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ABSTRACT. Herein, we continue to summarise a set of fundamental results of various random polynomials
including orthogonal polynomials. Also we outline how Kac-Rice formula is generalised in various
dimensions. This paper contains the second part of survey of selected results on the real/complex zeros
of random polynomials and asymptotic results of expected number of zeros of random polynomials in higher
dimensions. Expected number of zeros of random orthogonal polynomials is methodologically presented to
initiate further research.
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1 INTRODUCTION

The study of the roots of random polynomials is among the most important and popular
topics in Mathematical Analysis and in some areas of Physics. For almost a century, a
considerable amount of literature about this problem has been studied via fields such as
probability, geometry, random algebraic geometry, algorithm complexity, quantum physics,
etc. In spite of its rich history, it is still an extremely active field of research. There are
several reasons that lead to consider random polynomials and several ways to randomize
them (see Bharucha-Reid and Sambandham [4] and Farahmand [15]).
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2 CONCENTRATION OF ZEROS OF RANDOM POLYNOMIALS: WHERE?
WHEN? HOW?

In this section, we collect results on the concentration of zeros of random polynomials.
Our aim is to present the some cherries on the top of ice cream. We are not establishing
any new results.

2.1 NEAR THE POINTS -1 AND +1

We recall that a random Kac polynomial is of the form F(t) =
n∑

j=0
X jt j where the coefficients

X j are independent Gaussian random variables of mean zero and variance one. A classical
result of Kac [21] asserts that the zeros of Kac random polynomials of large degree tend to
accumulate around +1 and -1.

2.2 NEAR THE UNIT CIRCLE
In the case of random polynomials when the coefficients are complex standard Gaussian
random variables in

F(z) = Fn(z) =

n−1∑
j=0

X jz j, z ∈ C,

Hammersley [19] has proved that the zeros lie on the unit circle S 1 = {|z| = 1}.
This ensemble of random polynomials has been studied in detail in [20],[24], [30],[35],
and references therein. Recently, Ibragimov and Zaporozhets [24] have proved that for
independent and identically distributed (IID) real or complex random variables X j,

(2.1) E[log(1 + |X j|)] < 1

is a necessary and sufficient condition for zeros of random Kac polynomials with complex
coefficients to accumulate near the unit circle.

Remark 2.1. We notice that the asymptotic distribution of zeros of Kac polynomials is
independent of the choice of the probability law of random coefficients under condition
(2.1). This phenomenon is referred to as global universality for zeros of random
polynomials.

2.3 NEAR THE BOUNDARY OF A SIMPLY CONNECTED DOMAIN
Shiffman and Zelditch [36] have remarked that it is an implicit choice of an inner product
that has produced the concentration of zeros of Kac polynomials with complex Gaussian
coefficients around the unit circle S 1. More generally, for a simply connected domain
Ω b Cwith real analytic boundary ∂Ω and a fixed orthonormal basis (ONB)

{
P j

}n+1

j=1
induced

by a measure ρ(z)|dz| where ρ ∈ Cω(∂Ω) and |dz| denote arc-length, Shiffman and Zelditch
have proved that zeros of random polynomials

F(z) =

n+1∑
j=1

X jP j(z) where X j IID
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concentrate near the boundary ∂Ω as n→ ∞.

2.4 NEAR THE SUPPORT OF EQUILIBRIUM MEASURE
Furthermore, the empirical measures δz of zeros

1
n

∑
{z:F(z)=0}

δz

converge weakly to the equilibrium measure µΩ̄. Recall that for a non-polar compact set
K ⊂ C the equilibrium measure µK is the unique minimizer of the logarithmic energy
functional

ν→

"
log

1
|z − w|

dν(z) dν(w)

over all probability measures supported on K. Later, Bloom [6] has observed that Ω̄ is
replaced by a regular compact set K ⊂ C, the inner product has been defined in terms of
any Bernstein Markov measure (see also [9] for a generalization of this result to Cm for
Gaussian random pluricomplex polynomials). More recently, Pritsker and Ramachandran
[38] have observed that (2.1) is a necessary and sufficient condition for zeros of random
linear combinations of Szegö, Bergman, or Faber polynomials (associated with Jordan
domains bounded with analytic curves) to accumulate near the support of the corresponding
equilibrium measure.

3 EXPECTED NUMBER OF ZEROS OF RANDOM POLYNOMIALS IN
HIGHER DIMENSIONS

We trace the generalisation of the classical result of Kac and independently by Rice
on the estimation of number of real zeros of random polynomials. The Kac-Rice formula
derived by them has manifested in higher dimensions which are totally astonishing facts.
Let us track its path in the dense forest of random polynomials. Let us now travel in a new
cosmos.

3.1 ZEROS OF RANDOM POLYNOMIALS IN R
The asymptotic and bound type results of Kac [21] are sketched here for reference.

Theorem 3.1 ([21]). Let Fn(z) =
n−1∑
j=0

X jz j, z ∈ R be the Kac’s random real algebraic

polynomial where (X1, X2, . . . , Xn−1) ∼ N (0, In×n−1) .

P
{
X̄ = (X0, . . . , Xn−1) ∈ A

}
=

∫
A

e−‖x‖
2/2

(2π)n/2 dx.

Let Nn be the number of real zeroes of F. Then

E {Nn} =
4
π

∫ 1

0

{1 − [nxn−1(1 − x2)/(1 − x2n)]2}1/2

1 − x2 dx

For large n, the asymptotic value of

E {Nn} ∼
2 log n
π

.
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Further for large n, an upper bound is

E {Nn} ≤
2 log n
π

+
14
π
.

In 1969 , Stevens [43] has obtained
2
π

log n − 0.6 ≤ ENn−1 ≤
2
π

log n + 1.4

which is an improvement of both lower and upper bounds for the expected number of real
zeros of a Kac random polynomial.

