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ABSTRACT. We shall provide an analytical method for solving three linear coupled systems
of Caputo fractional differential equations with fractional initial conditions. Because the Mittag-
Leffler function doesn’t satisfy all the properties of the exponential function, we cannot use the
integer order methods. Here we have used an efficient and convenient method, called the Laplace
transform method, to solve the three systems of linear Caputo fractional differential equations with
fractional initial conditions when the order of the fractional derivative is ¢ and 0 < ¢ < 1.In addition,
the Laplace-Adomian decomposition method allows us to obtain an approximation of the non-linear
SIR epidemic model of fractional order gq. All the methods we have adopted here yield integer results
as a special case. Our method also works for scalar linear sequential Caputo fractional differential
equations of order ng, since it can be reduced to n systems of gth order linear Caputo fractional
differential equations with initial conditions.
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1. INTRODUCTION

The widely studied subject of fractional differential equations has remarkably gained promi-
nence and popularity in the last few decades due to its proved applications in a wide range of science,
economics, and engineering fields. It has encompassed a wide range of topics, such as initial value
problems, boundary value problems, and the stability of fractional equations. Fractional differential
equations of arbitrary order are the generalization of ordinary differential equations of integer order.
Many scientists and mathematicians are now attracted to the field of differential systems of frac-
tional order due to its numerous applications. The fractional derivative has a global nature and the
integer derivative has a local nature. From a modeling point of view, appropriate order fractional
differential systems are more suitable than the integer order. As a result, mathematicians were able
to improve the model using real world data by utilizing the order g of the fractional derivative as
a parameter. See [3| [4] [7, [8, [IT] (16| 12| 20, 25], 26], 27| B0, B1] and the references therein for some
analysis and applications of fractional differential equations. For numerical work in fractional dif-

ferential equation, see [2, @ 23].
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In this work, we present an analytic method for solving the three systems of Caputo fractional dif-
ferential equations of order ¢ with 0 < ¢ < 1, with initial conditions. The Mittag-LefHler function,
which is required to solve the Caputo fractional differential equations, does not have the nice prop-
erties of the exponential function of the appropriate integer order, so we cannot utilize the integer
order methods. Furthermore, because the product rule is not available for fractional derivatives,
we cannot use the variation of the parameter technique. E,1(At?) represents the Mittag-Leffler
function, which is the generalization of the exponential function, but the inverse is not E, ; (—At?),
because of the fact that E;1(At?) « E,1(—At?) # 1. This holds true even when A is a constant.
Hence, we cannot solve it using the fundamental matrix solution method, and therefore an effective
and convenient method for solving Caputo fractional differential equations is needed. Various meth-
ods have been used to solve fractional differential equations, fractional partial differential equations,
fractional integro-differential equations, and dynamic systems with fractional derivatives, including
the Laplace-Adomian decomposition method. Since the Caputo fractional derivative is in the con-
volution integral form, it is the ideal candidate to use the Laplace transform.

In this work, we initially provide a method to solve the three linear non-homogeneous Caputo
fractional differential systems by using the Laplace transform method. Podlubny [19], proposed a
method based on the Laplace transform approach which is used to solve numerous fractional dif-
ferential equations. The Laplace transform method has played an important role in solving basic
problems of differential equations. It is one of several valuable tools for solving fractional-order dif-
ferential equations. The Laplace transform method has proved to be the most efficient and useful in
the analysis and applications of fractional-order systems, from which some findings can be obtained
quickly. When using Laplace transform method, in order to get an inverse Laplace transform of
linear non-homogenous Caputo fractional differential equations with fractional initial conditions, we
have developed necessary Laplace transform tables in our work.

It is easy to observe that the linear constant coefficient sequential differential equations of order ng
with fractional initial conditions, can be reduced to n systems of gth order linear Caputo fractional
differential equations with initial conditions. Thus, our study of systems will include the study of
ng order sequential differential equations as a special case. See, [18] for more details on sequential.
Finally, we have found a theoretical approximate solution of a non-linear SIR, epidemic model of the
fractional order ¢ by using the Laplace-Adomian decomposition method. Using the above theoreti-
cal results, we have also provided numerical methods for a specific epidemic SIR model for different
values of the fractional order ¢ including ¢ = 1. The purpose of this computation is to choose the

value of the order ¢ as a parameter to improve our model to fit the data. See, [I}21] for more details.

2. PRELIMINARIES RESULTS

In this section, we will recall some definitions and known results that play a key role in our

main results.

Definition 2.1. The Riemann-Liouville fractional integral of order ¢ defined by

1! o1
m/o (t —s)T  u(s)ds,

where 0 < ¢ <1 and I'(g) is the Gamma function.,

(2.1) Dy ult) =

Definition 2.2. The Riemann-Liouville (left-sided) fractional derivative of u(t) of order ¢, when
0 < g < 1, is defined as:

1 d

(2.2) D§ u(t) = ma/o (t — s)"%u(s)ds, t > 0.
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The Riemann-Liouville integral of order q for any function is same as the Caputo integral of

order q.

