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ABSTRACT. We shall provide an analytical method for solving three linear coupled systems

of Caputo fractional di�erential equations with fractional initial conditions. Because the Mittag-

Le�er function doesn't satisfy all the properties of the exponential function, we cannot use the

integer order methods. Here we have used an e�cient and convenient method, called the Laplace

transform method, to solve the three systems of linear Caputo fractional di�erential equations with

fractional initial conditions when the order of the fractional derivative is q and 0 < q < 1.In addition,

the Laplace-Adomian decomposition method allows us to obtain an approximation of the non-linear

SIR epidemic model of fractional order q. All the methods we have adopted here yield integer results

as a special case. Our method also works for scalar linear sequential Caputo fractional di�erential

equations of order nq, since it can be reduced to n systems of qth order linear Caputo fractional

di�erential equations with initial conditions.
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1. INTRODUCTION

The widely studied subject of fractional di�erential equations has remarkably gained promi-

nence and popularity in the last few decades due to its proved applications in a wide range of science,

economics, and engineering �elds. It has encompassed a wide range of topics, such as initial value

problems, boundary value problems, and the stability of fractional equations. Fractional di�erential

equations of arbitrary order are the generalization of ordinary di�erential equations of integer order.

Many scientists and mathematicians are now attracted to the �eld of di�erential systems of frac-

tional order due to its numerous applications. The fractional derivative has a global nature and the

integer derivative has a local nature. From a modeling point of view, appropriate order fractional

di�erential systems are more suitable than the integer order. As a result, mathematicians were able

to improve the model using real world data by utilizing the order q of the fractional derivative as

a parameter. See [3, 4, 7, 8, 11, 16, 12, 20, 25, 26, 27, 30, 31] and the references therein for some

analysis and applications of fractional di�erential equations. For numerical work in fractional dif-

ferential equation, see [2, 9, 23].

Received November 1, 2021 1061-5369 $15.00 c
Dynamic Publishers, Inc.

www.dynamicpublishers.org; www.dynamicpublishers.com;

https://doi.org/10.46719/npsc20212941.



212 GOVINDA PAGENI AND AGHALAYA S VATSALA

In this work, we present an analytic method for solving the three systems of Caputo fractional dif-

ferential equations of order q with 0 < q � 1; with initial conditions. The Mittag-Le�er function,

which is required to solve the Caputo fractional di�erential equations, does not have the nice prop-

erties of the exponential function of the appropriate integer order, so we cannot utilize the integer

order methods. Furthermore, because the product rule is not available for fractional derivatives,

we cannot use the variation of the parameter technique. Eq;1(At
q) represents the Mittag-Le�er

function, which is the generalization of the exponential function, but the inverse is not Eq;1(�At
q),

because of the fact that Eq;1(At
q) � Eq;1(�At

q) 6= 1. This holds true even when A is a constant.

Hence, we cannot solve it using the fundamental matrix solution method, and therefore an e�ective

and convenient method for solving Caputo fractional di�erential equations is needed. Various meth-

ods have been used to solve fractional di�erential equations, fractional partial di�erential equations,

fractional integro-di�erential equations, and dynamic systems with fractional derivatives, including

the Laplace-Adomian decomposition method. Since the Caputo fractional derivative is in the con-

volution integral form, it is the ideal candidate to use the Laplace transform.

In this work, we initially provide a method to solve the three linear non-homogeneous Caputo

fractional di�erential systems by using the Laplace transform method. Podlubny [19], proposed a

method based on the Laplace transform approach which is used to solve numerous fractional dif-

ferential equations. The Laplace transform method has played an important role in solving basic

problems of di�erential equations. It is one of several valuable tools for solving fractional-order dif-

ferential equations. The Laplace transform method has proved to be the most e�cient and useful in

the analysis and applications of fractional-order systems, from which some �ndings can be obtained

quickly. When using Laplace transform method, in order to get an inverse Laplace transform of

linear non-homogenous Caputo fractional di�erential equations with fractional initial conditions, we

have developed necessary Laplace transform tables in our work.

It is easy to observe that the linear constant coe�cient sequential di�erential equations of order nq

with fractional initial conditions, can be reduced to n systems of qth order linear Caputo fractional

di�erential equations with initial conditions. Thus, our study of systems will include the study of

nq order sequential di�erential equations as a special case. See, [18] for more details on sequential.

Finally, we have found a theoretical approximate solution of a non-linear SIR epidemic model of the

fractional order q by using the Laplace-Adomian decomposition method. Using the above theoreti-

cal results, we have also provided numerical methods for a speci�c epidemic SIR model for di�erent

values of the fractional order q including q = 1. The purpose of this computation is to choose the

value of the order q as a parameter to improve our model to �t the data. See, [1, 21] for more details.

2. PRELIMINARIES RESULTS

In this section, we will recall some de�nitions and known results that play a key role in our

main results.

De�nition 2.1. The Riemann-Liouville fractional integral of order q de�ned by

(2.1) D
�q
0+u(t) =

1

�(q)

Z t

0

(t� s)q�1u(s)ds;

where 0 < q � 1 and �(q) is the Gamma function.,

De�nition 2.2. The Riemann-Liouville (left-sided) fractional derivative of u(t) of order q, when

0 < q < 1, is de�ned as:

(2.2) D
q
0+u(t) =

1

�(1� q)

d

dt

Z t

0

(t� s)�qu(s)ds; t > 0:
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The Riemann-Liouville integral of order q for any function is same as the Caputo integral of

order q.

De�nition 2.3. The Caputo (left-sided)fractional derivative of u(t) of order nq; n� 1 < nq < n, is

given by the equation:

(2.3) cD
nq
0+u(t) =

1

�(n� nq)

Z t

0

(t� s)n�nq�1un(s)ds; t 2 [0;1); t > t0;

where un(t) = dn(u)
dtn

.