In 1973, Wilkins [48] has further improved Kac’s upper bound to

ENn <
2
π

log n + 1.116 (n odd )
ENn <

2
π

log n + 1.113 (n even )

3.2 KAC-RICE FORMULA IN TWO DIMENSIONS

A generalisation of Euler’s observation of 1751 (in fact already noted by Descartes in 1639)
is known as Euler characteristic that on “triangulating” a sphere into F regions, E edges,
and V vertices, we have V − E + F = 2. If one triangulates any surface then χ = V − E + F
is a number which does not depend on how the triangulation is done. In algebraic topology
and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler-Poincaré
characteristic) is a topological invariant, a number that describes a topological space’s
shape or structure regardless of the way it is twisted. In general it is denoted by χ (Greek
lower-case letter chi). The Euler characteristic of a set A ⊂ R2, denoted χ(A) whenever
it is well defined, is a topological invariant used in many circumstances viz., in the study
of nonparametric spatial statistics, random media, topological index in astronomy, brain
imagery, or oceanography. Geometric properties of level sets of multivariate random field
have occupied the researchers for the past two decades. We invoke here some known
definitions for our discussion. Here one may feel how the Kac-Rice formula has been
generalised on the lines of one dimension case.

In general, let m > 1,W ⊂ Rm be measurable. Let f be a C1,1 function on W, i.e.
continuously differentiable with Lipschitz gradient. Note M( f ) = {x ∈ W : ∇ f (x) = 0}
is the set of critical points, and for u ∈ R,M( f , u) = M( f ) ∩ { f > u}. Also note that
V( f ) = f (M( f )) is the set of critical values.

It is very well-known that the Sard’s theorem, also known as Sard’s lemma or the
Morse–Sard theorem, is a result in mathematical analysis that asserts that the set of critical
values (that is, the image of the set of critical points) of a smooth function f from one
Euclidean space or manifold to another is a null set, i.e., it has Lebesgue measure 0. By
Sard’s Theorem, V( f ) has Lebesgue measure 0 has been used frequently in the proofs.

We state here the known definitions for our purpose.
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Definition 3.2. Given a function f : R2 → R, the set { f > u} =
{
x ∈ R2 : f (x) > u

}
, for

u ∈ R is called an excursion set, or upper-level set of f .

Definition 3.3. A C2 function f : R2 → R is called a Morse function if all its critical points
are non-degenerate, i.e. if for x ∈ M( f ), the Hessian matrix

H f (x) =

 ∂2
11 f (x) ∂2

12 f (x)
∂2

21 f (x) ∂2
22 f (x)


of f at x is non-singular.

Definition 3.4. A function f : R2 → R is called Morse above some value u ∈ R if H f (x) is
non-singular for x ∈ M( f , u). In that case, the set of critical points x ∈ M( f ) with f (x) > u
is locally finite. Also, the number of positive eigenvalues of H f (x) is called the index of
x ∈ M( f ).

Many results on the mean Euler characteristic of random excursions address Gaussian
random fields, because their finite dimensional distributions are easier to handle, and more
general results require the field to satisfy strong density requirements. But we note that the
general variographic approach [28] to compute the mean value of a bidimensional weak
version of the Euler characteristic which does not require density hypothesis.

Definition 3.5. Given a sufficiently regular function f on R2, the Euler primitive of f , to a
smooth test function h : R→ R is

χ f (h) =

∫
R

h(u)χ({ f > u})du.

It is known that the Euler primitive can be written as a proper Lebesgue integral over
R2, involving the first and second order derivatives of f . Here u1,u2 are the canonical basis
of R2, ∂i f are the partial derivative of f along ui, i = 1, 2, and ∂2

ii f is the second order partial
derivative in direction ui.

Given a C1,1 function f over some bounded measurable W ⊂ R2, f is twice
differentiable a.e., and for any C1 function h : R→ R, introduce for i ∈ {1, 2},

γi(x, f , h) = 1{∇ f (x)∈Qi}

[
∂i f (x)2h′( f (x)) + ∂2

ii f (x)h( f (x))
]
, x ∈ W

γ(x, f , h) = γ1(x, f , h) + γ2(x, f , h), and I f (h) =
∫

W
γ(x, f , h)dx. In addition, we might

ask additional properties from the test function h, such as that to be twice continuously
differentiable, or have compact support. For details, one may refer to [26].

Theorem 3.6 ([26]). Let h : R → R be a C1 function with compact support. Let
f : W ⊂ R2 → R be a C2 function which is Morse above min(supp(h)), and such that
{ f > min(supp(h))} is compact and contained in W ’s interior. Then χ f (h) is well defined
and

χ f (h) = I f (h).
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If f is Morse and has compact excursion sets, then Theorem 3.6 leads to

(3.1) χ f (h) = −

2∑
i=1

∫
R2

[
h′( f (x))∂i f (x)2 + h( f (x))∂2

ii f (x)
]

1{∇ f (x)∈Qi}dx

where Q1 and Q2 are two quarter planes defined as

Q1 = {(s, t) ∈ R2 : t < s < 0},Q2 = {(s, t) ∈ R2 : s < t < 0}.

This formula (3.1) is the two-dimensional version of Kac-Rice formula for Morse function.

The classical literature gives the Euler characteristic of an excursion in function of the
indexes of its critical points above the considered level. Namely, for a Morse function f
and u ∈ R such that { f > u} is compact and does not have critical points on its boundary,
we have

(3.2) χ({ f > u}) =

2∑
k=0

(−1)kµk( f , u)

where µk( f , u) = #{x ∈ { f > u} : ∇ f (x) = 0 and the Hessian matrix of f in x has exactly k
positive eigenvalues }.