Definition 2.3. The Caputo (left-sided)fractional derivative of u(t) of order ng,n —1 < ng < n, is

given by the equation:

cTn 1 ¢ n—ng—1,n
(23) Doiu(t) = m/o (t — S) a 1U (S)ds,t S [0,00), t> tO;
where u"(t) = d;t(ff).

In particular, if ¢ is an integer, then both the Caputo derivative and the integer derivative are
one and the same. Note that the Caputo integral of order q for any function is the same as the
Riemann-Liouville integral of order ¢. See [10, 1], 19] for more details on Caputo and Riemann-

Liouville fractional derivatives.

Definition 2.4. The Caputo (left) fractional derivative of u(t) of order ¢ for n =1, when 0 < ¢ < 1,

is defined as:

1 t
2.4 chutzi/ t—s) %' (s)ds.
(2.4 () = =0y [ =97

Next, we define the two parameter Mittag-Leffler functions, which will be useful in solving the
three systems of linear Caputo fractional differential equations using the Laplace transform. See

[14], [15], 22], for more on fractional differential equations with applications.

Definition 2.5. The two parameter Mittag-Leffler function is defined as
o0
_ (At9)*
(25) By (M) = 30 o

where ¢, r > 0, and A is a constant. Furthermore, for r = ¢, (2.5) reduces to

o~ (Ae0)*

(2.6) BN =3 o

k=0

If g=1and r = 1in (2.5), then we have, E; 1 (\t) = e*, the usual exponential function.

See [10} 1T}, 13} 19], for more details on Mittag-Leffler functions.
Here, we have defined fractional trigonometric functions and generalized fractional trigonometric

functions of order ¢ which will be required in our main results.

Definition 2.6. The fractional trigonometric functions sing 1 (At?) and cosg 1 (At?), are given by

(2.7) sing, (M1) = %[Ew(m% By (i)
and

(2.8) cosy1 (M) = %[Eq,l(i/\tq) + By (—iM)],
respectively.

We can also define sing ,(At?) and cos, ,(At?) in a similar way using E, ,(A\t?) in place of
Eq1(At9).
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Definition 2.7. The generalized fractional trigonometric functions G'sing 1 ((A + ip)t?) and
Gcosg1((A+ip)t?), are given by

(2.9) Gsing (4 i)t) = 5 (B (A i)t9) — By, (= i)t9)]
and

(2.10) Geosy 1 (A + iu)t?) = %[E%l(()\ i)t + By 1 (h = im)t?)],
respectively.

We can also define G'sing 4 ((A +ip)t?) and Geosg q((A +ip)t?) in a similar way.

Definition 2.8. The Laplace transform F(s) of a function f(t) is

LIf(t)]=F(s) = /OO e *Lf(t)dt,

0
defined for all s such that the integral converges.

Since “Dg_ f(t) is in the convolution integral form, the Laplace transform of D, f(t) is
LIEDGLf(1)] = s"F(s) — 57 £(0), 0<g<1,
where F(s) = L(f(t)).
See [17], for the initial work on the Laplace transform for fractional differential equations.

We have created a Laplace transform table for a few fundamental functions that will come in handy

in our main results. For some of the functions which are not present in this table, see table from
[18].

Laplace transform Table
SN | f(t) = LTHF(s)] F(s) = L(f(1))
T(g+1)
1. t? RS
a s
2. E,1(£At9) e
1
-1
3. t17 B, o (£A?) ED)
t? 51t
4. —FE, (£At?
p a.a( ) (s¢ F \)2
At 5241
k + 1)\kgak 1
2¢—1 |00 (
6 7 2o Tkt CIE)E
o k(k+1) (At2)k—1 g3a-1
T Xkso — [P7IES\E]
2 T@@k-1+1) (s1—)N)
1 q\k—1 2¢q—1
3. e k(k+1) (\t?) S
2 T(qk+1) (s7—=X)3
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1 q\k—1 g—1
o, |payee MEXD) _Ow) st
2 F(glk+1)+1) (s1—\)3
k4 1)(k + 4 \ettgalht+2)—1 524
10. —1p g o | T 3
0 t 7.q(At?) + Zk:o 2 L(gk + 2¢) (s1—))3
v (k+1)(k+2) Nepatkt2)—1 s?
1|3, (51— 2P
2 I'(gk + 2q) (s1=))3
k—11q(k+2)—1
|y k(k + 1) Ab=1¢ v
2 L(gk + 2q) (s1=))3
) 5171 (54 — ))
13. GCOSq’l{()\ + Zu)tq} m
. . pst!
14. Gsing1{(A+ip)t?} (9 — N2 + 12
B ] sT— A
15. t9 Geosg o { (A + ip)t?} (51 — A2+ 2
16. t4 1 Gsing o {(\ +ip)te} (9 = N2 + 42

3. MAIN RESULTS

We divided the main findings into two sections. In the first section, we will develop a method
for solving three or more linear systems of gqth order Caputo fractional differential equations. All our
results yield integer results as a special case when ¢ tends to 1. See, [I§] for more details. The study
of linear fractional differential systems is also useful in the stability results of the compartmental SIR
model of epidemic diseases. In the second section, we will discuss the non-linear fractional system of
the compartmental SIR model. Using Laplace-Adomian decomposition method, we have developed
both computational and numerical results for measles SIR Model for different fractional order ¢ with

0 < g < 1. The spread of an epidemic SIR model can be seen here, [21].

