm according to the specifications of the machine of Intel Xeon gold 6140
should be 2.48x, 3.29x, 1.66x, 2.48x, 3.29x, 3.93x, and 4.35x for AVX256, AVX512,
multithreading with 2 thread count, 4 thread, 8 thread, 16 thread, and 32 thread,
respectively. Symbol x represents the original time of the RC algorithm. The ideal
speedup isn’t reachable due to lot of factors; simply using twice as many cores doesn’t
immediately generate twice the performance. there is a portion of the algorithm that
doesn’t execute in parallel. The overall speedup of an algorithm is always limited by
its sequential part that can’t be parallelized, which is 20.49% in the RC algorithm [38].

5.1. Exploiting SIMD. Multicore processors have many architecture capabilities
that can accelerate applications. SIMD architectures have significant advantages
over the other systems described by Flynn’s classification scheme. SIMD exploits a
significant level of data-parallelism. It benefits enterprise applications in data mining
and multimedia applications, as well as the applications in computational science
and engineering using linear algebra [40]. Apply and exploit SIMD on the RC phase
unwrapping algorithm give speedup over sequential algorithm.
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Applying AVX256 instructions, which execute 4 double-precision floating-point
operations in parallel on the target algorithm yields to accelerate ASC function by
1.26, which yields to speed RC algorithm by 1.24, putting AVX256 with arctan func-
tion approximation gives a speedup of 1.8 for ASC function and 1.74 for RC. All the
below results represent the parallel processing techniques speedup without adding
arctan approximation speedup.

Using AVX512 which executes 8 double precision floating-point operations in
parallel accelerates ASC function by 1.33 and speed RC algorithm by 1.3, as shown
in Table 1. Figure 4 shows the speedup of ASC function and RC using AVX256 and
AVX512.

(a) ASC Function

(b) RC

Figure 4. Speedup of AVX256 and AVX512

5.2. Exploiting Multithreading. Multithreading is a mandatory software technol-
ogy for taking full advantage of the capabilities of modern computing platforms and it
offers significant efficiency improvements to the RC algorithm. We use multithreading
to exploit data level parallelism by dividing the same task with different data among
multiple cores. As shown in Figure 5 and Table 1, creating two, four, eight, and 16
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threads give a speedup close to the ideal. However, increasing the threads to 32 gives
a speedup less than expected. The number of physical cores is 18, therefore in case
of creating 32 give results less than ideal. Beside, the overhead of creating 32 reduce
the speedup.

(a) ASC Function

(b) RC

Figure 5. Speedup of Multithreading with Various Thread Count

5.3. Exploiting SIMD With Multithreading. Put AVX instructions with mul-
tithreading together exploits data level parallelism, therefore SIMD-Thrd accelerates
the RC algorithm more than using each method separately. The using of SIMD-Thrd
algorithm increase the Speedup of SIMD RC algorithm about 1.36 to 2.5 times for
various thread count. the highest speedup was achieved by creating 32 thread. Ta-
ble 1 shows ASC function and RC speedup for all SIMD with multithreading with a
various thread count over the sequential one. Figure 6 Shows ASC function and RC
speedup using SIMD with multithreading over the sequential.

Adding more cores or parallel processing techniques will speed RC algorithm
with a small speedup because we can’t speed this algorithm more than the maximum
speedup which is 4.88. Applying parallel processing techniques on an Intel Core i5
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function speedup RC speedup
AVX256 1.26 1.24
AVX512 1.33 1.30
Thrd2 1.62 1.55
Thrd4 2.43 2.20
Thrd8 3.12 2.72
Thrd16 3.56 3.02
Thrd32 3.59 3.04

SIMD-Thrd2 1.93 1.62
SIMD-Thrd4 2.69 2.41
SIMD-Thrd8 3.33 2.87
SIMD-Thrd16 3.65 3.09
SIMD-Thrd32 3.69 3.11

Blocking 1.21 1.22
SIMD-Block 1.29 1.26

Table 1. ASC Function and RC Speedup

(a) ASC Function

(b) RC

Figure 6. Speedup of SIMD-Thread with Various Thread Count
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with two cores machine, the RC speedup when using Approximation of arctan function
was 1.54, SIMD-Thrd with four threads speedup was 1.67 Putting them together
we get a maximum speedup of 2.57. By using the same machine with windows 10
operating system and Cygwin compiler we get a speedup of 1.25 for SIMD-Thrd with
four threads.

5.4. Exploiting Blocking. The increasing gap between memory latency and proces-
sor speed is a critical bottleneck in achieving high performance. Exploiting memory
hierarchy by blocking is one of the most critical techniques that can hide memory
latency, Applying blocking technique with various block size reduces the overhead of
memory and accelerates the RC algorithm over the original one, we try block sizes of
4*4, 8*8 , 8*4, and 16*4. The speedup of each block size are 1.19, 1.21, 1.21, 1.22 ,
respectively. According to the results of each block size, we chose the 8*4 block size
that gives a suitable speedup and apply SIMD technique together with it. Figure 7
shows the speedup of ASC function and RC using SIMD, blocking and SIMD with
blocking.

(a) ASC Function

(b) RC

Figure 7. Speedup of SIMD, Blocking, and SIMD-Blocking
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As shown in Figure 7 the SIMD with blocking gives a speedup greater than each
method alone.

6. CONCLUSION

This paper improves the speedup of the RC algorithm which is a mathematical
problem-solving technique by using SIMD instructions inside multiple threads to ex-
ploit data level parallelism by partitioning data among cores and perform the same
operations on it. Furthermore, implementing an approximation of the arctan func-
tion yields to appropriate speedup. The speedup of the parallel RC algorithm is 4.36
times over the sequential algorithm, this speedup is closed to the ideal which is 4.88.
The parallel RC algorithm balances between high accuracy and high speedup which
are important factors in image processing applications. In the future work we will
increase the accuracy of the parallel algorithm to equal the original algorithm and
implement the parallel RC algorithm as a general library to be used in various phase
unwrapping applications.
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