In particular, if q is an integer, then both the Caputo derivative and the integer derivative are

one and the same. Note that the Caputo integral of order q for any function is the same as the

Riemann-Liouville integral of order q. See [10, 11, 19] for more details on Caputo and Riemann-

Liouville fractional derivatives.

De�nition 2.4. The Caputo (left) fractional derivative of u(t) of order q for n = 1, when 0 < q < 1,

is de�ned as:

(2.4) cD
q
0+u(t) =

1

�(1� q)

Z t

0

(t� s)�qu0(s)ds:

Next, we de�ne the two parameter Mittag-Le�er functions, which will be useful in solving the

three systems of linear Caputo fractional di�erential equations using the Laplace transform. See

[14, 15, 22], for more on fractional di�erential equations with applications.

De�nition 2.5. The two parameter Mittag-Le�er function is de�ned as

(2.5) Eq;r(�t
q) =

1X
k=0

(�tq)k

�(qk + r)
;

where q, r > 0, and � is a constant. Furthermore, for r = q, (2.5) reduces to

(2.6) Eq;q(�t
q) =

1X
k=0

(�tq)k

�(qk + q)
:

If q = 1 and r = 1 in (2.5), then we have, E1;1(�t) = e�t, the usual exponential function.

See [10, 11, 13, 19], for more details on Mittag-Le�er functions.

Here, we have de�ned fractional trigonometric functions and generalized fractional trigonometric

functions of order q which will be required in our main results.

De�nition 2.6. The fractional trigonometric functions sinq;1(�t
q) and cosq;1(�t

q); are given by

(2.7) sinq;1(�t
q) =

1

2i
[Eq;1(i�t

q)� Eq;1(�i�t
q)]

and

(2.8) cosq;1(�t
q) =

1

2
[Eq;1(i�t

q) + Eq;1(�i�t
q)];

respectively.

We can also de�ne sinq;q(�t
q) and cosq;q(�t

q) in a similar way using Eq;q(�t
q) in place of

Eq;1(�t
q):
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De�nition 2.7. The generalized fractional trigonometric functions Gsinq;1((�+ i�)tq) and

Gcosq;1((�+ i�)tq); are given by

(2.9) Gsinq;1((�+ i�)tq) =
1

2i
[Eq;1((�+ i�)tq)� Eq;1((�� i�)tq)]

and

(2.10) Gcosq;1((�+ i�)tq) =
1

2
[Eq;1((�+ i�)tq) + Eq;1((�� i�)tq)];

respectively.

We can also de�ne Gsinq;q((�+ i�)tq) and Gcosq;q((�+ i�)tq) in a similar way.

De�nition 2.8. The Laplace transform F(s) of a function f(t) is

L[f(t)] = F (s) =

Z
1

0

e�stf(t)dt;

de�ned for all s such that the integral converges.

Since cD
q
0+f(t) is in the convolution integral form, the Laplace transform of cD

q
0+f(t) is

L[cDq
0+f(t)] = sqF (s)� sq�1f(0); 0 < q � 1;

where F (s) = L(f(t)).

See [17], for the initial work on the Laplace transform for fractional di�erential equations.

We have created a Laplace transform table for a few fundamental functions that will come in handy

in our main results. For some of the functions which are not present in this table, see table from

[18].

Laplace transform Table

S.N f(t) = L�1[F (s)] F (s) = L(f(t))

1. tq
�(q + 1)

sq+1

2. Eq;1(��t
q)

sq�1

sq � �

3. tq�1Eq;q(��t
q)

1

sq � �

4.
tq

q
Eq;q(��t

q)
sq�1

(sq � �)2

5. Eq;1(�t
q) +

�tq

q
Eq;q(�t

q)
s2q�1

(sq � �)2

6. t2q�1
P
1

k=0

(k + 1)�ktqk

�(qk + 2q)

1

(sq � �)2

7.
P
1

k=0

k(k + 1)

2

(�tq)k�1

�(q(k � 1) + 1)

s3q�1

(sq � �)3

8. tq
P
1

k=0

k(k + 1)

2

(�tq)k�1

�(qk + 1)

s2q�1

(sq � �)3
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9. t2q
P
1

k=0

k(k + 1)

2

(�tq)k�1

�(q(k + 1) + 1)

sq�1

(sq � �)3

10. tq�1Eq;q(�t
q) +

P
1

k=0

(k + 1)(k + 4

2

�k+1tq(k+2)�1

�(qk + 2q)

s2q

(sq � �)3

11.
P
1

k=0

(k + 1)(k + 2)

2

�ktq(k+2)�1

�(qk + 2q)

sq

(sq � �)3

12.
P
1

k=0

k(k + 1)

2

�k�1tq(k+2)�1

�(qk + 2q)

1

(sq � �)3

13. Gcosq;1f(�+ i�)tqg
sq�1(sq � �)

(sq � �)2 + �2

14. Gsinq;1f(�+ i�)tqg
�sq�1

(sq � �)2 + �2

15. tq�1Gcosq;qf(�+ i�)tqg
sq � �

(sq � �)2 + �2

16. tq�1Gsinq;qf(�+ i�)tqg
�

(sq � �)2 + �2

3. MAIN RESULTS

We divided the main �ndings into two sections. In the �rst section, we will develop a method

for solving three or more linear systems of qth order Caputo fractional di�erential equations. All our

results yield integer results as a special case when q tends to 1. See, [18] for more details. The study

of linear fractional di�erential systems is also useful in the stability results of the compartmental SIR

model of epidemic diseases. In the second section, we will discuss the non-linear fractional system of

the compartmental SIR model. Using Laplace-Adomian decomposition method, we have developed

both computational and numerical results for measles SIR Model for di�erent fractional order q with

0 < q � 1: The spread of an epidemic SIR model can be seen here, [21].

3.1. Solution of linear Caputo fractional order with three systems. In this work, we will

develop a method to solve three systems of qth order linear Caputo fractional di�erential equations.