Remark 3.7. In practice, use of this formula in dimension 2, see [13], is the counting
measure on the right hand side that is captured through an integral over a neighbourhood
of the critical points, see [1],

χ({ f > u}) = lim
ε→0

1
4ε2

∫
R2

1{‖∇ f (x)‖∞6ε}1{ f (x)>u} det
(
H f (x)

)
dx

Remark 3.8. Another known formula to which (3.1) can be compared is the
one-dimensional version of the co-area formula. To introduce this formula in R2, call
perimeter of a set A ⊂ R2, denoted by Per(A), the 1−dimensional Hausdorff measure of
its topological boundary. In R2, the co-area formula expresses the perimeter of the level
sets of a locally Lipschitz function f : R2 → R, as a function of a differential operator
applied to f . For h : R→ R, a bounded measurable function is given by

(3.3)
∫
R

h(u) Per({ f > u})du =

∫
R2

h( f (x))‖∇ f (x)‖dx

Interesting Observation: We observe that (3.1) is an analogue of (3.2) for the Euler
characteristic. The perimeter and the Euler characteristic form a remarkable pair of
functionals as they are central in the theory of convex bodies. They are, with the volume
function, the only homogeneous additive continuous functionals of poly-convex sets of
R2. In both cases, thanks to (3.1) and (3.2), their integral against a test function can be
computed in terms of a spatial integral involving f and its derivatives. This gives hope
for similar formulae for all additive functionals in higher dimensions (m ≥ 1). (A catch
indeed!)
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Remark 3.9. The formula in (3.1) can be seen as a two-dimensional analogue of the
Kac-Rice formula. In dimension 1, the Euler characteristic, denoted by χ(1)(·), is the
number of connected components. For the excursion set { f > u} of a C1 function f with
compact level sets, it corresponds to the number of up-crossings of level u, provided u is
not a critical value. For a smooth function h with compact support, the integral version of
Kac-Rice formula is given by

(3.4)
∫
R

h(u)χ(1)({ f > u})du =

∫
R

h( f (x)) | f ′(x)| dx

where the integrand of the left hand member is properly defined for almost all u.

By a Theorem from [27] states that for u < V( f ), the Euler characteristic can be
expressed as the limit of some quantity δu,ε ∈ R that is explicit in [27]

χ({ f > u}) = lim
ε→0

δε,u( f ).

For f like in Theorem 3.6 and u < V( f ), (3.2) yields that χ({ f > u}) is constant on a
neighbourhood of u. For ε sufficiently small and δε : R → R of class C1 with support in
[−ε, ε] such that

∫ ε

−ε
h(v)dv = 1,

χ( f > u) = lim
ε→0

χ f (δε) = lim
ε→0

I f (δε)

This formula can be seen as a 2 -dimensional analogue of the celebrated Kac-Rice formula,
obtained by taking h = δε in (3.3).

3.3 EXTENSION TO NON-MORSE FUNCTIONS

We notice that in [28], the validity of the result about the Euler characteristic of excursions
only requires C1,1 regularity, i.e. continuous differentiability with Lipschitz gradient. In
contrast, Theorem 3.6 requires C2 regularity and Morse behaviour around the critical points.
Still one may believe that the conclusion could be valid under C1,1 regularity (under such
assumptions, the second order partial derivatives are well defined a.e.).

To support and motivate this claim, we record here that it holds if the function f is
radial.

Theorem 3.10 ([26]). Assume f (x) = ψ
(∥∥∥x2

∥∥∥) , x ∈ R2, for some C1,1 function ψ : R+ → R+

that vanishes at∞. Then for almost all (a. a.) u > 0, χ({ f > u}) is well defined and bounded
by 1, and for h : R+ → R+ a C1 function with compact support in (0,∞), we have

χ f (h) = I f (h) =

∫ ψ(0)

0
h(u)du

Open Problem: What is a general result and its proof in dimension 2?
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3.4 ZEROS OF RANDOM POLYNOMIALS IN C
A classical result of Hammersley [19] (see also [35]) is that the zeros of a random complex
polynomial

Fn(z) =

n−1∑
j=0

X jz j, z ∈ C

mostly tend towards the unit circle |z| = 1 as the degree n → ∞, when the coefficients X j

are independent complex Gaussian random variables of mean zero and variance one.

We invoke the explicit formula for the expectation of the number, νn(Ω), of zeros of a
random polynomial, obtained by Kac [21].

(3.5) Fn(z) =

n−1∑
j=0

X jz j, z ∈ C

in any measurable subset Ω of the reals. Here, X0, . . . , Xn−1 are independent standard
normal random variables (where Kac’s argument is the most natural choice for a “typical”
polynomial since this distribution is invariant under orthogonal transformations). In fact,
for each n > 1, he has obtained an explicit intensity function gn for which

Eνn(Ω) =

∫
Ω

gn(x)dx

Here, in [23] this result has been extended by deriving an explicit formula for the expected
number of zeros in any measurable subset Ω of the complex plane C. Namely, they have
shown that

Eνn(Ω) =

∫
Ω

hn(x, y) dxdy +

∫
Ω∩R

gn(x)dx

where hn is an explicit intensity function. (Note that the usual identification between a point
z of the complex plane and its real and imaginary parts, x and y are carried out carefully.)

The intensity function hn is conveniently expressed in terms of the following three
real-valued functions defined on C

Bk(z) =

n−1∑
j=0

jk|z|2 j, z ∈ C, k = 0, 1, 2

and the following two complex-valued functions

Ak(z) =

n−1∑
j=0

jkz2 j, z ∈ C, k = 0, 1.

Finally, let

(3.6) D0(z) =

√
B2

0(z) − |A0|
2 (z)

The outstanding main result obtained in [23] is
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Theorem 3.11 ([23]). For each region Ω ∈ C,

(3.7) Eνn(Ω) =

∫
Ω

hn(x, y) dx dy +

∫
Ω∩R

gn(x)dx

where

hn =
B2D2

0 − B0

(
B2

1 + |A1|
2
)

+ B1

(
A0Ā1 + Ā0A1

)
π|z|2D3

0

and

gn =

(
B0B2 − B2

1

)1/2

π|z|B0

For detailed proof of the above results, one may consult [23].

In 1995, considering the case when
{
η j

}
are real-valued standard Gaussian, Shepp and

Vanderbei [35] have obtained a formula for the expected number of zeros of Pn in

(3.8) Pn(z) = ηnzn + ηn−1zn−1 + · · · + η1z + η0

off the real line. In their work they have obtained the limits

(3.9) lim
n→∞

ρCn (z) =
1

π
(
1 − |z|2

)2

√
1 −

∣∣∣∣∣1 − |z|21 − z2

∣∣∣∣∣2
and

(3.10) lim
n→∞

ρRn (x) =
1
π

1∣∣∣1 − x2
∣∣∣

where ρCn (z) is the intensity function for the number of purely complex zeros of the random
polynomial.

