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ABSTRACT. In this work, we will provide an analytical method to compute the solution of the

linear coupled system of Caputo fractional di�erential equations with initial conditions. The stan-

dard method adopted for the system of ordinary di�erential equations using the exponential of a

matrix will not be useful, since the Mittag-Le�er function does not have the nice property of the

exponential function. In addition, the variation of parameter cannot be adopted for fractional dif-

ferential equations. Here we have used the Laplace transform method to solve the system of Caputo

fractional di�erential equations when the order of the derivative is q and 0 < q < 1. The method

yields the integer results as a special case. Our method also works for scalar sequential Caputo

fractional di�erential equations of order nq, since it can be reduced to n systems of qth order Caputo

fractional di�erential equations with initial conditions.
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1. INTRODUCTION

The concept of fractional-order derivatives, also known as non-integer order derivatives, dates

back to the 17th century. By the end of the nineteenth century, the requisite mathematics of

fractional-order derivatives and arbitrary-order integrals had nearly been �nished. Later, it was

discovered that arbitrary order derivatives provide an ideal foundation for modeling real-world issues

in a range of �elds, and their importance has grown as a result of their numerous applications in

diverse branches of science and engineering. See [1, 3, 4, 7, 8, 12, 17, 13, 21, 26, 27, 30, 31] and

the references therein for some analysis and applications of fractional di�erential equations. For

numerical work in fractional di�erential equation, see [2, 9, 23]. In the study of Caputo di�erential

equation with initial conditions, we will reduce to integer di�erential equation with initial conditions

if q is the order of the fractional derivative tends to an integer. In addition, if we can compute

the solution of the Caputo fractional di�erential equation, then, we can demonstrate that we can

choose the value of q as a parameter, to enhance the mathematical model as in [18]. In this work, we

provide a methodology to compute the solution of the two system of Caputo fractional di�erential

equations of order q and q < 1; with initial conditions. However, we cannot use the methods of
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the integer order since the Mittag-Le�er function needed to solve the Caputo fractional di�erential

equations, do not enjoy the nice property of the exponential function of the corresponding integer

order. In addition, we cannot use the variation of the parameter method since the nice form of the

product rule is not available for fractional derivatives. In order to solve the linear, homogeneous

or non-homogeneous system of equations with integer order, we could use the fundamental matrix

solution method by computing the matrix eAt. This method can be used to solve both homogeneous

and non-homogeneous linear system with initial conditions. The use of the inverse matrix of the

fundamental matrix eAt, which is essentially e�At, is required for this procedure. But, we can not

extend this approach to the linear Caputo fractional di�erential system. Similarly to eAt, EAt
q;1 is

the fundamental matrix solution of the linear Caputo fractional di�erential system

cD
q
0+(u) = Au;

where A is any N �N; constant matrix.

The Mittag-Le�er function, which is a generalization of the exponential function, is represented by

EAt
q;1. However, the inverse of E

At
q;1 is not E

�At
q;1 . Thus, we can not even solve the homogeneous linear

system of Caputo fractional di�erential equations with initial conditions using the fundamental

matrix solution method. Also, we can not use variation of parameter method to solve the non-

homogeneous linear scalar Caputo fractional di�erential equation since there is no product rule

for Caputo derivative. In this work, we provide a method to solve the linear non-homogeneous

Caputo fractional di�erential system by using the Laplace transform method. However, in order

to perform the inverse Laplace transform, we must �rst determine the eigenvalues of the matrix A.

The solutions will depend on the roots of the determinant of A � �I; being real and distinct, real

and coincident and complex roots. We will obtain the solution form in all the three cases. In the

integer case of the pure complex root case, the eigenfunctions are standard trigonometric functions

of the form sin�t and cos�t: In the corresponding situation, the eigenfunctions of the linear Caputo

fractional di�erential system are the fractional trigonometric functions sinq;1(�t
q) and cosq;1(�tq).