For that purpose, consider the three systems of linear Caputo fractional di�erential equations of

order q, where 0 < q � 1; of the following form:

cD
q
0+u(t) = Au(t) + f(t); u(0) = u0; 0 < q � 1;

where A =

2
6664
a11 a12 a13

a21 a22 a23

a31 a32 a33

3
7775, f(t) =

2
6664
f1(t)

f2(t)

f3(t)

3
7775, u(t) =

2
6664
x(t)

y(t)

z(t)

3
7775.

Say u0 =

2
6664
x(0)

y(0)

z(0)

3
7775 =

2
6664
x0

y0

z0

3
7775.

Taking the Laplace Transform of reference , we get

sqU(s)� sq�1u0 = AU(s) + F (s)

U(s) = (sqI �A)�1fsq�1u0 + F (s)g;
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where

j(sqI �A)j = P (3) = s3q � s2q(a11 + a22 + a33) + sq(a11a22 � a12a21 + a11a33 � a13a31 + a22a33

� a23a32) + a11a23a32 + a12a21a33 + a13a22a31 � a11a22a33 � a12a23a31 � a13a21a32:

Hence,

(sqI �A)�1 =

2
6666664

s2q � sq(a22 + a33) + d1

P (3)

sqa12 + e1

P (3)

sqa13 + f1

P (3)
sqa21 + d2

P (3)

s2q � sq(a11 + a33) + e2

P (3)

sqa23 + f2

P (3)
sqa31 + d3

P (3)

sqa32 + e3

P (3)

s2q � sq(a11 + a22) + f3

P (3)

3
7777775
;

where

a22a33 � a23a32 = d1; a23a31 � a21a33 = d2; a21a32 � a22a31 = d3;

a13a32 � a12a33 = e1; a11a33 � a13a31 = e2; a12a31 � a11a32 = e3;

a12a23 � a13a22 = f1; a13a21 � a11a23 = f2; a11a22 � a12a21 = f3:

Thus,

U(s) = (sqI �A)�1fsq�1u0 + F (s)g;

becomes

U(s) =

2
6664
U1(s)

U2(s)

U3(s)

3
7775 :

For simplicity, say

z0a13 + y0a12 � x0(a22 + a33) = b1; z0a23 + x0a21 � y0(a11 + a33) = b2;

x0a31 + y0a32 � z0(a11 + a22) = b3;

x0(a22a33 � a23a32) + y0(a13a32 � a12a33) + z0(a12a23 � a13a22) = c1;

x0(a23a31 � a21a33) + y0(a11a33 � a13a31) + z0(a13a21 � a11a23) = c2;

x0(a21a32 � a22a31) + y0(a12a31 � a11a32) + z0(a11a22 � a12a21) = c3:

Then, we have

U1(s) =
s3q�1

P (3)
x0 +

s2q�1

P (3)
b1 +

sq�1

P (3)
c1 +

s2qF1(s)

P (3)

+
sq

P (3)
fF3(s)a13 + F2(s)a12 � F1(s)(a22 + a33)g+

F1(s)

P (3)
d1 +

F2(s)

P (3)
e1 +

F3(s)

P (3)
f1;

U2(s) =
s3q�1

P (3)
y0 +

s2q�1

P (3)
b2 +

sq�1

P (3)
c2 +

s2qF2(s)

P (3)

+
sq

P (3)
fF1(s)a21 + F3(s)a23 � F2(s)(a11 + a33)g+

F1(s)

P (3)
d2) +

F2(s)

P (3)
e2 +

F3(s)

P (3)
f2;

U3(s) =
s3q�1

P (3)
z0 +

s2q�1

P (3)
b3 +

sq�1

P (3)
c3 +

s2qF3(s)

P (3)

+
sq

P (3)
fF1(s)a31 + F2(s)a32 � F3(s)(a11 + a22)g+

F1(s)

P (3)
d3 +

F2(s)

P (3)
e3 +

F3(s)

P (3)
f3;

where P (3) is the three degree polynomial and has three roots.

Case 1: If the roots of P(3) are real and distinct, say �1, �2 and �3.

Then, P (3) = (sq � �1)(s
q � �2)(s

q � �3).

Now, in order to get the inverse of the Laplace transform of the above expression, let's get the inverse

separately.



THREE SYSTEM OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS 217

(a) L�1[
s3q�1

(sq � �1)(sq � �2)(sq � �3)
] :

Using formula 2 from the Laplace transform table after the partial fraction, we get

L�1[
s3q�1

(sq � �1)(sq � �2)(sq � �3)
] = A1Eq;1(�1t

q) +B1Eq;1(�2t
q) + C1Eq;1(�3t

q);

where

A1 =
�21

(�1 � �2)(�1 � �3)
; B1 =

�22
(�2 � �1)(�2 � �3)

; C1 =
�23

(�3 � �1)(�3 � �2)
:

(b) L�1[
s2q�1

(sq � �1)(sq � �2)(sq � �3)
] :

Similarly, we will get

L�1[
s2q�1

(sq � �1)(sq � �2)(sq � �3)
] = A2Eq;1(�1t

q) +B2Eq;1(�2t
q) + C2Eq;1(�3t

q);

where

A2 =
�1

(�1 � �2)(�1 � �3)
; B2 =

�2

(�2 � �1)(�2 � �3)
; C2 =

�3

(�3 � �1)(�3 � �2)
:

(c) L�1[
sq�1

(sq � �1)(sq � �2)(sq � �3)
] :

Similarly, we will get

L�1[
sq�1

(sq � �1)(sq � �2)(sq � �3)
] = A3Eq;1(�1t

q) +B3Eq;1(�2t
q) + C3Eq;1(�3t

q);

where

A3 =
1

(�1 � �2)(�1 � �3)
; B3 =

1

(�2 � �1)(�2 � �3)
; C3 =

1

(�3 � �1)(�3 � �2)
:

(d) L�1[
s2qF1(s)

(sq � �1)(sq � �2)(sq � �3)
] :

Using formula 3 from the Laplace transform table after the partial fraction, we get