Within the proof of computing the above limits, Shepp and Vanderbei [35] have shown
that as n→ ∞, uniformly about n− (2/π) log n of zeros of Pn accumulate on the unit circle,
and about (2/π) log n of real roots concentrate at ±1. Ibragimov and Zeitouni[23] have
generalized the work of Shepp and Vanderbei [35] by giving the limit of the expected value
of a scaled version of the expected number of zeros of the random algebraic polynomial Pn

in a disk of radius r when the random variables
{
η j

}
are IID with common distribution that

belongs to the domain of attraction of an α−stable law.

The formulae provided by Shepp and Vanderbei[35] for the intensity functions for
the number of real and complex zeros of the random algebraic polynomial have been
generalized by Feldheim[17] and independently by Vanderbei [50]. These general formulae
give the intensity functions for random sums of the form

n∑
k=0

ηk f j(z)

where {ηk} are IID real-valued standard Gaussian random variables, and { fk} are entire
functions that are real-valued on the real line.
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Let us first start with a motivating example. Consider the complex Kac polynomial

P = Pn(z) =

n∑
k=0

ηkzk

with η j = α j + iβ j, j = 0, 1, . . . , n, where
{
α j

}n

j=0
and

{
β j

}n

j=0
are sequences of IID standard

Gaussian random variables.

Define
A(s, t) := {z ∈ C : 0 ≤ s < |z| < t}.

Using a classical result by Hammersely[19] that gives a formula for the expected
number of zeros of Pn, we have the following result.

Theorem 3.12 ([19]). For the complex Kac polynomial Pn(z) we have

E [Nn(A(s, t))] =
1

1 − t2 −
n + 1

1 − t2n+2 −

(
1

1 − s2 −
n + 1

1 − s2n+2

)
provided the annulus A(s, t) does not contain the unit circle.

3.5 ZEROS OF RANDOM POLYNOMIALS IN Cm

This section contains some mind blowing results(see [9])! Let K be a compact set in
Cm and let µ a Borel probability measure on K. Assume that K is non-pluripolar and let
VK be its pluricomplex Green function. Let P = Pn(z) =

∑n
k=0 ηkzk be a holomorphic

polynomial. Also assume that K is regular (i.e., F = V∗K) and that µ satisfies the following
Bernstein-Markov (BM) inequality.

The Bernstein-Markov Inequality: Let µ be a finite positive Borel measure on K. The
measure µ is said to satisty a Bernstein-Markov inequality, if, for each ε > 0 there is a
constant C = C(ε) > 0 such that

(3.11) ‖(P)‖K ≤ Ceε deg(P)‖P‖L2(µ)

for all holomorphic polynomials P . Essentially, the BM inequality says that the L2 norms
and the sup norms of a sequence of holomorphic polynomials of increasing degrees are
“asymptotically equivalent”.

The above inequality has an interesting historical background [18]. The chemist
Mendeleev in 1887 invented the periodic table of the elements which lead to a study of the
specific gravity of a solution as a function of the percentage of the dissolved substance [34].
From the real life situation, it is used in testing beer and wine for alcoholic content, and in
testing the cooling system of an automobile for concentration of anti-freeze. Mendeleev’s
study paved a way to mathematical problems of great interest, some of which are inspiration
to do research in Mathematics. He discussed this problem with Markov in 1889 who
converted into a mathematical problem and subsequently generalised by Bernstein in 1926.
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Gaussian Measure γn: Let

(3.12) ( f , g) =

∫
K

f ḡ dµ

be the Hermitian product. Consider the space Pn of holomorphic polynomials of degree
≤ n on Cm with the Gaussian probability measure γn that is induced by the Hermitian
inner product (3.12). We write F ≡ Fn =

∑d(n)
j=1 X j p j where

{
p j

}
is an orthonormal basis

of Pn with respect to (3.12) and d(n) = dimPn =

 n + m
m

 . Identifying F ∈ Pn with

X = (X1, . . . , Xd(n)) ∈ Cd(n), we have

dγn(s) =
1
πd(n) e−|x|

2
dx.

Notice that the measure γn is independent of the choice of orthonormal basis
{
p j

}
. In other

words, a random polynomial in the ensemble (Pn, γn) is a polynomial F =
∑

j X j p j, where
the X j are independent complex Gaussian random variables with mean 0 and variance 1.

Now we are ready to state a multivariate version on the expected distribution of
simultaneous zeros of random polynomials orthonormalized on a compact set.

Theorem 3.13 ([9]). Let µ be a Borel probability measure on a regular compact set
K ⊂ Cm, and suppose that (K, µ) satisfies the Bernstein-Markov inequality. Let 1 ≤ k ≤ m,
and let

(
Pk

n , γ
k
n

)
denote the ensemble of k−tuples of IID Gaussian random polynomials of

degree ≤ n with the Gaussian measure dγn induced by L2(µ). Then

(3.13)
1
nk Eγk

n

(
ZF1,...,Fk

)
→

( i
π
∂∂̄VK

)k

weak ∗, as N → ∞

where VK is the pluricomplex Green function of K with pole at infinity.

Special Case 1:
Let K be the unit polydisk in Cm. Then VK = maxm

j=1 log+
∣∣∣z j

∣∣∣, the Silov boundary of K is

the product of the circles
∣∣∣z j

∣∣∣ = 1, ( j = 1, . . . ,m) and dµeq =

(
1

2π

)m

dθ1 · · · dθm where dθ j

is the angular measure on the circle
∣∣∣z j

∣∣∣ = 1. The monomials zJ := z j1
1 · · · z

jm
m , for |J| ≤ N,

form an orthonormal basis for Pn. A random polynomial in the ensemble is of the form

F(z) =
∑
|J|≤N

XJzJ

where the XJ are independent complex Gaussian random variables of mean zero and
variance one.