The fractional trigonometric functions sinq;1(�t
q) and cosq;1(�tq) are generalizations of the integer

trigonometric functions of the form sin�t and cos�t. In this work, we will show that the linear Caputo

sequential fractional di�erential equation of order nq can be reduced to n system of linear Caputo

fractional di�erential equations with initial conditions. Numerically, we will show that the fractional

trigonometric functions sinq;1 t
q and cosq;1 t

q have damping behavior without a damping term in the

sequential di�erential equation of order 2q: This behavior of the fractional trigonometric function is

useful in establishing the asymptotic stability of the equilibrium solution when we use the Caputo

fractional derivative of order q < 1 in the model instead of the integer model. If the eigenvalues are

of the form � � i�; then the Generalized fractional trigonometric functions G sinq;1(� + i�)tq and

G cosq;1(�+ i�)tq are required. We will provide the Laplace transform table which will be useful in

solving the linear non-homogeneous system of Caputo fractional di�erential equations with initial

conditions.

2. PRELIMINARY RESULTS

In this section, we will recall some de�nitions and known results which play a key role in our

main results.

De�nition 2.1. The Riemann-Liouville fractional integral of order q de�ned by

(2.1) D
�q
0+u(t) =

1

�(q)

Z t

0

(t� s)q�1u(s)ds;
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where 0 < q � 1 and �(q) is the Gamma function.

De�nition 2.2. The Riemann-Liouville (left-sided) fractional derivative of u(t) of order q, when

0 < q < 1, is de�ned as:

(2.2) D
q
0+u(t) =

1

�(1� q)

d

dt

Z t

0

(t� s)q�1u(s)ds; t > 0:

The Riemann-Liouville integral of order q for any function is same as the Caputo integral of

order q.

De�nition 2.3. The Caputo (left-sided)fractional derivative of u(t) of order q; n� 1 � nq < n, is

given by the equation:

(2.3) cD
nq
0+u(t) =

1

�(n� nq)

Z t

0

(t� s)n�nq�1un(s)ds; t 2 [0;1); t > t0;

where un(t) = dn(u)
dtn

.

In particular, if q is an integer, then both Caputo derivative and integer derivative are same.

Note that the Caputo integral of order q for any function is same as the Riemann-Liouville integral

of order q. See [10, 12, 20] for more details in Caputo and Riemann-Liouville fractional derivative.

De�nition 2.4. The Caputo (left) fractional derivative of u(t) of order q, when 0 < q < 1, is de�ned

as:

(2.4) cD
q
0+u(t) =

1

�(1� q)

Z t

0

(t� s)�qu0(s)ds:

We are just replacing n by 1 in above de�nition.

Next, we de�ne the two parameter Mittag-Le�er function which will be useful in solving the

systems of linear Caputo fractional di�erential equations using the Laplace Transform. See [15, 16,

22] for more in fractional di�erential equations with applications.

De�nition 2.5. The two parameter Mittag-Le�er function is de�ned as

(2.5) Eq;r(�t
q) =

1X
k=0

(�tq)k

�(qk + r)
;

where q, r > 0, and � is a constant. Furthermore, for r = q, (2.5) reduces to

(2.6) Eq;q(�t
q) =

1X
k=0

(�tq)k

�(qk + q)
:

If q = 1 and r = 1 in (2.5), then we have,

(2.7) E1;1(�t) =

1X
k=0

(�t)k

�(k + 1)
= e�t;

where e�t is the usual exponential function.

See [10, 12, 14, 20] for more details on Mittag-Le�er function.

Here, below we have de�ned fractional trigonometric functions and generalized fractional trigono-

metric functions of order q which will be required in our main results.
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De�nition 2.6. The fractional trigonometric functions sinq;1(�t
q) and cosq;1(�t

q); are given by

(2.8) sinq;1(�t
q) =

1

2i
[Eq;1(i�t

q)� Eq;1(�i�tq)]

and

(2.9) cosq;1(�t
q) =

1

2
[Eq;1(i�t

q) + Eq;1(�i�tq)];

respectively.

We can also de�ne sinq;q(�t
q) and cosq;q(�t

q) in a similar way using Eq;q(�t
q) in place of

Eq;1(�t
q):

De�nition 2.7. The Generalized fractional trigonometric functionsGsinq;1((�+i�)t
q) andGcosq;1((�+

i�)tq); are given by

(2.10) Gsinq;1((�+ i�)tq) =
1

2i
[Eq;1((�+ i�)tq)� Eq;1((�� i�)tq)]

and

(2.11) Gcosq;1((�+ i�)tq) =
1

2
[Eq;1((�+ i�)tq) + Eq;1((�� i�)tq)];

respectively.