L�1[
s2q

(sq � �1)(sq � �2)(sq � �3)
] = A1t

q�1Eq;q(�1t
q) +B1t

q�1Eq;q(�2t
q) + C1t

q�1Eq;q(�3t
q):

Now using the convolution, we get

L�1[
s2qF1(s)

(sq � �1)(sq � �2)(sq � �3)
]

=

Z t

0

(t� s)q�1fA1Eq;q(�1(t� s)q) +B1Eq;q(�2(t� s)q) + C1Eq;q(�3(t� s)q)gf1(s)ds:

(e) L�1[
sqF3(s)

(sq � �1)(sq � �2)(sq � �3)
] :

Similarly, using formula 3 from the Laplace transform table

L�1[
sq

(sq � �1)(sq � �2)(sq � �3)
] = A2t

q�1Eq;q(�1t
q) +B2t

q�1Eq;q(�2t
q) + C2t

q�1Eq;q(�3t
q):

Now using the convolution, we get
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L�1[
sqF3(s)

(sq � �1)(sq � �2)(sq � �3)
]

=

Z t

0

(t� s)q�1fA3Eq;q(�1(t� s)q) +B3Eq;q(�2(t� s)q) + C3Eq;q(�3(t� s)q)gf3(s)ds;

and so on for F1 and F2:

(f) Similarly, L�1[
1 � F1(s)

(sq � �1)(sq � �2)(sq � �3)
]

=

Z t

0

(t� s)q�1fA2Eq;q(�1(t� s)q) +B2Eq;q(�2(t� s)q) + C2Eq;q(�3(t� s)q)gf1(s)ds:

Now, taking the inverse Laplace transform of U1(s), we get

x(t) = fA1Eq;1(�1t
q) +B1Eq;1(�2t

q) + C1Eq;1(�3t
q)gx0

+ fA2Eq;1(�1t
q) +B2Eq;1(�2t

q) + C2Eq;1(�3t
q)gb1

+ fA3Eq;1(�1t
q) +B3Eq;1(�2t

q) + C3Eq;1(�3t
q)gc1

+

Z t

0

(t� s)q�1fA1Eq;q(�1(t� s)q) +B1Eq;q(�2(t� s)q) + C1Eq;q(�3(t� s)q)gf1(s)ds

+

Z t

0

(t� s)q�1fA2Eq;q(�1(t� s)q) +B2Eq;q(�2(t� s)q) + C2Eq;q(�3(t� s)q)gff3(s)a13

+ f2(s)a12 � f1(s)(a22 + a33)gds+

Z t

0

(t� s)q�1fA3Eq;q(�1(t� s)q)

+B3Eq;q(�2(t� s)q) + C3Eq;q(�3(t� s)q)gff1(s)d1 + f2(s)e1 + f3(s)f1gds:

Similarly, taking the inverse Laplace transform of U2(s) and U3(s), we get

y(t) = fA1Eq;1(�1t
q) +B1Eq;1(�2t

q) + C1Eq;1(�3t
q)gy0

+ fA2Eq;1(�1t
q) +B2Eq;1(�2t

q) + C2Eq;1(�3t
q)gb2

+ fA3Eq;1(�1t
q) +B3Eq;1(�2t

q) + C3Eq;1(�3t
q)gc2

+

Z t

0

(t� s)q�1fA1Eq;q(�1(t� s)q) +B1Eq;q(�2(t� s)q) + C1Eq;q(�3(t� s)q)gf2(s)ds

+

Z t

0

(t� s)q�1fA2Eq;q(�1(t� s)q) +B2Eq;q(�2(t� s)q) + C2Eq;q(�3(t� s)q)gff1(s)a21

+ f3(s)a23 � f2(s)(a11 + a33gds+

Z t

0

(t� s)q�1fA3Eq;q(�1(t� s)q)

+B3Eq;q(�2(t� s)q) + C3Eq;q(�3(t� s)q)gff1(s)d2 + f2(s)e2 + f3(s)f2gds

and

z(t) = fA1Eq;1(�1t
q) +B1Eq;1(�2t

q) + C1Eq;1(�3t
q)gz0

+ fA2Eq;1(�1t
q) +B2Eq;1(�2t

q) + C2Eq;1(�3t
q)gb3

+ fA3Eq;1(�1t
q) +B3Eq;1(�2t

q) + C3Eq;1(�3t
q)gc3

+

Z t

0

(t� s)q�1fA1Eq;q(�1(t� s)q) +B1Eq;q(�2(t� s)q) + C1Eq;q(�3(t� s)q)gf3(s)ds

+

Z t

0

(t� s)q�1fA2Eq;q(�1(t� s)q) +B2Eq;q(�2(t� s)q) + C2Eq;q(�3(t� s)q)gff1(s)a31

+ f2(s)a32 � f3(s)(a11 + a22gds+

Z t

0

(t� s)q�1fA3Eq;q(�1(t� s)q)

+B3Eq;q(�2(t� s)q) + C3Eq;q(�3(t� s)q)gff1(s)d3 + f2(s)e3 + f3(s)f3gds;

which is the solution of our systems.
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Case 2: If the roots of P(3) are real and equal, say �. Then, P (3) = (sq � �)3:

Now, in order to get the inverse of the Laplace transform of the above expression, let's get the

inverse separately.

