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ABSTRACT. In this paper we present some existence results and topological structure of the

solution set for a class of Caputo implicit fractional q-difference inclusions in Banach spaces. Firstly,

using the set-valued analysis, we study some global existence results and we present a new version

of Filippov’s Theorem. Further, we obtain results in the cases where the nonlinearity is upper as

well as lower semi-continuous with respect to the second argument by using Mönch’s and Schauder-

Tikhonov fixed point theorems and the concept of measure of noncompactness. In the last section,

we illustrate our results by an example.
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1. Introduction

Numerous mathematicians and physicists have shown a greater interest in frac-

tional equations and inclusions, which give an efficient way to describe several practi-

cal dynamical developments in engineering and other applied sciences [1,3,4,6–8,14,

25,36,44,45,48,51]. Recently, many substantial and interesting results on initial and
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boundary value problems for fractional differential equations with Riemann-Liouville

and Caputo fractional derivatives have been obtained [2, 3, 34, 42,43,50].

q-difference equations were established in the early nineteenth century [5, 19],

and have gained a considerable interest recently. We suggest the papers [10,11,26,52]

and references therein, for some important results on q-difference and fractional q-

difference equations and inclusions.

Filippov’s solutions for various classes of integer or fractional order differential

inclusions have been considered in the literature; see for instance [21–23,31].

Implicit fractional differential equations have been studied by numerous researchers.

For more information, we refer the readers to the papers [18, 46,47,49].

In this paper, we shall be concerned with a Filippov’s theorem, existence of

solutions and the topological structure of solution sets for the following fractional

q-difference problem:

(1.1) (cDζ
qw)(ϑ) ∈ Ψ

(
ϑ,w(ϑ), (cDζ

qw)(ϑ)
)
, ϑ ∈ Θ := [0, κ],

(1.2) w(0) = w0 ∈ Ξ,

where (Ξ, ‖ ·‖) is a separable real or complex Banach space, q ∈ (0, 1), ζ ∈ (0, 1], κ >

0, Ψ : Θ× Ξ× Ξ→ P(Ξ) is a multivalued map, P(Ξ) is the family of all nonempty

subsets of Ξ, cDζ
q is the Caputo fractional q-difference derivative of order ζ.

2. Preliminaries

By F(Θ) := C(Θ,Ξ), we denote the Banach space of continuous functions from

Θ into Ξ with the norm

‖w‖∞ := sup
ϑ∈Θ
‖w(ϑ)‖.

Consider the space L1(Θ) of measurable functions w : Θ → Ξ which are Bochner

integrable with the norm

‖w‖1 =

∫
Θ

‖w(ϑ)‖dϑ.

Let us revisit some fractional q-calculus definitions and properties. For β1 ∈ R,
we set

[β1]q =
1− qβ1

1− q
.

The q-analogue of the power (β1 − β2)α is

(β1 − β2)(0) = 1, (β1 − β2)(α) = Πα−1
ξ=0 (β1 − β2q

ξ); β1, β2 ∈ R, α ∈ N.
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In general,

(β1 − β2)(ζ) = β1
ζΠ∞ξ=0

(
β1 − β2q

ξ

β1 − β2qξ+ζ

)
; β1, β2, ζ ∈ R.

Definition 2.1. [33] The q-gamma function is given by

Γq(ε) =
(1− q)(ε−1)

(1− q)ε−1
; ε ∈ R− {0,−1,−2, . . .},

where Γq(1 + ε) = [ε]qΓq(ε).

Definition 2.2. [33] The q-derivative of order α ∈ N of a function w : Θ → Ξ is

given by (D0
qw)(ϑ) = w(ϑ),

(Dqw)(ϑ) := (D1
qw)(ϑ) =

w(ϑ)−w(qϑ)

(1− q)ϑ
; ϑ 6= 0, (Dqw)(0) = lim

ϑ→0
(Dqw)(ϑ),

and

(Dα
qw)(ϑ) = (DqD

α−1
q w)(ϑ); ϑ ∈ Θ, α ∈ {1, 2, . . .}.

Set Θϑ := {ϑqα : α ∈ N} ∪ {0}.

Definition 2.3. [33] The q-integral of a function w : Θϑ → Ξ is defined by

(Iqw)(ϑ) =

∫ ϑ

0

w(%)dq% =
∞∑
α=0

ϑ(1− q)qαψ(ϑqα).

It should be noted that (DqIqw)(ϑ) = w(ϑ), while if w is continuous at 0, then

(IqDqw)(ϑ) = w(ϑ)−w(0).

Definition 2.4. [9] The Riemann-Liouville fractional q-integral of order ζ ∈ R+ :=

[0,∞) of a function w : Θ→ Ξ is given by (I0
qw)(ϑ) = w(ϑ), and

(Iζqw)(ϑ) =

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
w(%)dq%; ϑ ∈ Θ.

Lemma 2.5. [40] For ζ ∈ R+ := [0,∞) and $ ∈ (−1,∞) we have

(Iζq (ϑ− a)($))(ϑ) =
Γq(1 +$)

Γ(1 +$ + ζ)
(ϑ− a)($+ζ); 0 < a < ϑ < κ.