We can also de�ne Gsinq;q((�+ i�)tq) and Gcosq;q((�+ i�)tq) in a similar way.

Note that the generalized fractional trigonometric function can not be expressed in simple form as

the integer trigonometric function, since the Mittag-Le�er function does not enjoy the properties

of an exponential function. When q = 1, then (2.8), (2.9), (2.10) and (2.11) will give sin�t, cos�t,

e�t sin�t and e�t cos�t respectively.

We turn our attention now to transform method, which will provide not just a tool for obtaining

solutions, but a framework for understanding the structure of linear Caputo fractional di�erential

equations.

De�nition 2.8. The Laplace transform F(s) of a function f(t) is

L[f(t)] = F (s) =

Z
1

0

e�stf(t)dt;

de�ned for all s such that the integral converges.

Since cD
q
0+f(t) is in the convolution integral form, the Laplace transform of cD

q
0+f(t) such

that 0 < q � 1 is given by

L[cDq
0+f(t)] = sqF (s)� sq�1f(0);

where F (s) = L(f(t)).
See [19] for the initial work on Laplace transform for fractional di�erential equations.

De�nition 2.9. The Caputo fractional derivative of u(t) of order nq for n� 1 < nq < n; is said to

be sequential Caputo fractional derivative of order q, if the relation

(2.12) cD
nq
0+u(t) =

cD
q
0+(

cD
(n�1)q
0+ )u(t);

holds for n = 2; 3 : : : .
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Note that the equation (2.12) can also be written as

cD
kq
0+u(t) =

cD
q
0+(

cD
q
0+)(

cD
q
0+) : : : k times : : : (cDq

0+)u(t);

for k = 2; 3; 4 : : : .

See [5, 24, 25, 28] for some more work on sequential fractional di�erential equations.

Next we recall a lemma which is useful in taking the Laplace transform of a sequential Caputo

fractional derivative of order nq.

Lemma 2.10. The Laplace transform of a sequential Caputo fractional derivative of u(t) of order

q such that n� 1 < nq < n; is given by

L(cDnq
0+u(t)) = snqU(s)� snq�1u(0)� s(n�1)q�1(cDq

0+u(0))� s(n�2)q�1(cD2q
0+u(0))

� � � � sq�1(cD
(n�1)q
0+ u(0));

where U(s) = L(u(t)).

For details of the proof, see [29].

Below, we have developed a Laplace transform table for certain basic functions which are useful for

our main results.

Laplace transform Table 1

S.N f(t) = L�1[F (s)] F (s) = L(f(t))

1. tq
�(q + 1)

sq+1
s > 0; q > �1

2. Eq;1(��tq) sq�1

sq � �
sq > �; q > �1

3. tq�1Eq;q(��tq) 1

sq � �
sq > �; q > �1

4.
tq

q
Eq;q(��tq) sq�1

(sq � �)2
sq > �; q > �1

5. sinq;1(�t
q)

�sq�1

s2q + �2
s > 0

6. cosq;1(�t
q)

s2q�1

s2q + �2
s > 0

7. tq�1sinq;q(�t
q)

�

s2q + �2
s > 0

8. tq�1cosq;q(�t
q)

sq

s2q + �2
s > 0

9. Eq;1(�t
q) +

�tq

q
Eq;q(�t

q)
s2q�1

(sq � �)2
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Laplace transform Table 2

S.N f(t) = L�1[F (s)] F (s) = L(f(t))

10. tq�1
P
1

k=0

(k + 1)�ktqk

�(qk + q)

sq

(sq � �)2

11. t2q�1
P
1

k=0

(k + 1)�ktqk

�(qk + 2q)

1

(sq � �)2

12. Gcosq;1f(�+ i�)tqg sq�1(sq � �)

(sq � �)2 + �2

13. Gsinq;1f(�+ i�)tqg �sq�1

(sq � �)2 + �2

14. tq�1Gcosq;qf(�+ i�)tqg sq � �

(sq � �)2 + �2

15. tq�1Gsinq;qf(�+ i�)tqg �

(sq � �)2 + �2

3. MAIN RESULTS

We divided the main �ndings into three sections. In the �rst part, we will show how to reduce

linear sequential Caputo fractional di�erential equations of order nq to n systems of qth order Ca-

puto fractional di�erential equations with initial conditions. In the second section, we will devise a

method for solving two system of qth order Caputo fractional di�erential equations. Finally, we will

discuss some numerical results.