(a) L�1[
s3q�1

(sq � �)3
] :

Using the partial fraction,

s3q�1

(sq � �)3
=

s2q�1

(sq � �)2
+

s2q�1

(sq � �)2
�

�

(sq � �)
:

Using formulas 3 and 5 from the Laplace transform table , we get

L�1[
s3q�1

(sq � �)3
] = Eq;1(�t

q) +
�tq

q
Eq;q(�t

q)

+

Z t

0

fEq;1(�(t� s)q) +
�(t� s)q

q
Eq;q(�(t� s)q)g�sq�1Eq;q(�s

q)ds:

(b) L�1[
s2q�1

(sq � �)3
] :

Using the partial fraction,

s2q�1

(sq � �)3
=

s2q�1

(sq � �)2
�

1

(sq � �)
:

Using formulas 3 and 5 from the Laplace transform table , we get

L�1[
s2q�1

(sq � �)3
] =

Z t

0

fEq;1(�(t� s)q) +
�(t� s)q

q
Eq;q(�(t� s)q)gsq�1Eq;q(�s

q)ds:

(c) L�1[
sq�1

(sq � �)3
] :

Using the partial fraction,

sq�1

(sq � �)3
=

sq�1

(sq � �)2
�

1

(sq � �)
:

Using the formulas 3 and 4 from the Laplace transform table , we get

L�1[
sq�1

(sq � �)3
] =

Z t

0

f
(t� s)q

q
Eq;q(�(t� s)q)gsq�1Eq;q(�s

q)ds:

(d) L�1[
s2qF1(s)

(sq � �)3
] :

Using the partial fraction,

s2q

(sq � �)3
=

1

(sq � �)
+

2�

(sq � �)2
+

�2

(sq � �)3
:

Using formulas 3, 6 and 12 from the Laplace transform table , we get

L�1[
s2q

(sq � �)3
] = tq�1Eq;q(�t

q) +

1X
k=0

(k + 1)(k + 4)

2

�k+1tq(k+2)�1

�(qk + 2q)
:

Now, using the convolution, we get

L�1[
s2qF1(s)

(sq � �)3
] =

Z t

0

f(t� s)q�1Eq;q(�(t� s)q) +

1X
k=0

(k + 1)(k + 4)

2

�k+1(t� s)q(k+2)�1

�(qk + 2q)
gf1(s):
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(e) L�1[
sqfF3(s)a13 + F2(s)a12 � F1(s)(a22 + a33)g

(sq � �)3
] :

Using the partial fraction,

sq

(sq � �)3
=

1

(sq � �)2
+

�

(sq � �)3
:

Using formulas 6 and 12 from the Laplace transform table , we get

L�1[
sq

(sq � �)3
] =

1X
k=0

(k + 1)(k + 2)

2

�ktq(k+2)�1

�(qk + 2q)
:

Using the convolution, we get

L�1[
sqfF3(s)a13 + F2(s)a12 � F1(s)(a22 + a33)g

(sq � �)3
] =

Z t

0

1X
k=0

(k + 1)(k + 2)

2

�k(t� s)q(k+2)�1

�(qk + 2q)

� ff3(s)a13 + f2(s)a12 � f1(s)(a22 + a33)gds:

(f) Using the formula 12 from the Laplace table and using the convolution,

L�1
�
F1(s)d1 + F2(s)e1 + F3(s)f1

(sq � �)3

�
=

Z t

0

1X
k=0

k(k + 1)

2

�k�1(t� s)q(k+2)�1

�(qk + 2q)
ff1(s)d1

+ f2(s)e1 + f3(s)f1gds:

Now, taking the inverse Laplace transform of U1(s), we get

x(t) = fEq;1(�t
q) +

�tq

q
Eq;q(�t

q) +

Z t

0

fEq;1(�(t� s)q) +
�(t� s)q

q
Eq;q(�(t� s)q)g

� �sq�1Eq;q(�s
q)dsgx0 + b1

Z t

0

fEq;1(�(t� s)q) +
�(t� s)q

q
Eq;q(�(t� s)q)gsq�1Eq;q(�s

q)ds

+ c1

Z t

0

f
(t� s)q

q
Eq;q(�(t� s)q)gsq�1Eq;q(�s

q)ds

+

Z t

0

f(t� s)q�1Eq;q(�(t� s)q) +

1X
k=0

(k + 1)(k + 4)

2

�k+1(t� s)q(k+2)�1

�(qk + 2q)
gf1(s)ds

+

Z t

0

1X
k=0

(k + 1)(k + 2)

2

�k(t� s)q(k+2)�1

�(qk + 2q)
ff3(s)a13 + f2(s)a12 � f1(s)(a22 + a33)gds

+

Z t

0

1X
k=0

k(k + 1)

2

�k�1(t� s)q(k+2)�1

�(qk + 2q)
ff1(s)d1 + f2(s)e1 + f3(s)f1gds:

Similarly, taking the inverse Laplace transform of U2(s) and U3(s), we get,

y(t) = fEq;1(�t
q) +

�tq

q
Eq;q(�t

q) +

Z t

0

fEq;1(�(t� s)q) +
�(t� s)q

q
Eq;q(�(t� s)q)g

� �sq�1Eq;q(�s
q)dsgy0 + b2

Z t

0

fEq;1(�(t� s)q) +
�(t� s)q

q
Eq;q(�(t� s)q)gsq�1Eq;q(�s

q)ds

+ c2

Z t

0

f
(t� s)q

q
Eq;q(�(t� s)q)gsq�1Eq;q(�s

q)ds

+

Z t

0

f(t� s)q�1Eq;q(�(t� s)q) +

1X
k=0

(k + 1)(k + 4)

2

�k+1(t� s)q(k+2)�1

�(qk + 2q)
gf2(s)ds

+

Z t

0

1X
k=0

(k + 1)(k + 2)

2

�k(t� s)q(k+2)�1

�(qk + 2q)
ff1(s)a21 + f3(s)a23 � f2(s)(a11 + a33)gds

+

Z t

0

1X
k=0

k(k + 1)

2

�k�1(t� s)q(k+2)�1

�(qk + 2q)
ff1(s)d2 + f2(s)e2 + f3(s)f2gds
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and

z(t) = fEq;1(�t
q) +

�tq

q
Eq;q(�t

q) +

Z t

0

fEq;1(�(t� s)q) +
�(t� s)q

q
Eq;q(�(t� s)q)g

� �sq�1Eq;q(�s
q)dsgz0 + b3

Z t

0

fEq;1(�(t� s)q) +
�(t� s)q

q
Eq;q(�(t� s)q)gsq�1Eq;q(�s

q)ds

+ c3

Z t

0

f
(t� s)q

q
Eq;q(�(t� s)q)gsq�1Eq;q(�s

q)ds

+

Z t

0

f(t� s)q�1Eq;q(�(t� s)q) +

1X
k=0

(k + 1)(k + 4)