In particular,

(Iζq 1)(ϑ) =
1

Γq(1 + ζ)
ϑ(ζ).

Definition 2.6. [41] The Riemann-Liouville fractional q-derivative of order ζ ∈ R+

of a function w : Θ→ Ξ is given by (D0
qw)(ϑ) = w(ϑ), and

(Dζ
qw)(ϑ) = (D[ζ]

q I
[ζ]−ζ
q w)(ϑ); ϑ ∈ Θ,

where [ζ] is the integer part of ζ.
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Definition 2.7. [41] The Caputo fractional q-derivative of order ζ ∈ R+ of a function

w : Θ→ Ξ is defined by (CD0
qw)(ϑ) = w(ϑ), and

(CDζ
qw)(ϑ) = (I [ζ]−ζ

q D[ζ]
q w)(ϑ); ϑ ∈ Θ.

Lemma 2.8. [41] Let ζ ∈ R+. Then the following holds:

(Iζq
CDζ

qw)(ϑ) = w(ϑ)−
[ζ]−1∑
ξ=0

ϑξ

Γq(1 + ξ)
(Dξ

qw)(0).

In particular, if ζ ∈ (0, 1), then

(Iζq
CDζ

qw)(ϑ) = w(ϑ)−w(0).

We also use the subsets of P(Ξ) that follow (see [31] for more details):

Pcl(Ξ) = {Φ ∈ P(Ξ) : Φ is closed},
Pb(Ξ) = {Φ ∈ P(Ξ) : Φ is bounded},
Pcp(Ξ) = {Φ ∈ P(Ξ) : Φ is compact}
Pcv(Ξ) = {Φ ∈ P(Ξ) : Φ is convex}
Pcp,cv(Ξ) = Pcp(Ξ) ∩ Pcv(Ξ).

We denote by FixS the fixed point set of the multivalued operator S.

Definition 2.9. A multivalued map S : Θ → Pcl(Ξ) is said to be measurable if for

every z1 ∈ Ξ, the function:

ϑ→ d(z1,S(ϑ)) = inf{|z1 − z2| : z2 ∈ S(ϑ)}

is measurable.

Lemma 2.10. [31,32] Let S be a completely continuous multivalued map with nonempty

compact values, then S is upper semi-continuous (u.s.c.) if and only if S has a closed

graph.

Definition 2.11. A multi-valued map Ψ : Θ× Ξ× Ξ→ P(Ξ) is Carathéodory if:

(1) ϑ→ Ψ(ϑ,w, y) is measurable for each w, y ∈ Ξ;

(2) w→ Ψ(ϑ,w, y) is upper semicontinuous for almost all ϑ ∈ Θ.

Ψ is called L1-Carathéodory if (1), (2) and the following requirements are met:

(3) For each q > 0, there exists ϕq ∈ L1(Θ,R+) where

‖Ψ(ϑ,w, y)‖P = sup{|z2| : z2 ∈ Ψ(ϑ,w, y)} ≤ ϕq for all |w|, |y| ≤ q and for a.e. ϑ ∈ Θ.

For each z1 ∈ F(Θ), define the set of selections of Ψ by

SΨ◦z1 = {z2 ∈ L1(Θ) : z2(ϑ) ∈ Ψ(ϑ, z1(ϑ), cDζ
qz1(ϑ)) a.e. ϑ ∈ Θ}.

Let (Ξ, d) be a metric space induced from the normed space (Ξ, | · |). The function

Hd : P(Ξ)× P(Ξ)→ R+ ∪ {∞} given by:
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Hd(Φ1,Φ2) = max{ sup
β1∈Φ1

d(β1,Φ2), sup
β2∈Φ2

d(Φ1, β2)}

is referred to as the Hausdorff-Pompeiu metric. For further details on multivalued

maps see works by Hu and Papageorgiou [32].

The symbol MΞ̄ stands for the class of all bounded subsets of a metric space Ξ̄.

Definition 2.12. Let Ξ̄ be a complete metric space. A function µ :MΞ̄ → [0,∞) is

said to be a measure of noncompactness on Ξ̄ if the following conditions are verified

for all Ω,Ω1,Ω2 ∈MΞ̄.

(a) Regularity, i.e., µ(Ω) = 0 if and only if Ω is precompact,

(b) invariance under closure, i.e., µ(Ω) = µ(Ω),

(c) semi-additivity, i.e., µ(Ω1 ∪ Ω2) = max{µ(Ω1), µ(Ω2)}.

Definition 2.13. [16] Let Ξ be a Banach space and denote by ΩΞ the family of

bounded subsets of Ξ. the map µ : ΩΞ → [0,∞) defined by

µ(Φ̃) = inf{ν > 0 : Φ̃ ⊂ ∪mj=1Φ̃j, diam(Φ̃j) ≤ ν}, Φ̃ ∈ ΩΞ,

is called the Kuratowski measure of noncompactness.