We developed a Laplace transform method in this work to solve the linear sequential Caputo frac-

tional di�erential equations of order nq that are sequential of order q such that n� 1 < nq < n. All

our results yield the integer results as a special case when q tends to 1.

3.1. Solution of linear sequential Caputo fractional di�erential equations of order nq

with initial conditions. Although our aim is to develop a method to compute the solutions of

linear system of Caputo fractional di�erential equations with initial conditions, initially we would

like to show that nq order linear sequential Caputo fractional di�erential equations can be reduced

to n systems of qth order linear Caputo fractional di�erential equations.

Consider the linear sequential Caputo fractional di�erential equations of order nq with initial

conditions of the form:

(3.1) cD
nq
0+u+ ac1D

(n�1)q
0+ u+ ac2D

(n�2)q
0+ u+ � � �+ anu = f(t);

with cD
kq
0+u(0) = bk for k = 0; 1; 2; : : : n� 1.

To transform nq order linear sequential Caputo fractional di�erential equations to n system of

qth order linear Caputo fractional di�erential equations, we have label

u = u1:
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Then the resulting qth order n linear system of Caputo fractional di�erential equations is

(3.2)

8<
:

cD
q
0+uk = uk+1 for k = 1; 2; : : : n� 1;

cD
q
0+un = �anu1 � � � � � a2un�1 � a1un + f(t).

Now the above system can be written as

cD
q
0+u = Au+ F;

where

u =

2
66666666666666666666666666664

u1

u2

u3

...

un�1

un

3
77777777777777777777777777775

, A =

2
66666666666666666666666666664

0 1 0 0 : : : 0

0 0 1 0 : : : 0

0 0 0 1 : : : 0

...
...

...
...

...
...

0 0 0 : : : 0 1

�an �an�1 �an�2 : : : �a2 �a1

3
77777777777777777777777777775

, F =

2
66666666666666666666666666664

0

0

0

...

0

f

3
77777777777777777777777777775

,

and uk(0) =
cD

kq
0+u(0) = bk for k = 0; 1; 2; : : : n� 1:

Remark 3.1. In general, we can reduce the linear nq order sequential Caputo fractional

di�erential equations to n systems of linear Caputo fractional di�erential equation of order q.

3.2. Solution of linear Caputo fractional order with two system. In this work, we will

develop a method to solve a two system of qth order linear Caputo fractional di�erential equations.

For that purpose, consider the two system of linear Caputo fractional di�erential equation of order

q of the following form:

cD
q
0+u(t) = Au(t) + f(t); u(0) = u0; 0 < q � 1;(3.3)

where A =

2
666664
a11 a12

a21 a22

3
777775
, f(t) =

2
666664
f1(t)

f2(t)

3
777775
, u(t) =

2
666664
x(t)

y(t)

3
777775
.

Say u0 =

2
666664
x0

y0

3
777775
.

If q = 1, we can solve it using the fundamental matrix solution and then use the variation of

parameter method to solve the non-homogeneous part. However, we can't use the fundamental

matrix solution method for q < 1 for two reasons. The �rst reason is that we can not use a
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variation of the parameter method. It will not work since there is no product rule for the fractional

derivative. The second reason is that the Mittag-Le�er function does not enjoy the nice property

that the exponential function does. As a result, the Laplace transform method is the best approach

for solving two systems of linear Caputo fractional di�erential equations.