2

�k+1(t� s)q(k+2)�1

�(qk + 2q)
gf3(s)ds

+

Z t

0

1X
k=0

(k + 1)(k + 2)

2

�k(t� s)q(k+2)�1

�(qk + 2q)
ff1(s)a31 + f2(s)a32 � f3(s)(a11 + a22)gds

+

Z t

0

1X
k=0

k(k + 1)

2

�k�1(t� s)q(k+2)�1

�(qk + 2q)
ff1(s)d3 + f2(s)e3 + f3(s)f3gds:

Case 3: If the roots of P(3) are one real root, say �1 and two complex roots, say �2 = �+ i�

and �3 = � � i�. Then, P (3) = (sq � �1)(s
q � �2)(s

q � �3). Now, let's get the inverse Laplace

transform term by term.

(a) L�1[
s3q�1

(sq � �1)(sq � �2)(sq � �3)
] : Using the partial fraction,

s2q

(sq � �1)(sq � �2)(sq � �3)
=

A1

sq � �1
+

B1

sq � �2
+

C1

sq � �3
;

where

A1 =
�21

(�1 � �2)(�1 � �3)
; B1 =

�22
(�2 � �1)(�2 � �3)

; C1 =
�23

(�3 � �1)(�3 � �2)
:

Then, using formula 2 from the Laplace transform table, we get

(3.1) L�1[
s3q�1

(sq � �1)(sq � �2)(sq � �3)
] = A1Eq;1(�1t

q) +B1Eq;1((�+ i�)tq) + C1Eq;1((�� i�)tq):

From equations (2.9) and (2.10), we have

Gcosq;1((�+ i�)tq)� i Gsinq;1((�+ i�)tq) = Eq;1((�� i�)tq):

Then (3.1) becomes,

L�1
s3q�1

(sq � �1)(sq � �2)(sq � �3)
= A1Eq;1(�1t

q) + (B1 + C1)Gcosq;1((�+ i�)tq)

+ (B1 � C1)i Gsinq;1((�+ i�)tq):

(b) Similarly, using formula 2 from the Laplace transform table, we get,

L�1[
s2q�1

(sq � �1)(sq � �2)(sq � �3)
] = A2Eq;1(�1t

q) + (B2 + C2)Gcosq;1((�+ i�)tq)

+ (B2 � C2)i Gsinq;1((�+ i�)tq);

where

A2 =
�1

(�1 � �2)(�1 � �3)
; B2 =

�2

(�2 � �1)(�2 � �3)
; C2 =

�3

(�3 � �1)(�3 � �2)
:

(c) Similarly,

L�1[
sq�1

(sq � �1)(sq � �2)(sq � �3)
] = A3Eq;1(�1t

q) + (B3 + C3)Gcosq;1((�+ i�)tq)

+ (B3 � C3)i Gsinq;1((�+ i�)tq);
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where

A3 =
1

(�1 � �2)(�1 � �3)
; B3 =

1

(�2 � �1)(�2 � �3)
; C3 =

1

(�3 � �1)(�3 � �2)
:

(d) Using formula 3 from the Laplace transform table after partial fraction, we get

L�1[
s2q

(sq � �1)(sq � �2)(sq � �3)
] = A1t

q�1Eq;q(�1t
q) + tq�1f(B1 + C1)Gcosq;q((�+ i�)tq)

+ (B1 � C1)i Gsinq;q((�+ i�)tq)g:

(e) Using formula 3 from the Laplace transform table after partial fraction, we get

L�1
sq

(sq � �1)(sq � �2)(sq � �3)
= A2t

q�1Eq;q(�1t
q) + tq�1f(B2 + C2)Gcosq;q((�+ i�)tq)

+ (B2 � C2)i Gsinq;q((�+ i�)tq)g:

(f) Similarly,

L�1[
1

(sq � �1)(sq � �2)(sq � �3)
] = A3t

q�1Eq;q(�1t
q) + tq�1f(B3 + C3)Gcosq;q((�+ i�)tq)

+ (B3 � C3)i Gsinq;q((�+ i�)tq)g:

Now, taking the inverse Laplace transform of U1(s), we get

x(t) = fA1Eq;1(�1t
q) + (B1 + C1)Gcosq;1((�+ i�)tq) + (B1 � C1)i Gsinq;1((�+ i�)tq)gx0

+ fA2Eq;1(�1t
q) + (B2 + C2)Gcosq;1((�+ i�)tq) + (B2 � C2)i Gsinq;1((�+ i�)tq)gb1

+ fA3Eq;1(�1t
q) + (B3 + C3)Gcosq;1((�+ i�)tq) + (B3 � C3)i Gsinq;1((�+ i�)tq))gc1

+

Z t

0

[A1Eq;q(�1(t� s)q) + (t� s)q�1f(B1 + C1)Gcosq;q((�+ i�)(t� s)q) + (B1 � C1)

� i Gsinq;q((�+ i�)(t� s)q)g]f1(s)ds+

Z t

0

[A2Eq;q(�1(t� s)q) + (t� s)q�1f(B2 + C2)

�Gcosq;q((�+ i�)(t� s)q) + (B2 � C2)i Gsinq;q((�+ i�)(t� s)q)g] � ff3(s)a13 + f2(s)a12

� f1(s)(a22 + a33)gds+

Z t

0

[A3Eq;q(�1(t� s)q) + (t� s)q�1f(B3 + C3)Gcosq;q((�+ i�)

� (t� s)q) + (B3 � C3)i Gsinq;q((�+ i�)(t� s)q)g]ff1(s)d1 + f2(s)e1 + f3(s)f1gds:

Similarly, taking the inverse Laplace transform of U2(s) and U3(s), we get

y(t) = fA1Eq;1(�1t
q) + (B1 + C1)Gcosq;1((�+ i�)tq) + (B1 � C1)i Gsinq;1((�+ i�)tq)gy0

+ fA2Eq;1(�1t
q) + (B2 + C2)Gcosq;1((�+ i�)tq) + (B2 � C2)i Gsinq;1((�+ i�)tq)gb2

+ fA3Eq;1(�1t
q) + (B3 + C3)Gcosq;1((�+ i�)tq) + (B3 � C3)i Gsinq;1((�+ i�)tq))gc2

+

Z t

0

[A1Eq;q(�1(t� s)q) + (t� s)q�1f(B1 + C1)Gcosq;q((�+ i�)(t� s)q) + (B1 � C1)

� i Gsinq;q((�+ i�)(t� s)q)g]f2(s)ds+

Z t

0

[A2Eq;q(�1(t� s)q) + (t� s)q�1f(B2 + C2)

�Gcosq;q((�+ i�)(t� s)q) + (B2 � C2)i Gsinq;q((�+ i�)(t� s)q)g] � ff1(s)a21 + f3(s)a23

� f2(s)(a11 + a33)gds+

Z t

0

[A3Eq;q(�1(t� s)q) + (t� s)q�1f(B3 + C3) �Gcosq;q((�+ i�)

� (t� s)q) + (B3 � C3)i Gsinq;q((�+ i�)(t� s)q)g]ff1(s)d2 + f2(s)e2 + f3(s)f2gds;
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and

z(t) = fA1Eq;1(�1t
q) + (B1 + C1)Gcosq;1((�+ i�)tq) + (B1 � C1)i Gsinq;1((�+ i�)tq)gz0

+ fA2Eq;1(�1t
q) + (B2 + C2)Gcosq;1((�+ i�)tq) + (B2 � C2)i Gsinq;1((�+ i�)tq)gb3

+ fA3Eq;1(�1t
q) + (B3 + C3)Gcosq;1((�+ i�)tq) + (B3 � C3)i Gsinq;1((�+ i�)tq))gc3

+

Z t

0

[A1Eq;q(�1(t� s)q) + (t� s)q�1f(B1 + C1)Gcosq;q((�+ i�)(t� s)q) + (B1 � C1)

� i Gsinq;q((�+ i�)(t� s)q)g]f3(s)ds+

Z t

0

[A2Eq;q(�1(t� s)q) + (t� s)q�1f(B2 + C2)

�Gcosq;q((�+ i�)(t� s)q) + (B2 � C2)i Gsinq;q((�+ i�)(t� s)q)g] � ff1(s)a31 + f2(s)a32

� f3(s)(a11 + a22)gds+

Z t

0

[A3Eq;q(�1(t� s)q) + (t� s)q�1f(B3 + C3) �Gcosq;q((�+ i�)

� (t� s)q) + (B3 � C3)i Gsinq;q((�+ i�)(t� s)q)g]ff1(s)d3 + f2(s)e3 + f3(s)f3gds:

EXAMPLE

Consider the 3q order linear sequential Caputo fractional di�erential equation

(3.2) cD
3q
0+u(t) + a cD

2q
0+u(t) + b cD

q
0+u(t) = �u; 2 < 3q � 3;

subject to initial conditions

u(0) = a0;
cD

q
0+u(0) = a1;

cD
2q
0+u(0) = a2;

where � is a real number. To convert (3.2) into three systems of linear Caputo fractional di�erential

equations of order q, we assume

u1(t) = u(t);

u2(t) =
cD

q
0+u(t);

u3(t) =
cD

2q
0+u(t):

Then, we have8>>>>>>>>><
>>>>>>>>>:

cD
q
0+u1(t) = u2(t); u1(0) = a0

cD
q
0+u2(t) = u3(t); u2(0) = a1

cD
q
0+u3(t) = �u1(t)� bu2(t)� au3(t); u3(0) = a2:

Hence, the above system can be written as the three systems of linear Caputo fractional di�erential

equations of order q in the following matrix form:

cD
q
0+u(t) = Au(t); u(0) = u0; 0 < q � 1;

where A =

2
6664
0 1 0

0 0 1

� �b �a

3
7775, u(t) =

2
6664
u1(t)

u2(t)

u3(t)

3
7775 and u0 =

2
6664
a0

a1

a2

3
7775 :

Now, (3.2) has been reduced to 3 systems of linear Caputo fractional di�erential equations,

which can be solved by the method we have already developed.
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3.2. Solving Fractional Non-linear SIR Model using Laplace-Adomian decomposition

method. In this section, we are going to consider the simple epidemic model, which isa compart-

mental SIR model with a fractional derivative in place of the usual integer derivative. The following

SIR model consists of three non-linear systems of Caputo fractional di�erential equations, which are

in the form:

(3.3)

cD
q
0+S(t) = ��S(t)I(t)

cD
q
0+I(t) = �S(t)I(t)� 
I(t)

cD
q
0+R(t) = 
I(t);

with the initial conditions

S(0) = N1; I(0) = N2; R(0) = N3;

where � is the contact rate and 
 is the recovery rate. The total number of population N is divided

into three sections at time t, where S(t) is the number of susceptible population, I(t) is the number

of infected population and R(t) is the number of recovered population from the disease. In this

model, we are assuming that the birth and death rates are the same during the small period of

epidemic, there is no immigration, and recovered individuals are immune to disease, so that the

population is constant during that time. So we have, N(t) = S(t) + I(t) + R(t) for any time t.

Susceptible individuals are all of the individuals that are capable of becoming sick from an infection.

Then those who are infected with the disease leave the susceptible category and are transmitted into

the infected category. After some time, infected individuals moved to recovered individuals.