Theorem 2.14. [30] Let Ξ be a Banach space. Let Ω̃ ⊂ L1(Θ) be a countable set

with |w(ϑ)| ≤ δ(ϑ) for a.e. ϑ ∈ Θ and every w ∈ Ω̃, where δ ∈ L1(Θ,R+). Then

µ(Ω̃(ϑ)) ∈ L1(Θ,R+) and verifies

µ

({∫ κ

0

w(%) d% : w ∈ Ω̃

})
≤ 2

∫ κ

0

µ(Ω̃(%)) d%,

where µ is the Kuratowski measure of noncompactness on the set Ξ.

Lemma 2.15. [35] Let Θ be a compact real interval. Let Ψ be a Carathéodory mul-

tivalued map and let S be a linear continuous map from L1(Θ) → F(Θ). Then the

operator

S ◦ SΨ◦w : F(Θ)→ Pcv,cp(F(Θ)), w 7→ (S ◦ SΨ◦w)(w) = S(SΨ◦w)

is a closed graph operator in F(Θ)× F(Θ).

Definition 2.16. Let Ξ̄ be Banach space. A multivalued mapping S : Ξ̄→ Pcl,b(Ξ̄)

is ξ−set- Lipschitz if there exists a constant ξ > 0, where µ(S(Ω)) ≤ ξµ(Ω) for all

Ω ∈ Pcl,b(Ξ) with S(Ω) ∈ Pcl,b(Ξ). If ξ < 1, then S is said to be a ξ−set-contraction

on Ξ̄.

Theorem 2.17. (Mönch fixed point theorem) [38] Let Ξ be Banach space and Ω1 ⊂ Ξ

be a closed and convex set. Also, let Ω2 be a relatively open subset of Ω1 and S : Ω2 →
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Pc(Ω1). Suppose that S maps compact sets into relatively compact sets, graph(S) is

closed and for some x0 ∈ Ω2, we have

(2.1)

conv(x0 ∪S(Φ)) ⊃ Φ ⊂ Ω2 and Φ = Ω2 (Ω̃ ⊂ Φ countable) imply Φ is compact

and

(2.2) x /∈ (1−$)x0 +$S(x) ∀x ∈ Ω2\Ω2, $ ∈ (0, 1).

Then there exists x ∈ Ω2 with x ∈ S(x).

Also, we recall the Schauder-Tikhonov fixed point theorem:

Theorem 2.18. (Schauder-Tikhonov fixed point theorem) [15] Let Ξ̄ be a locally

convex space, Ω̃ a convex closed subset of Ξ̄ and S : Ω̃→ Ω̃ is a continuous, compact

map. Then S has at least one fixed point in Ω̃.

3. Filippov’s Theorem

Consider T : F(Θ)→ P(F(Θ)), the operator defined by:

(3.1) T(w) =
{
δ ∈ F(Θ) : δ(ϑ) = w0 +

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
z(%)dq%; z ∈ SΨ◦w

}
.

It is clear that the fixed points of T are solutions of (1.1)-(1.2). First, we state the

definition of a solution of the problem (1.1)-(1.2).

Definition 3.1. By a solution of the problem (1.1)-(1.2) we mean a function δ ∈ F(Θ)

that verifies

δ(ϑ) = w0 +

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
z(%)dq%,

where z ∈ SΨ◦w.

Lemma 3.2. [39] Let S : Θ→ Pcl(Ξ) be a measurable multifunction and w : Θ→ Ξ

be a measurable function. Assume that there exists p ∈ L1(Θ,Ξ) such that S(ϑ) ⊂
p(ϑ)Ω0, where Ω0 := Ω(0, 1) denotes the closed ball in Ξ. Then there exists a measur-

able selection κ of S such that for a.e. ϑ ∈ Θ,

‖w(ϑ)− κ(ϑ)‖ ≤ d(w(ϑ),S(ϑ)).

Let x0 ∈ Ξ, κ ∈ L1(Θ,Ξ), and let x ∈ F(Θ) be a solution of the fractional

q-difference problem:

(3.2)

(cDζ
qx)(ϑ) = κ(ϑ), ϑ ∈ Θ,

x(0) = x0.

The hypotheses:
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(A1) The multivalued map Ψ : Θ× Ξ× Ξ→ P(Ξ) satisfies:

(A1a) the map ϑ 7→ Ψ(ϑ,w, y) is measurable; for all w, y ∈ Ξ,

(A1b) the map $ : ϑ 7→ d
(
ψ(ϑ),Ψ(ϑ, x(ϑ), cDζ

qx(ϑ))
)

is integrable.

(A2) There exists a function ω1 ∈ L∞(Θ,R+) such that

Hd(Ψ(ϑ,w, y),Ψ(ϑ, z, ȳ)) ≤ ω1(ϑ)‖w− z‖;

for a.e. ϑ ∈ Θ, and each w, z, y, ȳ ∈ Ξ.

Remark 3.3. From Assumptions (A1a) and (A1b), the multi-function ϑ 7→ Ψ(ϑ,w, y)

is measurable, and by Lemmas 1.4 and 1.5 from [27], z(ϑ) = d
(
ψ(ϑ),Ψ(ϑ, x(ϑ), cDζ

qx(ϑ))
)

is measurable.

Set

ω1
∗ = esssupϑ∈Θω1(ϑ).