3.1. Solution of linear Caputo fractional order with three systems. In this work, we will
develop a method to solve three systems of gth order linear Caputo fractional differential equations.
For that purpose, consider the three systems of linear Caputo fractional differential equations of

order g, where 0 < ¢ < 1, of the following form:

‘D u(t) = Au(t) + f(t), u(0) = ug, 0<g<1,

aj; apx a3 fi(®) (t)
where A= lay am ax|, fO)=|f@)], ul)= |y
as1 a2 ass f3(t) 2(t)
z(0) Zo
Say uo = |y(0) | = |yo
2(0) 20

Taking the Laplace Transform of reference , we get
51U (s) — 877 ug = AU (s) + F(s)

U(s) = (s — A) " Hs"  ug + F(s)},
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where
|(s'] —A)| = P(3) = s — qu(an + ass + azz) + s7(ar11a20 — a12a21 + a11a33 — G13a31 + Q22033

- 0231132) + a11623a32 + G12a21033 + Q13022031 — A11022033 — (12023031 — A13021032.

Hence,
820 — s9(ags + asz) + dq s%aigs + €1 slays + fi
P(3) P(3) P(3)
(s47 — A)_l _ s%as1 + do s29 — s9(a11 + ass) + eo slass + fo ’
P(3) P(3) P(3)
Sqagl + d3 Sqa32 + €3 82q — sq(au + a22) + f3
P(3) P(3) P(3)
where
G22a33 — az3a32 = di, ap3agy — az1a33 = da, (21032 — Q2031 = d3,
aiszagz — ai2ass3 = €1, a1i1as3 — aisasy = €2, a12a31 — ai11as2 = €3,
a12a23 — ai3a22 = fi, a13021 — Q11023 = fa, a11a22 — A12021 = f3.
Thus,
Ul(s) = (s — A)_l{sq_luo + F(s)},
becomes
Ui(s)
U(s) = Us(s)
Us(s)

For simplicity, say
20013 + Yoa12 — To(aze + asz) = b1, ZoGas + Toaz — yo(a11 + ass) = ba,

zoaz1 + Yoase — zo(a11 + az2) = bs,

wo(azgam —az1a33) + yo(a11a33 - 6113@31) + zo(a13a21 - a11a23) = C2,
ﬂfo(amasz — G22031) + yo(a12a31 - 011032) + Zo(a11a22 - a12a21) = C3.

Then, we have

(
(
wo(a22a33 - a23a32) + yo(a13a32 - a12633) + Zo(al2a23 - a13a22) = C1,
)
)

0= g g

+ (B + Fa(s)arz = Fi(s)(oan + )} + sty + oer + o i
Uy (s) = ‘i 23)1 Yo + S';q(s)l by + ;:(31) e+ 82;258)

+ (A + Fa(s)eas — Fa(o)(an + o)} + Potd) + ptes t T
04 = s+ gy + e+ o)

+ gy (FL(S)aar + Fa(o)an = Fa(s)(an + )} + o+ idea + Tl

where P(3) is the three degree polynomial and has three roots.
Case 1: If the roots of P(3) are real and distinct, say A1, A\a and As.
Then, P(3) = (s — A1)(s? — X2)(s? — A3).
Now, in order to get the inverse of the Laplace transform of the above expression, let’s get the inverse

separately.
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SSq—l

S W [P W Py vy

]:

Using formula 2 from the Laplace transform table after the partial fraction, we get
= 83q71

[(Sq — )\1)(8’1 — )\2)(8’1 — )\3)

] = AlEq,l (Altq) + BlEq’l(/\th) + ClEq’l (/\3tq),

where
2 2 2
Al = Al ) Bl = A2 ) Cl = /\3 .
(A1 = A2) (A1 — A3) (A2 = A1) (A2 — A3) (A3 = A1) (As — A2)
(0 £

(57— A\)(59 — Ao)(s7 — Ag)] :