By Theorem 3.13, Eγm
n

(
ZF1,...,Fm

)
→

(
1

2π

)m

dθ1 · · · dθm in weak ∗, as n → ∞. In

particular, the common zeros of m random polynomials tend to the product of the unit
circles

∣∣∣z j

∣∣∣ = 1 for j = 1, . . . ,m

Special Case 2:
Let K be the unit ball {‖z‖ ≤ 1} in Cm. Then the Silov boundary of K is its topological



RANDOM POLYNOMIALS-II 241

boundary {‖z‖ = 1},VK(z) = log+
‖z‖, and µeq is the invariant hypersurface measure on

‖z‖ = 1 normalized to have total mass one.

Some established results on expected distributions of zeros are sketched here. The
one-dimensional case of (3.13) is given in [5], which generalizes the results in [36] for
the case where K is a real-analytic domain in C (or its boundary). Generalizations of
(3.13) to weighted equilibrium measures are given in [6], and generalizations to equilibrium
measures on pseudoconcave domains in compact Kähler manifolds are given by Berman
[3]. It has also been shown in [6] that (3.13) holds for certain non-Gaussian random
polynomials on C. Results on the distribution of zeros of polynomials on C with random
real coefficients are given by Shepp-Vanderbei [35], Ibragimov-Zeitouni [23], and others.

We may notice that the distributions of zeros for the measures on PN considered here
are quite different from those of the SU(m + 1) ensembles ( for example, in [44], [37], [7],
[8], [12]). The Gaussian measure on the SU( m + 1 ) polynomials is based on the inner
product

〈 f , g〉N =

∫
S 2m+1

FNGNdµ

where FN ,GN ∈ C [z0, z1, . . . , zm] denote the degree N homogenizations of f and g
respectively. It follows easily from the SU(m + 1) -invariance of the inner product that
the expected distribution of simultaneous zeros equals Nm

πm ω
m (exactly), where ω is the

Fubini-Study Kähler form (on Cm ⊂ CPm ). We note that, unlike (3.12), this inner product
depends on N; indeed,

∥∥∥zJ
∥∥∥2

N
=

m!(N−|J|)! j1!··· jm!
(N+m)! ([44],equation (30))

Theorem 3.14 ([9]). Let
(
Pm

N , γ
m
N

)
denote the ensemble of m -tuples of IID standard

Gaussian random polynomials of degree ≤ N with the Gaussian measure dγN induced
by L2

(
S 2m−1, µ

)
, where µ is the invariant measure on the unit sphere S 2m−1 ⊂ Cm Then

Eγm
N

(
Z f1,..., fm

)
= DN

(
log ‖z‖2

) ( i
2
∂∂̄‖z‖2

)m

where
1

Nm+1 DN

( u
N

)
=

1
πm F′′m(u)F′m(u)m−1 + O

(
1
N

)
with

Fm(u) = log
[

dm−1

dum−1

(
eu − 1

u

)]
An Open Problem:(Bloom-Shiffman[9]) Find scaling limits for more general sets in Cm.

4 RANDOM ORTHOGONAL POLYNOMIALS

Let φ0(x), φ1(x), φ2(x), . . . be a sequence of polynomials orthogonal with respect to a
given positive-valued weight function ω(x) over the interval (a, b) where one or both of a
and b may be infinite and let ψn(x) = g−1/2

n φn(x) with

(4.1) gn =

∫ b

a
ω(x)φ2

n(x)dx.
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Let f (x) be defined by

(4.2) f (x) ≡ f (c; x) =

N∑
k=0

ckψk(x)

where the coefficients c0, c1, c2, . . . form a sequence of IID standard Gaussian random
variables. We take the ordered set c0, c1, . . . , cn as the point c in an (n + 1)−dimensional
real vector space Rn+1. The probability that the point c lies in an “infinitesimal rectangle”∏

(c) with sides of lengths dc0, dc1, · · · , dcn is

dP(c) =

n∏
k=0

{
(2π)−1/2 exp

(
−

1
2

c2
k

)
dck

}
.

Let N(c;α, β) denote the number of zeros of the polynomial (4.2) in the interval α 5 x 5 β.
Das [10] has established the formula

(4.3)
∫

Rn+1

N(c;α, β)dP(c) =
1
π

∫ β

a

[
S n(x) + Rn(x)

Dn(x)
−

1
4

Q2
n(x)

D2
n(x)

]1/2

dx

where
Dn(x) = φ′n+1(x)φn(x) − φn+1(x)φ′n(x)
Qn(x) = φ′′n+1(x)φn(x) − φn+1(x)φ′′n (x)
Rn(x) = 1

2

{
φ′′n+1(x)φ′n(x) − φ′n+1(x)φ′′n (x)

}
and

S n(x) =
1
6

{
φ′′′n+1(x)φn(x) − φn+1(x)φ′′′n (x)

}
.

When n is large, Das has obtained an estimate of the integrand in the right-hand side of
(4.3) in terms of n and x only in an easily integrable form, since only two functions φn(x)
and φn+1(x) are now involved. He has obtained the following asymptotic estimate.

Theorem 4.1 ([10]). Let P∗1(x) be the normalized Legendre polynomial
(
k + 1

2

)1/2
Pk(x),

where

Pk(x) =
1
2k

1
k!

dk

dxk

(
x2 − 1

)k

the Legendre polynomial. Here a = −1 and b = 1 and ω(x) ≡ 1 in (4.1). Further
ψk(x) = P∗k(x) with gn =

(
n + 1

2

)1/2
. The average number νn of zeros of

(4.4) Fn(x) = c0P∗0(x) + c1P∗1(x) + · · · + ckP∗k(x) + · · · + cnP∗n(x)

in (−1, 1) where ci are IID standard Gaussian random variables, is asymptotically equal to
n/
√

3 when n is sufficiently large.

In [10], he has shown that νn ∼ 3−
1
2 n for large n (In fact, his analysis indicates that

νn = 3−
1
2 n

[
1 + O

{
(log n)−3

}]
.) Wilkins [49] has obtained somewhat better result that

νn = 3−
1
2 n + o

(
n5

)
for any positive δ. The analysis in [49] is similar to that of [10], but it involves a more
detailed treatment of the asymptotic expansion for Pn(t) when n is large.