Theorem 3.4. If (A1) and (A2) are met, then the (1.1)-(1.2) has at least one solution

w defined on Θ. Moreover, for a.e. ϑ ∈ Θ, w satisfies the estimates:

‖w(ϑ)− x(ϑ)‖ ≤ ‖w0 − x0‖+
ω1
∗κ(ζ−1)

Γq(ζ)

∫ ϑ

0

∞∑
i=2

‖xi(%)− xi−1(%)‖dq%,

and

‖(cDζ
qw)(ϑ)− κ(ϑ)‖ ≤ ω1

∗
∞∑
i=2

‖xi(ϑ)− xi−1(ϑ)‖,

where

‖xα(ϑ)− xα−1(ϑ)‖ ≤
(
ω1
∗κ(ζ−1)

Γq(ζ)

)α−1 ∫ ϑ

0

∫ %1

0

∫ %2

0

· · ·
∫ %α−2

0

(‖w0 − x0‖

+
κ(ζ−1)

Γq(ζ)

∫ %α−1

0

$(τ)dqτ

)
dq%α−1dq%α−2 · · · dq%1.

Proof. First, we establish a sequence of functions (wα)α∈N which will be demon-

strated to converges to a solution of (1.1)-(1.2) on Θ.

Let ψ0 = κ on Θ. So, we have

x(ϑ) = x0 +

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
ψ0(%)dq%.

Define the multi-valued map Λ1 : Θ→ P(Ξ) by

Λ1(ϑ) + Ψ(ϑ, x(ϑ), cDζ
qx(ϑ)) ∩ (ψ0(ϑ) +$(ϑ)Ω0).

Since ψ0 and$ are measurable, the ball (ψ0(ϑ)+$(ϑ)Ω0) is measurable from Theorem

III.4.1 in [20]. Moreover Ψ(ϑ, x(ϑ), cDζ
qx(ϑ)) is measurable and Λ1 is nonempty. It is
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clear that for a.e. ϑ ∈ Θ,

d(0,Ψ(ϑ, 0, 0))

≤ d(0, ψ0(ϑ)) + d(ψ0(ϑ),Ψ(ϑ, x(ϑ), cDζ
qx(ϑ))) +Hd(Ψ(ϑ, x(ϑ), cDζ

qx(ϑ)),Ψ(ϑ, 0, 0))

≤ ‖ψ0(ϑ)‖+$(ϑ) + ω1(ϑ)‖x(ϑ)‖.

Hence for all d ∈ Ψ(ϑ, x(ϑ), cDζ
qx(ϑ)), we have

‖d‖ ≤ d(0,Ψ(ϑ, 0, 0)) +Hd(Ψ(ϑ, 0),Ψ(ϑ, x(ϑ), cDζ
qx(ϑ)))

≤ ‖ψ0(ϑ)‖+$(ϑ) + 2p(ϑ)‖x(ϑ)‖ := γ(ϑ).

This implies that

Ψ(ϑ, x(ϑ), cDζ
qx(ϑ)) ⊂ γ(ϑ)Ω0; ϑ ∈ Θ.

From Lemma 3.2, there exists w which is a measurable selection of Ψ(ϑ, x(ϑ), cDζ
qx(ϑ))

such that

‖w(ϑ)− ψ0(ϑ)‖ ≤ d(ψ0(ϑ),Ψ(ϑ, x(ϑ), cDζ
qx(ϑ))) = $(ϑ).

Then w ∈ Λ1(ϑ). We conclude that the intersection multivalued operator Λ1(ϑ) is

measurable (see [20, 39]). By Kuratowski-Ryll-Nardzewski selection theorem, there

exists a function ϑ→ ψ1(ϑ) which is a measurable selection for Λ1. Suppose

x1(ϑ) = w0 +

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
ψ1(%)dq%.

For each ϑ ∈ Θ, we have

‖x1(ϑ)− x(ϑ)‖ ≤ ‖w0 − x0‖+

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
‖ψ1(%)− ψ0(%)‖dq%

(3.3) ≤ ‖w0 − x0‖+
κ(ζ−1)

Γq(ζ)

∫ ϑ

0

$(%)dq%.

Next, from Lemma 1.4 in [27], Ψ(ϑ, x1(ϑ), cDζ
qx1(ϑ)) is measurable.

The ball (ψ1(ϑ) + ω1(ϑ)‖x1(t) − x(ϑ)‖Ω0) is also measurable. The set Λ2(ϑ) =

Ψ(ϑ, x1(ϑ), cDζ
qx1(ϑ)) ∩ (ψ1(ϑ) + ω1(ϑ)|x1(ϑ) − x(ϑ)‖Ω0) is nonempty. Since ψ1 is a

measurable function, Lemma 3.2 yields a measurable selection w of Ψ(ϑ, x1(ϑ), cDζ
qx1(ϑ))

such that

‖w(ϑ)− ψ1(ϑ)‖ ≤ d(ψ1(ϑ),Ψ(ϑ, x1(ϑ), cDζ
qx1(ϑ))).