Similarly, we will get
82q71

Sy v v T v

] = AgEqJ (Altq) + BQEqJ(Ath) + CQE(LI (/\3tq),

where
A1 A2 A3
A = ) By = ) C‘ = -
SN OVEED VS 1P VSV Lt 0 VI VT VD W L ¢ VI VR Vi V)
q—1
(c) £ 5 :

s wrr wrrw

Similarly, we will get

s1—1

“ [(Sq —A1)(87 — Xo)(s? — /\3)] = A3Eq1 (Mt?) + BsEq 1 (Aat?) + C3Eq i (Ast?),
where
1 1 1
45 = (A1 = X2) (A1 = Ag)” Ba = (Ao — A1) (Ao — A3)’ Cs = A3 — A1) (As — A2)”
-1 52qF1 (S) ]
(d) L [(Sq _ /\1)(511 _ ,\2)(Sq — /\3)] :

Using formula 3 from the Laplace transform table after the partial fraction, we get

524

S (e v vy v

Now using the convolution, we get
£ S ]
(Sq — /\1)(8‘1 — )\2)(8‘1 — Ag)

= /0 (t — S)q_l{AlEq’q()\l (t - S)q) + BlEq’q(AQ(t - S)q) + ClEq’q(/\g(t — S)q)}fl (S)dS.

s1F3(s)

@ TR = x) =)

Similarly, using formula 3 from the Laplace transform table

s?

MW R ey

Now using the convolution, we get

] = AltqilE,I’q()\ltq) + Bltqilqu()\QtQ) + CltqilEqvq(/\gtq).

] = Agtq_lEq7q()\1tq) + Bgtq_lqu()\th) + Cgtq_lEqvq(/\gtq).

217
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1 s1F3(s)
£ [(Sq —)\1)(5‘1 _/\2)(311 —Ag)

]

= /0 (t = )" H{As By g\ (t = 5)7) + BsEy (Aot — 5)7) + CsEq g (As(t — 5))} f3(s)ds,

and so on for F; and Fs.

(f) Similarly, E_l[(sq _ /\1)(13?1< fliz;(sq —A3)

]

= /0 (t = )" {A2Ey g (M (t = 5)7) + BaEg g (Ao (t — 5)7) + CoEq g (As(t — 5)") } f1 (s)ds.

Now, taking the inverse Laplace transform of Uj(s), we get
z(t) = {A1Eg1(Mt?) + B1Ey 1 (Aat?) + C1Eq 1 (Ast?) Yo
+{A2E;1(Mt?) + B Ey 1 (Aat?) + CaEy 1 (Ast?) }oy
+ {A3E;1(At?) + B3Eg1(Aat?) + C3E 1 (Ast?) }eu

+A@—W”MEMWWﬂW+&%AMWﬂW+Q%AMWﬂWM®@
+ /0 (t — s)T H{AsEq (M (t — 8)9) + BBy g(Aa(t — 8)7) + CoEq q(As(t — s)) H f3(s)ars

+ fa(s)arz — fi(s)(azz + ass) }ds + /Ot(t = 8) T HA By g (A (t — )7)
+ B3 Ey (Aa(t — 8)7) + CsEq g (As(t — 5) ) H i(s)dr + fas)er + fa(s) fr}ds.
Similarly, taking the inverse Laplace transform of Us(s) and Us(s), we get
y(t) ={A1E; 1 (Mt?) + BiEy 1 (Aat?) + C1Eq1(Ast?) }yo
+ {A2E;1(Mt?) + B2 Ey 1 (Aat?) + CoEq 1(Ast9) }oo
+ {AsE;1(Mt?) + BsE; 1 (Aat?) + C3E4 1 (Ast?) }eo

+Au—w*mmmmwww+&%¢Mwﬂm+a@A&WwWM@w
+ /0 (t =) H{A2Ey q(A(t — 5)) + BaEqq(A2(t — 5)7) 4+ C2Eqq(As(t — 5))}{ f1(s)az1
+h@M%—h@WH+%ﬁ®+A@—ﬁ“%&%ﬂh@—#)

+ B3Eyq(A2(t — 8)) + CaEy g(A3(t — 5)) H f1(s)d2 + fa(s)ea + f3(s) f2}ds

Z(t) = {AlEqJ (Altq) + BlEqJ()\th) + ClEqJ (Agtq)}ZO
=+ {AgEqvl()\ltq) + BgEqJ ()\gtq) + CQEQJ(Agtq)}b?,
+ {AgEqvl()\ltq) + B3Eq,1 (Agtq) =+ C3Eq71(/\3tq)}03

+ /0 (t - S)q_l{AlEq’q()\l (t - S)q) + BlEq’q(AQ(t - S)q) + ClEq’q(/\g(t — S)q)}fg (S)dS
+ /0 (t =) H{AzEy (M (t = 5)7) + BaEg g (Aot — 5)7) + CoEq g (As(t — 5)") H f1(5)as

+ hlsan = ) an +embds + [ (1= )T A B (= 5))

+ BsEgq(Aa(t = 8)7) + C3 By 4 (As(t = 5)) H 1 (s)ds + fa(s)es + f3(s) fa}ds,

which is the solution of our systems.
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Case 2: If the roots of P(3) are real and equal, say A\. Then, P(3) = (s? — \)3.