Now taking the Laplace transform of (3.3) , we get

sqU(s)� sq�1u0 = AU(s) + F (s);

where U(s) = L(u(t)) and F (s) = L(f(t)):
Now solving for U(s), we get

U(s) = (sqI �A)�1fsq�1u0 + F (s)g

=

2
666664

s2q�1x0 + sq�1(a12y0 � a22x0)

jsqI �Aj
s2q�1y0 + sq�1(a21x0 � a11y0)

jsqI �Aj

3
777775
+

2
666664

(sq � a22)F1(s) + a12F2(s)

jsqI �Aj
a21F1(s) + (sq � a11)F2(s)

jsqI �Aj

3
777775
:

Let jsqI �Aj = P (2); where P (2) is second degree polynomial in sq. Now solving for U(s), we get

U(s) =

2
666664

s2q�1x0 + sq�1(a12y0 � a22x0) + (sq � a22)F1(s) + a12F2(s)

P (2)

s2q�1y0 + sq�1(a21x0 � a11y0) + (sq � a11)F2(s) + a21F1(s)

P (2)

3
777775
:(3.4)

In order to obtain u(t), we have to take the inverse Laplace transform of (3.4) on both sides.

The inverse Laplace transform of right hand side depends on the roots of the polynomial P (2). This

leads to several cases.

Case 1: If the roots of P (2) are real and distinct, say �1 and �2.

Then, P (2) = (sq � �1)(s
q � �2):

Now in order to get inverse of Laplace transform of above expression, let's get the inverse separately.

(a) For this, we are going to use partial fraction.

Let
sq

(sq � �1)(sq � �2)
=

A1

(sq � �1)
+

B1

(sq � �2)
:

Then using formulas 2 and 3 from Laplace transform table, we get

L�1[ s2q�1

(sq � �1)(sq � �2)
] = A1Eq;1(�1t

q) +B1Eq;1(�2t
q)

and

L�1[ sqF1(s)

(sq � �1)(sq � �2)
] =

Z t

0

fA1Eq;q(�1(t� s)q) +B1Eq;q(�2(t� s)q)g(t� s)q�1f1(s)ds;

where A1 =
�1

�1 � �2
and B1 =

�2

�2 � �1
:

(b) Let
1

(sq � �1)(sq � �2)
=

A2

(sq � �1)
+

B2

(sq � �2)
:

Then using formulas 2 and 3 from Laplace transform table, we get

L�1[ sq�1

(sq � �1)(sq � �2)
] = A2Eq;1(�1t

q) +B2Eq;1(�2t
q)

and
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L�1[a12F2(s)� a22F1(s)

(sq � �1)(sq � �2)
]

=

Z t

0

fA2Eq;q(�1(t� s)q) +B2Eq;q(�2(t� s)q)g(t� s)q�1(a12f2(s)� a22f1(s))ds;

where A2 =
1

�1 � �2
and B2 =

1

�2 � �1
:

Now taking the inverse Laplace transform of U(s) in (3.4), we will get

x(t) = fA1Eq;1(�1t
q) +B1Eq;1(�2t

q)gx0
+ fA2Eq;1(�1t

q) +B2Eq;1(�2t
q)g(a12y0 � a22x0)

+

Z t

0

fA1Eq;q(�1(t� s)q) +B1Eq;q(�2(t� s)q)g(t� s)q�1f1(s)ds

+

Z t

0

fA2Eq;q(�1(t� s)q) +B2Eq;q(�2(t� s)q)g(t� s)q�1(a12f2(s)� a22f1(s))ds

and

y(t) = fA1Eq;1(�1t
q) +B1Eq;1(�2t

q)gy0
+ fA2Eq;1(�1t

q) +B2Eq;1(�2t
q)g(a21x0 � a11y0)

+

Z t

0

fA1Eq;q(�1(t� s)q) +B1Eq;q(�2(t� s)q)g(t� s)q�1f2(s)ds

+

Z t

0

fA2Eq;q(�1(t� s)q) +B2Eq;q(�2(t� s)q)g(t� s)q�1(a21f1(s)� a11f2(s))ds:

Case 2: If the roots of P (2) are real and equal, (say �), then P (2) = (sq � �)2:

Similarly, using formulas 9, 4, 10 and 11 from Laplace transform table, we get

x(t) = fEq;1(�t
q) +

�tq

q
Eq;q(�t

q)gx0 + tq

q
Eq;q(�t

q)(a12y0 � a22x0)