Then using (A2), we get

‖w(ϑ)− ψ1(ϑ)‖ ≤ d(ψ1(ϑ),Ψ(ϑ, x1(ϑ), cDζ
qx1(ϑ)))

≤ Hd(Ψ(ϑ, x(ϑ)),Ψ(ϑ, x1(ϑ), cDζ
qx1(ϑ)))

≤ ω1(ϑ)‖x(ϑ)− x1(ϑ)‖.
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Thus, w ∈ Λ2(ϑ). Further, as the intersection multi-valued operator Λ2 given previ-

ously is measurable, there exists a measurable selection ψ2(ϑ) ∈ Λ2(ϑ). Thus

(3.4) ‖ψ2(ϑ)− ψ1(ϑ)‖ ≤ ω1(ϑ)‖x1(ϑ)− x(ϑ)‖.

Consider

x2(ϑ) = x0 +

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
ψ2(%)dq%.

Using (3.3) and (3.4), for every ϑ ∈ Θ,

‖x2(ϑ)− x1(ϑ)‖ ≤ κ(ζ−1)

Γq(ζ)

∫ ϑ

0

‖ψ2(%)− ψ1(%)‖dq%

≤ κ(ζ−1)

Γq(ζ)

∫ ϑ

0

ω1(%)‖x1(%)− x(%)‖dq%

≤ κ(ζ−1)

Γq(ζ)

∫ ϑ

0

ω1(%)

(
‖w0 − x0‖+

κ(ζ−1)

Γq(ζ)

∫ %

0

$(τ)dqτ

)
dq%

≤ ω1
∗κ(ζ−1)

Γq(ζ)

∫ ϑ

0

(
‖w0 − x0‖+

κ(ζ−1)

Γq(ζ)

∫ %

0

$(τ)dqτ

)
dq%.

Let Λ3(ϑ) = Ψ(ϑ, x2(ϑ), cDζ
qx2(ϑ)) ∩ (ψ2(ϑ) + ω1(ϑ)‖x2(ϑ) − x1(ϑ)‖Ω0). Similarly to

Λ2, we may demonstrate that Λ3 is a measurable multi-valued map with nonempty

values; so there exists a measurable selection ψ3(ϑ) ∈ Λ3(ϑ). This gives us the ability

to express the following:

x3(ϑ) = x0 +

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
ψ3(%)dq%.

Then, for each ϑ ∈ Θ,

‖x3(ϑ)− x2(ϑ)‖ ≤ κ(ζ−1)

Γq(ζ)

∫ ϑ

0

‖ψ3(%)− ψ2(%)‖dq%

≤ κ(ζ−1)

Γq(ζ)

∫ ϑ

0

ω1(%)‖x2(%)− x1(%)‖dq%

≤ ω1
∗κ(ζ−1)

Γq(ζ)

∫ ϑ

0

(
ω1
∗κ(ζ−1)

Γq(ζ)

∫ %1

0

(‖w0 − x0‖

+
κ(ζ−1)

Γq(ζ)

∫ %2

0

$(τ)dqτ

)
dq%2

)
dq%1

≤
(
ω1
∗κ(ζ−1)

Γq(ζ)

)2 ∫ ϑ

0

∫ %1

0

(
‖w0 − x0‖+

κ(ζ−1)

Γq(ζ)

∫ %2

0

$(τ)dqτ

)
dq%2dq%1.

Repeating the process for α = 1, 2, · · · , for each ϑ ∈ Θ,

‖xα(ϑ)− xα−1(ϑ)‖ ≤ κ(ζ−1)

Γq(ζ)

∫ ϑ

0

‖ψα(%)− ψα−1(%)‖dq%

≤ κ(ζ−1)

Γq(ζ)

∫ ϑ

0

ω1(%)‖xα(%)− xα−1(%)‖dq%.
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Hence, we get

‖xα(ϑ)− xα−1(ϑ)‖ ≤
(
ω1
∗κ(ζ−1)

Γq(ζ)

)α−1 ∫ ϑ

0

∫ %1

0

∫ %2

0

· · ·
∫ %α−2

0

(‖w0 − x0‖

(3.5) +
κ(ζ−1)

Γq(ζ)

∫ %α−1

0

$(τ)dqτ

)
dq%α−1dq%α−2 · · · dq%1.

By induction, assume that (3.5) holds for some α and check (3.5) for α + 1.

Let Λα+1(ϑ) = Ψ(ϑ, xα(ϑ), cDζ
qxα(ϑ))∩ (ψα +ω1(ϑ)‖xα(ϑ)−xα−1(ϑ)‖Ω0). Since Λα+1

is a nonempty measurable set, there exists a measurable selection ψα+1(ϑ) ∈ Λα+1(ϑ),

it enables us to define α ∈ N,

(3.6) xα+1(ϑ) = x0 +

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
ψα+1(%)dq%.

Thus, for a.e. ϑ ∈ Θ, we obtain

‖xα+1(ϑ)− xα(ϑ)‖ ≤ κ(ζ−1)

Γq(ζ)

∫ ϑ

0

‖ψα+1(%)− ψα(%)‖dq%

≤ κ(ζ−1)

Γq(ζ)

∫ ϑ

0

ω1(%)‖xα+1(%)− xα(%)‖dq%

≤
(
ω1
∗κ(ζ−1)

Γq(ζ)

)α−1 ∫ ϑ

0

∫ %1

0

∫ %2

0

· · ·
∫ %α−1

0

(‖w0 − x0‖

+
κ(ζ−1)

Γq(ζ)

∫ %α

0

$(τ)dqτ

)
dq%αdq%α−1 · · · dq%1.