Now, in order to get the inverse of the Laplace transform of the above expression, let’s get the
inverse separately.
83q—1

(a) 5_1[m] :

Using the partial fraction,

3¢g—1 2¢g—1

s s N s . A
S ERR T ER PP Vel P

Using formulas 3 and 5 from the Laplace transform table , we get

Ly, s3t Atd
L 1[@] Epa (A7) + Do a(AL7)

/{Eq, At — )7 + A(t;s) Eyy(Mt — )1 IAs 1 E, ,(\s?)ds.

82q71

(b) Efl[m] :

Using the partial fraction,
S2q71 B S2q71 1

(50— 22 (51— A2 (s1—N)°

Using formulas 3 and 5 from the Laplace transform table ;, we get

Mt —
.c—l / {E, (\(t—3)7) + ( - 5)° A B, Ot —5)1)}sI B, ,(As?)ds.
—1 57! .
(c) £ [7(511 — A)3] :
Using the partial fraction,
sd~1 g?—1 1

(54— N2 (s1— A2 (s1—N)°

Using the formulas 3 and 4 from the Laplace transform table , we get

] stt _ ‘ (t_ S)q _ g)7) g1~ s ds
) = [ B = )1 By e,
s29F (s)

(d) Eil[m] :

Using the partial fraction,
524 1 2\ A2

9 =N (1= T T

Using formulas 3, 6 and 12 from the Laplace transform table , we get

k4 1)(k 4 4) Ak+1gatib -
=t B, ,(\t! (
(54 )3] M) + ,;) 2 I'(gk +2q)

Now, using the convolution, we get

s F1 Jimt (k + 1)(k + 4) \eF1 (¢ — g)a(k+2)-1
N= [ - B - +;} ! )
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18U F3(s)ars + Fa(s)ary — Fi(s)(azx +ass)},
(0 oo L )by

Using the partial fraction,

s 1 A

(59— N?  (s1=N2 T 51—

Using formulas 6 and 12 from the Laplace transform table , we get

a = (k+ 1)(k +2) Akgatht2)—1
PR (23 ((R) |
(s2 —)\)3 = 2 T(qk + 2q)
Using the convolution, we get
s1{F3(s)a1z + Fa(s)arz — Fi(s)(az2 + as3)} / (k+1) k +2) A (t — s)atkr2
(s7—=A)? 0 T'(qk + 2q)

* {fg(s)a13 + fg(S)alg — f1 (S)(a22 + Clgg)}ds.

(f) Using the formula 12 from the Laplace table and using the convolution,

LY

-1 Fi(s)dy + Fs(s)er + Fa(s } / 1) M=t (g — s)alk+2)—1 i)y
(51— \)3 0 I'(gk + 2q)
+ f2(8)€1 + f3(s) f1}ds.
Now, taking the inverse Laplace transform of U; (s), we get
0 = (Ba i) + 2B 0+ [ (Ea -9 + 2L 0 - )9
At — s)4

! Asq—lEq,q(As%ds}xo b / (B (M - 5)?) + By y(M(t = $)1)}s7 By, (As?)ds
0

+a (At —8)1)}s? 1B, ,(AsY)ds

) k+1 q(k+2)—1
+ / (= ) By (At — 1) + 3 WHE DR DX = )T,

Pt 2 L(gk + 2q)
/0 (k+ 1)(k +2) Mt (—q:)i(’;] j) o (8)ars + fo(5)ara — fr(5)(azs + ass)}ds
# [ 3 DX T o)+ s + S (o) o).
Similarly, taki_ng the inverse Laplace transform of Us(s) and Us(s), we get,
y(t) = (B ) + 20 By ) + | By (- )0 + M=, 00— o)
AL, (s + b [ (B0 -9+ M g e B s
vo t{ﬂfzq,q(w — 5)1)}s1 LB, o (\s)ds
/{ YE, () +kZ:0 (k + 1)( k+4) /\k+1((qkjq;Z;_Q)_l}fQ(S)ds
/0 N2 X0 (qk)j(';;) [F1()a1 + fo(s)azs — fals) ans + asa) s

1) Ne=1(¢ — g)a(k+2)=1 ] )
/0 I'(qk + 2q) {fi(s)ds + fa(s)ea + f3(s)f2}ds
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and
_ q E q ! gAY )\(t—s)q
dﬂ—{EMOt%Fql%AM)+A{EMOU )+ 2
At — s)9

q

Eqq(A(t = 5)")}

* /\Sqilqu()‘Sq)dS}Zo + b3 /0 {Eq (Mt —9)") + Eqgq(A(t = 8)")}s7 "By g(As")ds

+es q,q( (t—s)1)}sT LB, 4(As)ds
q—1 (k+1)(k +4) \FHL(t — 5)1 q(k+2)—1
+/o = )" By (M - +k20 2 T(qk + 2¢) }f3(s)ds
k(p _ gya(k+2)—
/0 k +2) A (;(qk)+ 20 {fl (s)asi + fa(s)asa — f3(s)(ar1 + azs)}ds
k=1¢p _ g)a(k+2)—1
/o . I(‘L;qk JZ o) (s fals)es + fs(s) s} s

Case 3: If the roots of P(3) are one real root, say A\; and two complex roots, say Aa = A + iy
and A3 = XA —idp. Then, P(3) = (s? — A1)(s? — A2)(s? — A3). Now, let’s get the inverse Laplace

transform term by term.