+

Z t

0

1X
k=0

(k + 1)�k(t� s)qk+q�1

�(qk + q)
f2(s)

+

Z t

0

1X
k=0

(k + 1)�k(t� s)qk+2q�1

�(qk + 2q)
(a21f1(s)� a11f2(s))ds

and

y(t) = fEq;1(�t
q) +

�tq

q
Eq;q(�t

q)gy0 + tq

q
Eq;q(�t

q)(a21x0 � a11y0)

+

Z t

0

1X
k=0

(k + 1)�k(t� s)qk+q�1

�(qk + q)
f1(s)

+

Z t

0

1X
k=0

(k + 1)�k(t� s)qk+2q�1

�(qk + 2q)
(a12f2(s)� a22f1(s))ds:

Case 3: If the roots of P (2) are purely imaginary, (say ��i).
Then, P (2) = (sq � i�)(sq + i�) = s2q + �2:

Similarly, using formulas 6, 5, 8 and 7 from Laplace transform table, we get
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x(t) = cosq;1(�t
q)x0 +

1

�
sinq;1(�t

q)(a12y0 � a22x0) +

Z t

0

(t� s)q�1cosq;q(�(t� s)q)f1(s)ds

+

Z t

0

(t� s)q�1

�
sinq;q(�(t� s)q)(a12f2(s)� a22f1(s))ds

and

y(t) = cosq;1(�t
q)y0 +

1

�
sinq;1(�t

q)(a21x0 � a11y0) +

Z t

0

(t� s)q�1cosq;q(�(t� s)q)f2(s)ds

+

Z t

0

(t� s)q�1

�
sinq;q(�(t� s)q)(a21f1(s)� a11f2(s))ds:

Case 4: If the roots of P (2) are complex, (say �+ �i and �� �i).

Then, P (2) = (sq � �� �i)(sq � �+ �i) = (sq � �)2 + �2.

Now in order to get inverse of Laplace Transform, we are going to use partial fraction.

Let
sq

(sq � �)2 + �2
=

sq � �

(sq � �)2 + �2
+

�

(sq � �)2 + �2
:

Then using formulas 12 and 13 from Laplace transform table, we get

L�1[ s2q�1

(sq � �)2 + �2
] = Gcosq;1f(�+ i�)tqg+ �

�
Gsinq;1f(�+ i�)tqg:

Similarly, using formulas 12, 13, 14 and 15 from Laplace transform table, we will get

x(t) = fGcosq;1f(�+ i�)tqg+ �

�
Gsinq;1f(�+ i�)tqggx0 + 1

�
Gsinq;1f(�+ i�)tqg(a12y0 � a22x0)

+

Z t

0

(t� s)q�1fGcosq;qf(�+ i�)(t� s)qg+ �

�
Gsinq;qf(�+ i�)(t� s)qgf1(s)ds

+

Z t

0

(t� s)q�1

�
Gsinq;qf(�+ i�)(t� s)qg(a12f2(s)� a22f1(s))ds

and

y(t) = fGcosq;1f(�+ i�)tqg+ �

�
Gsinq;1f(�+ i�)tqggy0 + 1

�
Gsinq;1f(�+ i�)tqg(a21x0 � a11y0)

+

Z t

0

(t� s)q�1fGcosq;qf(�+ i�)(t� s)qg+ �

�
Gsinq;qf(�+ i�)(t� s)qgf2(s)ds

+

Z t

0

(t� s)q�1

�
Gsinq;qf(�+ i�)(t� s)qg(a21f1(s)� a11f2(s))ds:

3.3. Numerical Results. In this section, we provide some stability results of the equilibrium

solution of prey and predator model using analysis and numerical approach. Let u1 and u2 be the

prey and predator densities respectively. Now consider the prey and predator model

cD
q
0+u1(t) = u1(4� u1 � 3u2)

and

cD
q
0+u2(t) = u2(�2 + u1 + u2);

where 0 < q < 1. The only positive equilibrium solution of above system is (1; 1) and we reduce the

above problem to the corresponding linear system in the neighborhood of equilibrium. The linear

system will be in the form

cD
q
0+v(t) = Av(t); u(0) = u0; 0 < q < 1;
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where A =

2
666664
�1 �3

1 1

3
777775
and v(t) =

2
666664
u1(t)� 1

u2(t)� 1

3
777775
:

Now the eigen values of the matrix A are �ip2 and the corresponding eigenvectors are

sinq;1(
p
2tq) and cosq;1(

p
2tq). For q = 1; we have only stability but for q < 1, we will have asymp-

totic stability because the graphs of sinq;1(
p
2tq) and cosq;1(

p
2tq) oscillates and exhibit damping

behavior. Hence, by proper choice of q < 1, we will have asymptotic stability. See more in [11].