RANDOM POLYNOMIALS-II 243

Let the coefficients c j be dependent Gaussian with moment matrix with ρii = σ2 and
ρi j = ρ, 0 < ρ < 1, i , j. Comparing the results of Farahmand [16] for the Legendre
polynomials with the algebraic polynomials, in the cases of independent versus dependent,
significant differences in the behavior are exhibited. Sambandham [41] has shown that
ENn(−∞,∞) for the algebraic case with dependent Gaussian coefficients is half that of
the independent case. However, Farahmand[16] has shown that in the case of Legendre
polynomials, the expected number of zeros is invariant for both dependent and independent
Gaussian cases.

Theorem 4.2 ([16]). If the coefficients of Fn(x) in (4.4) are dependent Gaussian with the
above covariance matrix and mean µ then, for all sufficiently large n, the expected number
of real zeros of Pn(x) is

ENn(−1, 1) ∼
n
√

3

In another direction, let us define a real zero of Fn(x, ω) as u−sharp when it up-crosses
the x−axis with slope greater than u or down-crosses it with slope smaller than −u. Let the
number of u−sharp crossings of Fn(x, ω) in the interval (a, b) be S u(a, b). Farahmand’s
method indicates that in the case of independent coefficients, most of the crossings of
random Legendre polynomials are u−sharp. That is, unlike algebraic cases, ES u(−1, 1)
is independent of u.

Theorem 4.3 ([16]). If the coefficients of Fn(x) in (4.4) are independent Gaussian with
mean µ, then for all u such that u/n3 → 0 as n → ∞, the expected number of u−sharp
crossings is

ES u(−1, 1) ∼
n
√

3

Let us present here the results obtained by Lubinsky et al.[33] on the random
orthogonal polynomials. We state a result on the number of real zeros for the random linear
combinations of rather general functions. It has its origin in the papers of Kac [21],[22],
[25] who used the monomial basis, and was extended to trigonometric polynomials and
other bases, see Farahmand [15] and Das [10], Das and Bhatt [11]. We are particularly
interested in the bases of orthonormal polynomials, which is the case considered by Das
[10]. For any set E ⊂ C, we use the notation Nn(E) for the number of zeros of random
functions (4.5) (or random orthogonal polynomials of degree at most n ) located in E.
The expected number of zeros in E is denoted by E [Nn(E)], with E [Nn(a, b) ] being the
expected number of zeros in (a, b) ⊂ R.

Theorem 4.4 ([33]). Let [a, b] ⊂ R, and consider real valued functions g j(x) ∈ C1([a, b]),
j = 0, . . . , n, with g0(x) being a nonzero constant. Define the random function

(4.5) Gn(x) =

n∑
j=0

c jg j(x)
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where the coefficients c j are IID random variables with Gaussian distribution
N

(
0, σ2

)
, σ > 0. If there is M ∈ N such that G′n(x) has at most M zeros in (a, b) for

all choices of coefficients, then the expected number of real zeros of Gn(x) in the interval
(a, b) is given by

(4.6) E [Nn(a, b)] =
1
π

∫ b
√

A(x)C(x) − B2(x)
A(x)

dx

where

(4.7) A(x) =

n∑
j=0

g2
j(x), B(x) =

n∑
j=1

g j(x)g′j(x) and C(x) =

n∑
j=1

[
g′j(x)

]2
.

For random Jacobi polynomials, Das and Bhatt [11] have concluded that E [Nn(−1, 1)]
is asymptotically equal to n/

√
3 too. They have also provided estimates for the expected

number of real zeros of random Hermite and Laguerre polynomials, but those arguments
contain some significant gaps. Farahmand ([14], [15], [16]) has considered various
generalizations of these results for the level crossings of random sums of Legendre
polynomials with coefficients that may have different distributions.

For the orthonormal polynomials
{
p j(x)

}∞
j=0

associated with positive Borel measure µ,
define the reproducing kernel by

Kn(x, y) =
∑
j=0

p j(x)p j(y)

and the differentiated kernels by

K(k,l)
n (x, y) =

n−1∑
j=0

p(k)
j (x)p(l)

j (y), k, l ∈ N ∪ {0}.

The strategy is to apply Theorem 4.4 with g j = p j, so that

(4.8) A(x) = Kn+1(x, x), B(x) = K(0,1)
n+1 (x, x) and C(x) = K(1,1)

n+1 (x, x).

We use universality limits for the reproducing kernels of orthogonal polynomials (see
Lubinsky ([31], [32]), Totik ([45], [46]) ), and asymptotic results on zeros of random
polynomials (cf. Pritsker [39]) give asymptotics for the expected number of real zeros
for a wider class of random orthogonal polynomials.

Theorem 4.5 ([33]). Let K ⊂ R be a finite union of closed and bounded intervals, and let
µ be a positive Borel measure supported on K such that dµ(x) = w(x)dx and w > 0 a.e.
on K. If for every ε > 0 there is a closed set S ⊂ K of Lebesgue measure |S | < ε, and a
constant C > 1 such that C−1 < w < C a.e. on K\S , then the expected number of real zeros
of random orthogonal polynomials (4.5) with Gaussian coefficients satisfy

(4.9) lim
n→∞

1
n
E [Nn(R)] =

1
√

3
.
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A simple example of the orthogonality measure µ satisfying the above conditions is
given by the density w that is continuous on K except for finitely many points, and has
finitely many zeros on K. More specifically, one may consider the generalized Jacobi
with weight of the form w(x) = v(x)

∏J
j=1

∣∣∣x − x j

∣∣∣α j
, where v(x) > 0, x ∈ K, and

α j > −1, j = 1, . . . , J. Theorem 4.5 is a consequence of more precise and general local
results given below. In order to state the result, we need the notion of the equilibrium
measure νK of a compact set K ⊂ C. This is the unique probability measure supported on
K that minimizes the energy

I[ν] = −

"
log |z − t|dν(t)dν(z)

amongst all probability measures ν with support on K. The logarithmic capacity of K is

cap(K) = exp (−I [νK])

When we say that a compact set K is regular, this means regularity in the sense of Dirichlet
problem (or potential theory). See Ransford [40] for further details.

We also need the notion of a measure µ regular in the sense of Stahl et al.[42](STU).
If K = supp µ and where γn is the

lim
n→∞

γ1/n
n =

1
cap(K)

where γn is the leading coefficient of pn, then we say that µ is STU-regular. A sufficient
condition for this is that K consists of finitely many intervals and µ′ = w > 0 a.e. in those
intervals.