Consequently, (3.5) is true for all α ∈ N. We deduce that {xα}α is a Cauchy

sequence in F(Θ), converging uniformly to a limit function w ∈ F(Θ).

Furthermore, from the definition of {Λα}α, we get

‖ψα+1 − ψα‖ ≤ ω1(ϑ)‖xα − xα−1‖; a.e. ϑ ∈ Θ,

Thus, for almost every ϑ ∈ Θ, {ψα(ϑ)}α is also a Cauchy sequence in Ξ and then

converges almost everywhere to some measurable function ψ(·) in Ξ. And, since ψ0 =

κ, we have for a.e. ϑ ∈ Θ,

‖ψα(ϑ)‖ ≤
α∑
i=1

‖ψi(ϑ)− ψi−1(ϑ)‖+ ‖ψ0(ϑ)‖

≤ ω1(ϑ)
∞∑
i=2

‖xi(ϑ)− xi−1(ϑ)‖+ ‖w0 − x0‖+ ‖ψ0(ϑ)‖.

We can now conclude that {ψα}α converges to ψ ∈ L1(Θ,Ξ). Passing to the limit in

(3.6), we obtain

w(ϑ) = w0 +

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
ψ(%)dq%,

is a solution of problem (1.1)-(1.2).
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Further, for a.e. ϑ ∈ Θ, we get

‖w(ϑ)− x(ϑ)‖ ≤ ‖w0 − x0‖+
κ(ζ−1)

Γq(ζ)

∫ ϑ

0

‖ψ(%)− ψ0(%)‖dq%

≤ ‖w0 − x0‖+
κ(ζ−1)

Γq(ζ)

∫ ϑ

0

‖ψ(%)− ψα(%)‖dq%

+
κ(ζ−1)

Γq(ζ)

∫ ϑ

0

‖ψα(%)− ψ0(%)‖dq%

≤ ‖w0 − x0‖+
κ(ζ−1)

Γq(ζ)

∫ ϑ

0

‖ψ(%)− ψα(%)‖dq%

+
ω1
∗κ(ζ−1)

Γq(ζ)

∫ ϑ

0

∞∑
i=2

‖xi(%)− xi−1(%)‖dq%.

As α→∞, we get

‖w(ϑ)− x(ϑ)‖ ≤ ‖w0 − x0‖+
ω1
∗κ(ζ−1)

Γq(ζ)

∫ ϑ

0

∞∑
i=2

‖xi(%)− xi−1(%)‖dq%.

Next, we give an estimate for ‖(cDζ
qw)(ϑ)− κ(ϑ)‖ for ϑ ∈ Θ. We have

‖(cDζ
qw)(ϑ)− κ(ϑ)‖ = ‖ψ(ϑ)− ψ0(ϑ)‖

≤ ‖ψα(ϑ)− ψ0(ϑ)‖+ ‖ψα(ϑ)− ψ(ϑ)‖

≤ ‖ψα(ϑ)− ψ(ϑ)‖+ ω1
∗
∞∑
i=2

‖xi(ϑ)− xi−1(ϑ)‖.

As α→∞, we get

‖(cDζ
qw)(ϑ)− κ(ϑ)‖ ≤ ω1

∗
∞∑
i=2

‖xi(ϑ)− xi−1(ϑ)‖.

4. Topological Structure of Solution Sets

4.1. The upper semi-continuous case. In this part, we provide a global existence

result and demonstrate the compactness of our solution set by combining Mönch’s

fixed point theorem for multivalued maps with the measure of noncompactness.

The hypotheses:

(B1) The multivalued map Ψ : Θ× Ξ× Ξ→ Pcp,c(Ξ) is Carathéodory.

(B2) There exists a function ω1 ∈ L∞(Θ,R+) such that

‖Ψ(ϑ,w, y)‖P = sup{‖z‖C : z(ϑ) ∈ Ψ(ϑ,w, y)} ≤ ω1(ϑ);

for a.e. ϑ ∈ Θ, and each w, y ∈ Ξ.

(B3) For each bounded sets Ω ⊂ Ξ and for each ϑ ∈ Θ, we have

µ(Ψ(ϑ,Ω, (cDζ
qΩ))) ≤ ω1(ϑ)µ(Ω).
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(B4) The function Ψ̃ ≡ 0 is the unique solution in F(Θ) of the inequality

Ψ̃(ϑ) ≤ 2ω1
∗(Iζq Ψ̃)(ϑ).

Theorem 4.1. If (B1) − (B4) are met, then (1.1)-(1.2) has at least one solution

defined on Θ. Furthermore, the solution set

SΨ(w0) = {w ∈ F(Θ) : w is a solution of problem (1.1)− (1.2)},

is compact and the multivalued map SΨ : w0 → (SΨ)(w0) is u.s.c.