3qg—1
. s . . .
: th tial fract
(a) L [(s’l VTP WY /\3)] Using the partial fraction,
524 . Aq n B; n Ch
(8‘1—)\1)(8‘1—)\2)(5‘1—)\3) o Sq—)\l Sq—)\g Sq—)\g,
where

2 2 2
A1 = )\l Bl - )\2 Cl - )\3

(A1 = A2) (A1 = A3)” (A2 = A1) (A2 = A3)’

Then, using formula 2 from the Laplace transform table, we get

(A3 = A1) (A3 = A2)”

83q71
(w—hxq—&xq—&ﬂ
From equations (2.9) and ( , we have

Geosgi (A +ip)t?) £ Gsing 1 (A +ip)t?) = Eg1 (A £ ip)t?).

(3.1) £

= A1Eg i (Mt?) + BiEgi (A +ip)t?) + CrEqg 1 (A — ip)t?).

Then (3.1 becomes,

3¢—1
—1 S

(Sq — )\1)(5’1 — )\2)(8’1 — /\3)

= AlEq’l()\ltq) + (Bl + Cl)GCOSq,l((/\ + Zu)tq)

+ (Bl - Cl)l GS?:TLq?l(()\ + 'L/L)tq)

(b) Similarly, using formula 2 from the Laplace transform table, we get,
. 82q71

[(Sq — )\1)(8’1 — )\2)(8’1 — /\3)

] = A2Eq’1 (Altq) + (B2 + CQ)GCOSQJ((A + z,u)tq)

+ (B2 - CQ)Z Gsinq,l((/\ + Zu)tq),

where
A1 B, — A2 O — A3
=)A= A3)" 7 e =A)Aa—Ag) 2 (s —A)(Ag—A)

A2:

(c) Similarly,

g—1
_1 S

[(Sq — )\1)(8’1 — )\2)(8’1 — /\3)

] = A3Eq,1 (Altq) + (Bg + Cg)GCOSq’l((A + z,u)tq)

+ (Bg - Cg)l Gsinq,l((z\ + Z/l)tq),
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where

1 1 1

SR VRS 16 WS W M Rl 6 WS ¥ 1) WD W Ll SV v 1§ WD W

(d) Using formula 3 from the Laplace transform table after partial fraction, we get

524

L~ [(sq )57 = ) (57 = /\3)] = A1t77 By 4 (Mt?) + 77 {(By + C1)Geosy o (A + ip)t?)

+ (B1 — C1)i Gsing (A +ip)th)}.

(e) Using formula 3 from the Laplace transform table after partial fraction, we get

q
—1 S

T e oy~ A2t Bt + 17 H{(By + C)Geosy o (A+ in)t?)

+ (By — ()i Gsing (A +ip)t?)}.
(f) Similarly,

1

M ) = A B Out®) 84 (B + C5)Geosq g (A + i)

+ (B3 — C3)i Gsing o (A +ip)t?)}.
Now, taking the inverse Laplace transform of U; (s), we get

lE(t) = {AlEqJ(/\ltq) + (Bl + Cl)GCOSqJ(()\ + Z'/L)tq) + (Bl - Cl)Z Gsinq,l(()\ + i/l,)tq)}a?[)
+ {AsE;1(Mt?) + (By + C2)Geosg 1 (A +ip)t?) + (Ba — Ca)i Gsing 1 (A + ip)t?) by
+ {AgEqvl()\ltq) + (Bg + Cg)GCOSqJ((A + z,u)tq) + (Bg - Cg)l Gsinqyl(()\ + zu)tq))}cl

+ /Ot[AlEM(/\l(t — 8)1) + (t — 8) T H{(By + C1)Geosyq (A +ip)(t — 8)7) + (By — C1)

i Gsing,y (A + i) (¢ — )} f1 (s)ds + / 43y g M (6= 5)7) + ()9 {(Bs + C)

¥ Geosg,g (A i) (t = 5)7) + (By — Ca)i Gising (A +ip)(t — )} * {fs(8)ars + fols)arz

— fi(8)(az + azs)}ds + / A3 By g (6 — 5)7) + (¢ — 8)57 {(By + Ci)Geosgg (A + i)