Theorem 4.6 ([33]). Let µ be an STU regular measure with compact support K ⊂ R, which
is regular in the sense of potential theory. Let O be an open set in which µ is absolutely
continuous, and such that for some C > 1

(4.10) C−1 ≤ µ′ ≤ C a.e., in O

Then given any compact subinterval [a, b] of O, we have

(4.11) lim
n→∞

1
n
E [Nn([a, b])] =

1
√

3
νK([a, b])

where νK is the equilibrium measure of K.

This is a special case of the following result, where µ need not to be STU regular. The
asymptotic lower bound requires very little of µ.

Theorem 4.7 ([33]). Let µ be a measure on the real line with compact support K.
(a) Assume that µ′ > 0 a.e. in the interval [a, b]. Then

(4.12) lim inf
n→∞

1
n
E [Nn([a, b])] ≥

1
√

3
νK([a, b])
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(b) Suppose in addition that (4.10) holds, and that [a, b] ⊂ O. Then

(4.13) lim sup
n→∞

1
n
E [Nn([a, b])] ≤

1
√

3
inf

L
νL([a, b])

where the inf is taken over all regular compact sets L ⊂ K such that L ⊃ [a, b], and the
restriction µ|L of µ to L is STU regular.

Now we discuss the zeros of random sums of orthogonal polynomials, based on the
work of Shiffman and Zelditch [36]. Consider a set {pk(z)} of orthogonal polynomials. Let
Z0,Z1, . . . be a sequence of IID complex Gaussians with mean zero and variance one. Then,
a random sum of orthogonal polynomials is a random polynomial of the form

(4.14) Pn(z) =

n∑
k=0

Zk pk(z).

In order to correctly formulate the results of Shiffman and Zelditch [36], we need to
give a few definitions. To start, let Pn be the space of polynomials defined on C, with degree
less than or equal to n. For Ω a simply connected bounded domain in C with real analytic
boundary (which will henceforth be called a simply connected bounded Cω domain; see [2]
for further references ), we define the inner product on Pn by

(4.15) 〈 f , ḡ〉∂Ω,ρ :=
∫
∂Ω

f (z)g(z)ρ(z)|dz|

where ρ is a weight function, ρ ∈ Cω(∂Ω), the space of real analytic functions on a real
analytic boundary ∂Ω.

Now, given a compact set K ∈ C, the equilibrium measure for this set is defined as the
unique probability measure that minimizes the energy

I(µ) = −

∫
K

∫
K

log |z − w|dµ(z)dµ(w)

(see [29], [47] for further reference). This measure will be denoted as µK . If {pk(z)} is
an orthonormal basis of Pn orthogonalized over a domain Ω satisfying certain properties,
Shiffman and Zelditch [36] have shown that the zeros of Pn(z) are distributed themselves
in the limit according to the equilibrium measure for Ω̄. By a slight abuse of notation, let
µΩ represent this measure. In the case of the closed unit disk, S 1, this is simply Lebesgue
measure on the circle, denoted by δS 1 . This statement will be made more precise as follows.

If we let {pk(z)} be an orthonormal basis of Pn according to the inner product in (4.15),
we can write any arbitrary Pn ∈ Pn in the form of (4.14). A Gaussian measure on Pn will
then be defined by the condition that the Zk ’s are IID complex Gaussians with mean zero
and unit variance. This measure will be denoted by γn

Ω,ρ. An expectation with respect to(
Pn, γ

n
Ω,ρ

)
will be written as En

∂Ω,ρ
. Finally, we need to introduce the normalized distribution

of zeros for Pn. This is defined as

Z̃n
Pn

:=
1
n

∑
Pn(z)=0

δz
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In a nutshell, it measures the zeros of Pn. We are now ready to state the main result of
Shiffman and Zelditch [36].

Theorem 4.8 ([36]). Suppose that Ω is a simply connected bounded Cω domain and that ρ
is a positive Cω density on ∂Ω. Then,

(4.16) En
∂Ω,ρ

[
Z̃n

Pn

]
= µΩ + O

(
1
n

)
where µΩ is the equilibrium measure of Ω̄. As a further note on notation, in this context
O( f (n)) corresponds to a distribution Tn ∈ D′(C) such that

|〈Tn, φ〉| ≤ cφ f (n), ∀φ ∈ D(C)

where cφ does not depend on n.

This result has motivated the investigation of a similar problem, where the random
sums of orthogonal polynomials are composed of the “classic” orthogonal polynomials.
These would include the Chebyshev, Legendre, and Hermite polynomials. Since the
aforementioned polynomials are all orthogonalized on the real line, or some subset thereof,
the given theorem of Shiffman and Zelditch[36] would not apply. Thus, in what follows
we will lay the groundwork for an investigation into the zeros of such random sums of
orthogonal polynomials. We will also present some results pertaining to the specific case
of Chebyshev polynomials of the first kind.

The discussion here will be closely based on the work of Shiffman and Zelditch in
[36], where the necessary changes are made to handle the case when Ω is a subset of the
real line, rather than a simply connected bounded Cω domain in C.

At first, we formulate a specific case of orthonormal polynomials on the closed unit
disk.

Theorem 4.9 ([36]). Let µ = δS 1 denote Haar measure on S 1, and let ρ ≡ 1. Then

En
S 1,ρ

[
nZ̃n

Pn

]
=

i
2π

 1(
|z|2 − 1

)2 −
(n + 1)2|z|2n(
|z|2n+2 − 1

)2

 dz ∧ dz̄

Furthermore, En
S 1,ρ

[
nZ̃n

Pn

]
= nµ + O(1); that is, for all test forms φ ∈ D(C)

En
S 1,ρ

 ∑
{z:Pn(z)=0}

φ(z)

 =
n

2π

∫ 2π

0
φ
(
eiθ

)
dθ + O(1)

In particular, En
S 1,ρ

[
Z̃n

Pn

]
→ µ in D′(C)

Using Theorem 4.9, the idea is to reduce all the other cases back to the unit disk. In
order to accomplish this goal, we must introduce some additional notation.