Here, below we draw the graphs of the solution near the equilibrium point (1; 1).

Figure 1. sinq;1(
p
2tq) graph.

Figure 2. cosq;1(
p
2tq) graph.
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Remark 3.3.1. Observe that when q = 1, the graphs exactly match the usual trigonometric

functions. However, when q < 1, we can see that there is a damping that ensures the asymptotic

stability of the equilibrium solution.

Similarly, if we consider the following prey and predator model

cD
q
0+u1(t) = u1(1� 1

2
u1 � 1

2
u2)

and
cD

q
0+u2(t) = u2(

�3
2

+ 2u1 � 1

2
u2);

where 0 < q � 1.

Then the linear system will be in the form

cD
q
0+v(t) = Bv(t); u(0) = u0; 0 < q < 1;

where B =

2
666664
� 1

2 � 1
2

2 � 1
2

3
777775
and v(t) =

2
666664
u1(t)� 1

u2(t)� 1

3
777775
:

Then the eigenvalues of matrix B are �0:5�i and we will have following �gure of Gsinq;1(�0:5+
i)tq and Gcosq;1(�0:5 + i)tq.

Figure 3. Gsinq;1(�0:5 + i)tq graph.
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Figure 4. Gcosq;1(�0:5 + i)tq graph.

Finally, we present an example of a system of 2q order sequential Caputo di�erential equations

which exhibits a damping nature without a damping term.

Example: Consider 2q order sequential Caputo fractional di�erential equation

cD2qu(t) + �2u = 0; 1 < 2q � 2;

subject to initial conditions

u(0) = 1; cDqu(0) = 0;

where � is a real number.

The roots of the characteristic equation are then ��i, and the general solution of the above equation
is

u(t) = Acosq;1(�t
q) +Bsinq;1(�t

q):

Using the initial conditions, the solution which satisfy above equation is given by

(3.5) u(t) = cosq;1(�t
q):

If the initial conditions are changed to

u(0) = 0; cDqu(0) = 1;

then the general solution will be

u(t) =
1

�
sinq;1(�t

q):

Remark 3.3.2. Observe that the graphs of sinq;1(�t
q) and cosq;1(�t

q) have damping behavior

similar to the graphs of �gure 1 and �gure 2. However, if q = 1, we will have usual trigonometric

functions sin�t and cos�t which has no damping behavior. See more in [6, 9].
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CONCLUDING REMARKS

In this work, we have developed a method to solve the two linear system of Caputo fractional

di�erential equations with initial conditions using the Laplace transform method. In general, there

is no easy method to solve a general linear Caputo fractional di�erential equations of order nq;

where n� 1 < nq < n: In particular, if q = 1; then we have an nth order linear di�erential equation,

which can be theoretically solved by reducing it to n system of linear di�erential equations. This

is possible for a fractional di�erential equation of order nq if the fractional derivative of order nq

is sequential of order q: Further, the initial conditions should involve all fractional derivatives of

lower order kq; with k = 1; 2; : : : (n � 1): All our methods developed here yield the corresponding

integer results as a special case. The methods developed here will help us to discuss the stability

of the equilibrium solution of linearized system of the Caputo fractional di�erential equations with

initial conditions. An important observation is that the equilibrium solution of the linear Caputo

fractional di�erential system may be asymptotically stable even when the corresponding solution

of the equilibrium solution of integer system is only locally stable. In addition, the solution of the

Caputo fractional di�erential system may agree closely with the available data compared with the

solution of the integer model. We plan to extend our method to third and higher order systems so

that we can study biological models such as COVID-19 SIR and SEIR models.
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