Proof. Consider the operator T : F(Θ)→ P(F(Θ)) defined in (3.1).

Step 1. Existence of solutions.

From Theorem 5 in [13], the operator T verifies all the requirements of Theorem 2.17,

and we deduce that T has at least one fixed point w ∈ F(Θ) which is a solution of

(1.1)-(1.2).

Step 2. Compactness of the solution set.

For each a w0 ∈ Ξ, we consider the set SΨ(w0). From Step 1, there exists γ > 0

such that for every w ∈ SΨ(w0) : ‖w‖∞ ≤ γ. Since T is completely continuous,

T(SΨ(w0)) is relatively compact in F(Θ). Let w ∈ SΨ(w0); then w ∈ T(w). Hence

SΨ(w0) ⊂ T(SΨ(w0)). Now, let us demonstrate that SΨ(w0) is a closed subset in F(Θ).

Let {wα : α ∈ N} ⊂ SΨ(w0) be such that the sequence (wα)α∈N converges to w. For

every α ∈ N, there exists zα such that zα(ϑ) ∈ Ψ(ϑ,wα(ϑ), (cDζ
qwα)(ϑ)); a.e. ϑ ∈ Θ,

and

wα(ϑ) = w0 +

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
zα(%)dq%.

Since wα → w, Lemma 2.15 implies that there exists z, where z(ϑ) ∈ Ψ(ϑ,w(ϑ)); a.e. ϑ ∈
Θ, and

(4.1) w(ϑ) = w0 +

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
z(%)dq%.

Therefore w ∈ SΨ(w0) which yields that SΨ(w0) is closed, hence compact in F(Θ).

Step 3. SΨ(·) is u.s.c.

To do this, we prove that the graph ΓSΨ
of SΨ is closed. We have

ΓSΨ
= {(w0,w) : w ∈ SΨ(w0)},

Let (w0n,wα) ∈ ΓSΨ
be such that (w0n,wα) → (w0,w); as α → ∞. Since wα ∈

SΨ(w0n), there exists zα ∈ L1(Θ) such that

(4.2) wα(ϑ) = w0n +

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
zα(%)dq%.
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From Lemma 2.15, we can show that there exists z ∈ SΨ◦w where w verifies (4.1).

Thus, w ∈ SΨ(w0). Now, we demonstrate that SΨ maps bounded sets into relatively

compact sets of F(Θ). Let Ω be a bounded set in Ξand let {wα} ⊂ SΨ(Ω). Then there

exists {w0n} ⊂ Ω and zα ∈ SΨ◦wα ; α ∈ N such that (4.2) is satisfied. Since {w0n}
bounded sequence, there exists a subsequence of {w0n} converging to w0. As in the

proof of Theorem 5 in [13], we can show that {wα} is compact on Θ. We deduce that

there exists a subsequence of {wα} converging to w in F(Θ). Also; from Lemma 2.15,

we can prove that w satisfies (4.1) for some z ∈ SΨ◦w. Hence, SΨ(w0) is u.s.c.

4.2. The lower semi-continuous case. The following existence result for problem

(1.1)-(1.2) addresses the situation in which the nonlinearity is lower semi-continuous

with concerning the second parameter which does not have convex values. We will

apply Mönch’s fixed point theorem for multivalued maps in conjunction with a selec-

tion theorem for lower semi-continuous (l.s.c.) multivalued maps with decomposable

variables.

The preceding assumption is required for the sequel.

(B5) The multivalued map Ψ is nonempty compact valued where

(a) the mapping (ϑ,w)→ Ψ(ϑ,w, y) is L ⊗ B measurable

(b) The mapping w→ Ψ(ϑ,w, y) is l.s.c. for each ϑ ∈ Θ.

Let us we state the celebrated selection theorem of Fryszkowski.

Lemma 4.2. [29] Let Ξ̄ be a separable metric space and let Ξ be a Banach space.

Then every l.s.c. multivalued operator T : Ξ̄ → Pcl(L1(Θ,Ξ)) with nonempty closed

decomposable values has a continuous selection, i.e. there exists a continuous single-

valued function ψ : Ξ̄→ L1(Θ,Ξ) such that ψ(z) ∈ T(z) for every z ∈ Ξ̄.

Lemma 4.3. [28] Let T : Θ×Ξ×Ξ→ Pcp(L1(Θ,Ξ)) be a locally integrably bounded

multivalued map satisfying (B5). Then T is of l.s.c. type.

Theorem 4.4. If (B2) and (B5) are met, then (1.1)-(1.2) has at least one solution

defined on Θ.

Proof. By Lemma 4.3, Ψ is of l.s.c. type. From Lemma 4.2, there exists a

continuous selection ψ : F(Θ)→ L1(Θ) such that ψ(w) ∈ SΨ(w) for every w ∈ F(Θ).

Consider the problem

(4.3)

(cDζ
qw)(ϑ) = (ψw)(ϑ); ϑ ∈ Θ,

w(0) = w0 ∈ Ξ,

and the operator S : F(Θ)→ F(Θ) defined by

(Sw)(ϑ) = w0 +

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
(ψw)(%)dq%.
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It is clear that the fixed points of S are solutions of problem (1.1)-(1.2).