# (t = 8)7) + (By — Ca)i Gising o(A+ i) (t = )L Fu(s)ds + fols)er + F(s) i }ds.
Similarly, taking the inverse Laplace transform of Us(s) and Us(s), we get

y(t) = {AlEq’l(Altq) + (Bl + Cl)GCOS,Ll(()\ + Z,u)tq) + (Bl - Cl)Z Gsinq,l(()\ + Z/,L)tq)}yo
+ {AgEqvl()\ltq) + (Bg + CQ)GCOSQJ(()\ + i/l)tq) + (Bg - CZ)Z Gsinqvl(()\ + iu)tq)}bg
+ {AgEqvl()\ltq) + (Bg + Cg)GCOSqJ((A + Z,U,)tq) + (Bg - Cg)l Gsinqyl(()\ + Z/j,)tq))}CZ

[ = 5)%) + (0= )" {(By + C1)Geos, (1 + it = ) + (B = Cu)

i Going (-4 i) (¢ = D) + [ (s (e = 9) 4 (8= 97 (B + Co)

* Gcosg (A +ip)(t —s)7) 4+ (By — C2)i Gsing (A +ip)(t — s)?)} * {fi(s)az1 + f3(s)ass
— fa(s)(a11 + ass) }ds + /0 [A3Eqq(Ai(t = 5)7) + (t = 8)7 {(Bs + C3) * Geosgg (A + ip)

*(t = 8)7) + (Bs — C)i Gsing,o (A +ip)(t = 5)") }{f1(s)da + fa(s)ez + fs(s) f2}ds,
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and
Z(t) = {AlEqJ (Altq) + (Bl + Cl)GCOqul(()\ + Z/j,)tq) + (B1 - Cl)’L GSZ'TL,IJ((A + Z/,L)tq)}ZO
+ {Aqu’l(Altq) + (B2 + CQ)GCOSQJ((A + z,u)tq) + (BQ - CQ)Z Gsinq,l((z\ + Z/.L)tq)}b?,
+ {AgEq’l(Altq) + (Bg + Cg)GCOqul(()\ + z,u)tq) + (Bg - 03)2 Gsinq,l((z\ + Zu)tq))}63

* / [A1 By (t = 8)7) + (¢ — )77 {(B1 + C1)Geosy g (A + i) (t = 8)%) + (B) = C1)

#1 Gsing,q (A +ip)(t — s)7)} fs(s)ds + /0 [A2Ey y(Mi(t = 5)7) + (£ = 5)T{(B2 + Cs)
* Gcosgq(A+ip)(t —s)?) + (By — Ca)i Gsing (A +ip)(t — )} * {fi(s)az1 + f2(s)asa
— f5(s)(a11 + ag2)}ds + /0 [A3E, (A (t — 8)0) + (t — 5)T7H{(Bs + C3) x Geosy o (N +ip)

* (t —8)7) + (Bs — C3)i Gsingq(A +ip)(t — 5)) }{fi(s)ds + fa(s)es + fa(s) fa}ds.

EXAMPLE

Consider the 3¢ order linear sequential Caputo fractional differential equation
(3.2) cDS’iu(t) +a cDgiu(t) + b °Di u(t) = Au, 2<3¢<3,
subject to initial conditions

u(0) = ag, ‘D, u(0) = ai, CDgiu(O) = as,

where A is a real number. To convert (3.2)) into three systems of linear Caputo fractional differential

equations of order ¢, we assume

u (t) = u(t),
us(t) = D u(t),
us(t) = “Dplul(t).
Then, we have
)
Doy ur(t) = ua(t), u1(0) = ag
 “Dfyualt) = us(t), u2(0) = ay
D, uz(t) = Auy (t) — bua(t) — aus(t), u3(0) = as.
\

Hence, the above system can be written as the three systems of linear Caputo fractional differential

equations of order ¢ in the following matrix form:
DLult) = Au(t),  u(0)=wp, 0<q<1,
0O 1 0 uy(t) ap
where A= |0 0 1|, u(t) = |uy(t)| and up = |a,

A —b —a us(t) as

Now, (3.2) has been reduced to 3 systems of linear Caputo fractional differential equations,
which can be solved by the method we have already developed.
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3.2. Solving Fractional Non-linear SIR Model using Laplace-Adomian decomposition
method. In this section, we are going to consider the simple epidemic model, which isa compart-
mental SIR model with a fractional derivative in place of the usual integer derivative. The following
SIR model consists of three non-linear systems of Caputo fractional differential equations, which are

in the form:

“DY, S(t) = —BS(WI(2)
(3.3) “DILI(t) = BS)I(t) — 7I(1)
“D4, R(t) = 71(1),

with the initial conditions
S(0) = Ny, I1(0) = N, R(0) = N3,

where f is the contact rate and + is the recovery rate. The total number of population N is divided
into three sections at time ¢, where S(t) is the number of susceptible population, I(t) is the number
of infected population and R(t) is the number of recovered population from the disease. In this
model, we are assuming that the birth and death rates are the same during the small period of
epidemic, there is no immigration, and recovered individuals are immune to disease, so that the
population is constant during that time. So we have, N(¢) = S(¢) + I(¢t) + R(t) for any time t.
Susceptible individuals are all of the individuals that are capable of becoming sick from an infection.
Then those who are infected with the disease leave the susceptible category and are transmitted into
the infected category. After some time, infected individuals moved to recovered individuals.
Initially, we will develop a theoretical method of computing the solution by the Laplace-Adomian
decomposition method and plot some numerical results. Now, taking the Laplace transform of first
equation of , we have

sTL(S(t)) — s171S(0) = —BL(S(H)I(1)),
and hence N

£(s) =" Zr(s(1).