Denoting the unit disk as U and letting Ĉ = C ∪ {∞}, for a simply connected bounded
domain Ω let

Φ : Ĉ\Ω −→ Ĉ\U
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be a conformal mapping for which Φ(∞) = ∞ and Φ′(∞) ∈ R+. Letting ∗ denote the
pullback, it is a known result that the equilibrium measure for Ω is then given by

(4.17) µΩ = Φ∗δS 1

or equivalently, ∫
Ω

φ(z)dµΩ(z) =
1

2π

∫ 2π

0
φ ◦ Φ−1

(
eiθ

)
dθ

We will now look more closely at our specific sequence of orthonormal polynomials. For
the interval [-1,1] , consider the conformal mapping

(4.18) Φ(z) = z +
(
z2 − 1

)1/2

which maps C\[−1, 1] to C\U. Additionally, Φ(∞) = ∞,Φ′(∞) = 1, and Φ takes the
interval [-1,1] to the upper half of the boundary of U. Also, let the weight function ρ be
given by

ρ(z) = (1 − z)α(1 − z)β

where α > −1, β > −1. The orthogonal polynomials generated by this weight function are
called the Jacobi Polynomials. Let us take up the Chebyshev polynomials of the first kind,
which arise when α = β = −1

2 . These are given by

(4.19) T̃k(z) =
1
2

(
Φk(z) + Φ−k(z)

)
.

Note that the T̃k(z) ’s form an orthogonal set, but are not orthonormal. We will define
the orthonormal set of Chebyshev polynomials of the first kind by

(4.20) T0(z) =
1
√
π

T̃0(z)

Tk(z) =

√
2
π

T̃k(z), k > 0

We are now ready to state a result.

Theorem 4.10 ([36]). Let Z1,Z2, . . . be a sequence of independent complex Gaussians, with
mean zero and variance one. Consider the random sum of orthogonal polynomials given
by

Pn(z) =

n∑
k=0

ZkTk(z)

where Tk(z) is the k−th orthonormal Chebyshev polynomial of the first kind defined above.
Let ρ be the weight function given by ρ(z) = (1 − z)−1/2(1 + z)−1/2. Then, for Ω = [−1, 1]

En
∂Ω,ρ

(
Z̃n

Pn

)
= µΩ + O

(
1
n

)
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The foundation laid in this section triggers to probe on some future work in this
area. As the Chebyshev polynomials of the first kind, the zeros of Pn converge to the
equilibrium distribution, we firmly believe that similar results should hold for the Legendre
polynomials, as well as (i) the Jacobi polynomials and (ii) Hermite polynomials. Thus, a
study the extension of Shiffman and Zelditch’s work to other orthogonal polynomials has
to be initiated.

5 CONCLUSION

In section 1, we recorded interesting results on the concentration of zeros of random
polynomials that occur in different situations. Section 2 focused on the discussion on
random polynomials in higher dimensions. Also Kac-Rice formula in higher dimensions
was discussed with nice results. Computational details on the expected number of complex
zeros of random polynomials were also outlined. In section 3, expected zeros of random
orthogonal polynomials was methodologically presented to initiate further research. In the
course of presentation of results, a cross section of research works were consulted. As this
topic has influenced many researchers in the globe, some important contributions might
have been left unintentionally. It is proposed to continue this task in the case of random
polynomials in most general situations.
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correlations between zeros, Comm. Math. Phys. 208, 771–785, 2000.
[8] Bleher, P., Shiffman, B., and Zelditch, S. Universality and scaling of correlations between zeros on

complex manifolds, Invent. Math. 142, 351–395, 2000.
[9] Bloom, T. and Shiffman, B. Zeros of random polynomials on Cm, Math. Res. Lett. 14(3), 469–479,

2007.
[10] Das, M. Real zeros of a random sum of orthogonal polynomials, Proc. Amer. Math. Soc. 27(1),

147–153, 1971.
[11] Das, M. and Bhatt, S. S. Real roots of random harmonic equations, Indian J. Pure Appl. Math. 13,

411–420, 1982.
[12] Dinh, T.-C. and Sibony, N. Distribution des valeurs de transformations méromorphes et applications,
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[28] Lachièze-Rey, R. Bicovariograms and Euler characteristic of Random fields excursions. Preprint arXiv
1510.00502v4, 2018.

[29] Landkof, N.S. Foundations of modern potential theory. Springer-Verlag, New York, 1972. Translated
from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band
180.

[30] Littlewood, J. E. and Offord, A.C. On the number of real roots of a random algebraic equation-III. Rec.
Math. [Mat. Sbornik] N.S. 12(54), 277–286, 1943.

[31] Lubinsky, D.S. A new approach to universality limits involving orthogonal polynomials’ Ann. Math.
170, 915–939, 2009.

[32] Lubinsky, D.S. Bulk universality holds in measure for compactly supported measures. J. Anal. Math.
116, 219–253, 2012.

[33] Lubinsky, D.S., Pritsker, I.E., and Xie, X. Expected number of real zeros for random linear
combinations of orthogonal polynomials. Proc. Amer. Math.Soc. 144(4), 1631–1642, 2016.

[34] Mendeleev, D. Investigation of Aqueous Solutions Based on Specific Gravity (Russian), St. Petersburg,
1887.

[35] Shepp, L. A. and Vanderbei, R.J. The complex zeros of random polynomials. Trans. Amer. Math. Soc.
347(11), 4365–4384, 1995.



RANDOM POLYNOMIALS-II 251

[36] Shiffman, B. and Zelditch, S. Equilibrium distribution of zeros of random polynomials. Int. Math. Res.
Not. 1(25), 25–49, 2003.

[37] Shiffman, B. and Zelditch, S. Number variance of random zeros on complex manifolds. Geom. Funct.
Anal. 18, 1422–1475, 2008.

[38] Pritsker, I. and Ramachandran, K. Equidistribution of zeros of random polynomials. J. Approx. Theory.
215, 106–117, 2017.

[39] Pritsker, I. E. Zero distribution of random polynomials. Journal d’Analyse Mathématique. 134(2),
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