Initially, we will develop a theoretical method of computing the solution by the Laplace-Adomian

decomposition method and plot some numerical results. Now, taking the Laplace transform of �rst

equation of (3.3), we have

sqL(S(t))� sq�1S(0) = ��L(S(t)I(t));

and hence

L(S(t)) =
N1

s
�

�

sq
L(S(t)I(t)):

Similarly, using the initial conditions on all three equations of (3.3) , we will have

8>>>>>>>>><
>>>>>>>>>:

L(S(t)) =
N1

s
�

�

sq
L(S(t)I(t))

L(I(t)) =
N2

s
+

�

sq
L(S(t)I(t))�




sq
L(I(t))

L(R(t)) =
N3

s
�




sq
L(I(t)):

Now, suppose that the solutions S(t), I(t) and R(t) are in the form of in�nite series as

S(t) =

1X
k=0

Sk(t); I(t) =

1X
k=0

Ik(t); R(t) =

1X
k=0

Rk(t);

and the non-linear term S(t)I(t) is decomposed in the form of

S(t)I(t) =

1X
k=0

Ak(t);

where Ak is given by

Ak =
1

�(k + 1)

dk

d�k

� kX
j=0

�kSk(t):

kX
j=0

�kIk(t)

�����
�=0

:
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Then, we will have

A0 = S0I0

A1 = S1I0 + S0I1

A2 = S2I0 + S1I1 + S0I2

A3 = S3I0 + S2I1 + S1I2 + S0I3;

and so on.

Now, substituting all the series in the above systems yields

8>>>>>>>>><
>>>>>>>>>:

L(
P
1

k=0 Sk(t)) =
N1

s
�

�

sq
L(
P
1

k=0Ak(t))

L(
P
1

k=0 Ik(t)) =
N2

s
+

�

sq
L(
P
1

k=0Ak(t))�



sq
L(
P
1

k=0 Ik(t))

L(
P
1

k=0Rk(t)) =
N3

s
�




sq
L(
P
1

k=0 Ik(t)):

Comparing both sides of each individual system, we will get the following kind of recurrence relation:

L(S0(t)) =
N1

s
and L(Sk(t)) = �

�

sq
L(Ak�1)

L(I0(t)) =
N2

s
and L(Ik(t)) =

�

sq
L(Ak�1)�




sq
L(Ik�1)

L(R0(t)) =
N3

s
and L(Rk(t)) = �




sq
L(Ik�1);

for k = 1; 2; : : : :

To �nd S(t), I(t) and R(t), we have initially given S0; I0; R0 and can determine S1; I1; R1 as

S0(t) = N1

I0(t) = N2

R0(t) = N3

9>>>>>>>>>=
>>>>>>>>>;

and

8>>>>>>>>><
>>>>>>>>>:

S1(t) =
��N1N2

�(q + 1)
tq

I1(t) =
(�N1N2 � 
N2)

�(q + 1)
tq

R1(t) =

N2

�(q + 1)
tq:

Similarly, using the above values

8>>>>>>>>><
>>>>>>>>>:

S2(t) =
�N1N2f�(N2 �N1) + 
g

�(2q + 1)
t2q

I2(t) =
f(�N1 � 
)2N2 � �2N1N

2
2 g

�(2q + 1)
t2q

R2(t) =

(�N1N2 � 
N2)

�(2q + 1)
t2q
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and

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

S3(t) =

�
�N1N2f(�N1 � 
)2 + �N2(�N2 + 
 � 2�N1)g

�
(�
N1N

2
2 � �2N2

1N
2
2 )�(2q + 1)

�(q + 1)2

�
�t3q

�(3q + 1)

I3(t) =

�
�N1N2f(�N1 � 
)2 � 2�2N1N2 + �2N2

2 + �
N2g

+
�(�
N1N

2
2 � �2N2

1N
2
2 )�(2q + 1)

�(q + 1)2
� 
f(�N1 � 
)2N2 � �2N1N

2
2 g

�
t3q

�(3q + 1)

R3(t) = 
f(�N1 � 
)2N2 � �2N1N
2
2 g

t3q

�(3q + 1)
:

Similarly, we can �nd the other terms of the series recursively, and hence the solution in the

form of a series is

S(t) = S0 + S1 + S2 + : : : ; I(t) = I0 + I1 + I2 + : : : ; R(t) = R0 +R1 +R2 + : : : :

Here, we have computed the �rst four terms of the series as a solution and will check the behavior

of the solution for di�erent orders q of the fractional derivative. Here, we have considered the pa-

rameters � = 0:01, 
 = 0:02, N1 = 20, N2 = 10 and N3 = 5.

Here, we have plotted the �gure of Susceptible Population S(t), Infected Population I(t) and Re-

covered Population R(t) with the given parameters for di�erent fractional orders q.

Figure 1. S(t)
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Figure 2. I(t)

Figure 3. R(t)
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4. Concluding Remarks

In this work, we have developed a method to solve the three linear non-homogeneous systems of

Caputo fractional di�erential equations of order q, where 0 < q � 1; with initial conditions using the

Laplace transform method. All our methods developed here yield the corresponding integer results

as a special case.

In addition, our study also yields the study of nq order linear sequential Caputo fractional

di�erential equations with fractional initial conditions as a special case. Our solution method yields

the stability results of the equilibrium solutions of any non-linear Caputo di�erential systems with

initial conditions. An important observation is that the equilibrium solution of the linear Caputo

fractional di�erential system may be asymptotically stable even when the corresponding solution

of the equilibrium solution of an integer system is locally stable. We have considered a non-linear

systems of compartmental SIR model, and developed some theoretical and numerical results for

thecorresponding fractional SIR model using the Laplace-Adomian decomposition method. Our aim

here is to choose the value of q, the order of the derivative appropriately such that our solution is

closer to the data compared with the solution of the corresponding integer derivative. Thus, the

value of q can be used as a parameter to enhance the mathematical model. In our future work, we

plan to study non-linear systems related to infectious disease models, speci�cally COVID-19 SIR

and SEIR models.
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