Similarly, using the initial conditions on all three equations of (3.3)) , we will have

cs) =" - L eswim)
1 cu®) =24 Lo - 2eaw)
| cre) = Zew).

Now, suppose that the solutions S(t), I(t) and R(t) are in the form of infinite series as

SO=S0, 1= L, RO=3 R,
k=0 k=0 k=0

and the non-linear term S(¢)1(t) is decomposed in the form of

SMI() = Ax(t),
k=0

where Ay is given by

1 d &, S
Ap = F(k+1)d/\k[j§0/\ Sk(t).;/\ Ik(t)] -
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Then, we will have

and so on.

225

Ag = Solo

Ay = S11g+ Solh

As = SoIy + S + Spls

Az = S3lp + Salh + S11> + Sol3,

Now, substituting all the series in the above systems yields

L Sit) = D A
LS ) = "2+ D o(8 Au(e) — LS5, 1)
| LSRR = = ZLEE L),

Comparing both sides of each individual system, we will get the following kind of recurrence relation:

s =" and £ =2
e =22 o) = Lo - Lo
LR =2 and  L(Ru(1) = ~ L L(Tk ),

for k=1,2,....

To find S(t), I(t) and R(t

So(t)

Io(2)

Ro(t) =

Similarly, using the above

\

), we have initially given Sy, Iy, Ro and can determine Sy, I;, Ry as

W 4
_ —BN1 Ny
Ny Si(t) = mtq
d _ (BN1N; = 7Ns)
N, an I (t) = F(q-l— 1) t4
_ N
N | D) = Mg+

values

_ BN1No{B(N2 — N1) + 7}

S:(t) = T(2¢ + 1) e

_ {(BNy —v)®N, — B>N, N3}
L) = T(2¢+ 1) e
Ry(t) = 10NN = 7)1y

I'(2¢+1)



226 GOVINDA PAGENI AND AGHALAYA S VATSALA
and

/

Silt) = [— NN {(BN: —7)? + BN2(BN: +7 — 28N))

(BYNNE - PN2NDT(2q +1)] Bt

[(g+1)? (3¢ +1)
I(t) = {5N1N2{(5N1 —7)? = 22NNy + 2N3 + ByNo}
B(BYN1 N2 — B2NZN3T'(2q + 1) . 34
+ : F(q+i)22 —{(BNy —7)?Ny — N1 N3} INETEm)
3q
\ R3(t) =~{(BNy —~)> Ny — ﬁ2N1N§}m.

Similarly, we can find the other terms of the series recursively, and hence the solution in the
form of a series is

Here, we have computed the first four terms of the series as a solution and will check the behavior
of the solution for different orders ¢ of the fractional derivative. Here, we have considered the pa-
rameters # = 0.01, v = 0.02, N; = 20, N» = 10 and N3 = 5.

Here, we have plotted the figure of Susceptible Population S(t), Infected Population I(¢) and Re-

covered Population R(t) with the given parameters for different fractional orders q.

3S&:-Iuti::m of SIR MODEL using L-ADM for different q
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FIGURE 1. S(t)
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3S‘:t".-lutil:m of SIR MODEL using L-ADM for different q
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FIGURE 2. I(t)
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4. Concluding Remarks

In this work, we have developed a method to solve the three linear non-homogeneous systems of
Caputo fractional differential equations of order ¢, where 0 < ¢ < 1, with initial conditions using the
Laplace transform method. All our methods developed here yield the corresponding integer results

as a special case.

In addition, our study also yields the study of ng order linear sequential Caputo fractional
differential equations with fractional initial conditions as a special case. Qur solution method yields
the stability results of the equilibrium solutions of any non-linear Caputo differential systems with
initial conditions. An important observation is that the equilibrium solution of the linear Caputo
fractional differential system may be asymptotically stable even when the corresponding solution
of the equilibrium solution of an integer system is locally stable. We have considered a non-linear
systems of compartmental SIR model, and developed some theoretical and numerical results for
thecorresponding fractional SIR model using the Laplace-Adomian decomposition method. Our aim
here is to choose the value of g, the order of the derivative appropriately such that our solution is
closer to the data compared with the solution of the corresponding integer derivative. Thus, the
value of ¢ can be used as a parameter to enhance the mathematical model. In our future work, we
plan to study non-linear systems related to infectious disease models, specifically COVID-19 SIR
and SEIR models.
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