Let w ∈ F(Θ). Then for each ϑ ∈ Θ we have

(Sw)(ϑ) = w0 +

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
z(%)dq%,

for some z ∈ SΨ◦w. On the other hand,

‖δ(ϑ)‖ ≤ ‖w0‖+

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
(ψw)(%)dq%

≤ ‖w0‖+

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
ω1(%)dq%

≤ ‖w0‖+
ω1
∗κ(ζ)

Γq(1 + ζ)

= R.

Hence ‖(Sw)(w)‖∞ ≤ R, and so S(ΩR) ⊂ ΩR, where ΩR := {w ∈ F(Θ) : ‖w‖∞ ≤
R} be the bounded, closed and convex ball of F(Θ). We will demonstrate that S :

ΩR → ΩR verifies all the requirements of Theorem 2.18. Now, proving that S(ΩR) is

relatively compact.

Let (δα) by any sequence in S(ΩR). By, Arzéla-Ascoli compactness criterion in F(Θ),

we demonstrate (δα) has a convergent subsequence. As δα ∈ S(ΩR) there are wα ∈ ΩR

and zα ∈ SΨ◦wα where

δα(ϑ) = w0 +

∫ ϑ

0

(ϑ− q%)(ζ−1)

Γq(ζ)
zα(%)dq%.

We can show that {δα(ϑ) : α ≥ 1} is relatively compact for each ϑ ∈ Θ. And, for each

ϑ1 and ϑ2 from Θ, with ϑ1 < ϑ2, we get

(4.4)

‖δα(ϑ2)− δα(ϑ1)‖

≤
∥∥∥∥∫ ϑ2

0

(ϑ2 − q%)(ζ−1)

Γq(ζ)
ω1(%)dq%−

∫ ϑ1

0

(ϑ1 − q%)(ζ−1)

Γq(ζ)
ω1(%)dq%

∥∥∥∥
≤
∫ ϑ2

ϑ1

(ϑ2 − q%)(ζ−1)

Γq(ζ)
ω1(%)dq%

+

∫ ϑ1

0

|(ϑ2 − q%)(ζ−1) − (ϑ1 − q%)(ζ−1)|
Γq(ζ)

ω1(%)dq%

≤ ω1
∗κζ

Γq(1 + ζ)
(ϑ2 − ϑ1)ζ

+ ω1
∗
∫ ϑ1

0

|(ϑ2 − q%)(ζ−1) − (ϑ1 − q%)(ζ−1)|
Γq(ζ)

dq%

→ 0 as ϑ1 −→ ϑ2.
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This shows that {δα : α ≥ 1} is equicontinuous. Consequently, by the Arzéla-Ascoli

theorem, {δα : α ≥ 1} is relatively compact in ΩR. By Theorem 2.18, we deduce that

S has at least one fixed point, which is a solution of (1.1)-(1.2).

5. An Example

Let

Ξ = l1 =

{
w = (w1,w2, . . . ,wα, . . .),

∞∑
α=1

|wα| <∞

}
be the Banach space with the norm

‖w‖E =
∞∑
α=1

|wα|.

Consider now the following problem of fractional 1
4
−difference inclusion

(5.1)

(cD
1
2
1
3

wα)(ϑ) ∈ Ψα

(
ϑ,w(ϑ), (cD

1
2
1
3

wα)(ϑ)
)

; ϑ ∈ [0, e],

w(0) = (1, 0, . . . , 0, . . .),

where

Ψα(ϑ,w(ϑ)) =
ϑ2e−5−ϑ

1 + ‖w(ϑ)‖E + ‖(cD
1
2
1
3

wα)(ϑ)‖E
[wα(ϑ)− 1,wα(ϑ)]; ϑ ∈ Θ,

with w = (w1,w2, . . . ,wα, . . .). Set ζ = 1
2
, and Ψ = (Ψ1,Ψ2, . . . ,Ψα, . . .).

For each w ∈ Ξ and ϑ ∈ Θ, we have

‖Ψ(ϑ,w)‖P ≤ cϑ2e−ϑ−5.

Thus, the condition (B2) is verified with ω1
∗ = ce−3. We can easily show that all

requirements of Theorem 4.1 are verified. Hence, (5.1) has at least one solution

defined on Θ. Moreover, the solution set SΨ(w0) is compact and the multivalued map

SΨ : w0 → (SΨ)(w0) is u.s.c.
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[25] S. Djebali, L. Górniewicz, A. Ouahab, Topological structure of solution sets for impulsive dif-

ferential inclusions in Frchet spaces, Nonlinear Anal. 74 (2011), 2141-2169.



A FILIPPOV’S THEOREM AND TOPOLOGICAL STRUCTURE OF SOLUTION SETS 33

[26] M. El-Shahed, H. A. Hassan, Positive solutions of q-difference equation, Proc. Amer. Math.

Soc. 138 (2010), 1733-1738.

[27] H. Frankowska, A priori estimates for operational differential inclusions, J. Differential Equa-

tions 84 (1990), 100-128.

[28] M. Frigon and A. Granas, Théorèmes dexistence pour des inclusions différentielles sans con-
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