A FILIPPOV'S THEOREM AND TOPOLOGICAL STRUCTURE OF SOLUTION SETS FOR IMPLICIT FRACTIONAL *q*-DIFFERENCE INCLUSIONS

ABDELKRIM SALIM^a, SAÏD ABBAS^b, MOUFFAK BENCHOHRA^a, AND ERDAL KARAPINAR^{c,d}

^a Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès,
P.O. Box 89, Sidi Bel-Abbès 22000, Algeria
e-mail: salim.abdelkrim@yahoo.com, benchohra@yahoo.com

^b Department of Electronic, Tahar Moulay University of Saïda, P.O. Box 138, EN-Nasr, 20000 Saïda, Algeria e-mail: abbasmsaid@yahoo.fr

 c Department of Mathematics, Çankaya University, 06790, Etimesgut, Ankara, Turkev.

^d Department of Medical Research, China Medical University, Taichung, Taiwan e-mail: erdalkarapinar@yahoo.com

ABSTRACT. In this paper we present some existence results and topological structure of the solution set for a class of Caputo implicit fractional q-difference inclusions in Banach spaces. Firstly, using the set-valued analysis, we study some global existence results and we present a new version of Filippov's Theorem. Further, we obtain results in the cases where the nonlinearity is upper as well as lower semi-continuous with respect to the second argument by using Mönch's and Schauder-Tikhonov fixed point theorems and the concept of measure of noncompactness. In the last section, we illustrate our results by an example.

AMS (MOS) Subject Classification. 26A33, 34A60.

Key Words and Phrases. implicit Fractional *q*-difference inclusion, compactness, measure of noncompactness, solution set, topological structure, fixed point, multifunction, measurable selection.

1. Introduction

Numerous mathematicians and physicists have shown a greater interest in fractional equations and inclusions, which give an efficient way to describe several practical dynamical developments in engineering and other applied sciences [1,3,4,6–8,14, 25,36,44,45,48,51]. Recently, many substantial and interesting results on initial and

Received December 1, 2021 \$15.00 © Dynamic Publishers, Inc. www.dynamicpublishers.org. CORRESPONDING AUTHOR: EK **ABDELKRIM SALIM**^{*a*}, SAÏD ABBAS^{*b*}, MOUFFAK BENCHOHRA^{*a*}, AND ERDAL KARAPINAR^{*c*,*d*1} boundary value problems for fractional differential equations with Riemann-Liouville and Caputo fractional derivatives have been obtained [2,3,34,42,43,50].

q-difference equations were established in the early nineteenth century [5, 19], and have gained a considerable interest recently. We suggest the papers [10, 11, 26, 52]and references therein, for some important results on q-difference and fractional qdifference equations and inclusions.

Filippov's solutions for various classes of integer or fractional order differential inclusions have been considered in the literature; see for instance [21–23,31].

Implicit fractional differential equations have been studied by numerous researchers. For more information, we refer the readers to the papers [18, 46, 47, 49].

In this paper, we shall be concerned with a Filippov's theorem, existence of solutions and the topological structure of solution sets for the following fractional q-difference problem:

(1.1)
$$({}^{c}D_{q}^{\zeta}\mathfrak{w})(\vartheta) \in \Psi\left(\vartheta,\mathfrak{w}(\vartheta),({}^{c}D_{q}^{\zeta}\mathfrak{w})(\vartheta)\right), \ \vartheta \in \Theta := [0,\kappa],$$

(1.2)
$$\mathfrak{w}(0) = \mathfrak{w}_0 \in \Xi,$$

where $(\Xi, \|\cdot\|)$ is a separable real or complex Banach space, $q \in (0, 1)$, $\zeta \in (0, 1]$, $\kappa > 0$, $\Psi : \Theta \times \Xi \times \Xi \to \mathcal{P}(\Xi)$ is a multivalued map, $\mathcal{P}(\Xi)$ is the family of all nonempty subsets of Ξ , ${}^{c}D_{q}^{\zeta}$ is the Caputo fractional q-difference derivative of order ζ .

2. Preliminaries

By $\mathfrak{F}(\Theta) := C(\Theta, \Xi)$, we denote the Banach space of continuous functions from Θ into Ξ with the norm

$$\|\mathfrak{w}\|_{\infty} := \sup_{\vartheta \in \Theta} \|\mathfrak{w}(\vartheta)\|.$$

Consider the space $L^1(\Theta)$ of measurable functions $\mathfrak{w} : \Theta \to \Xi$ which are Bochner integrable with the norm

$$\|\mathfrak{w}\|_1 = \int_{\Theta} \|\mathfrak{w}(\vartheta)\| d\vartheta.$$

Let us revisit some fractional q-calculus definitions and properties. For $\beta_1 \in \mathbb{R}$, we set

$$[\beta_1]_q = \frac{1 - q^{\beta_1}}{1 - q}.$$

The q-analogue of the power $(\beta_1 - \beta_2)^{\alpha}$ is

$$(\beta_1 - \beta_2)^{(0)} = 1, \ (\beta_1 - \beta_2)^{(\alpha)} = \prod_{\xi=0}^{\alpha-1} (\beta_1 - \beta_2 q^{\xi}); \ \beta_1, \beta_2 \in \mathbb{R}, \ \alpha \in \mathbb{N}.$$

In general,

$$(\beta_1 - \beta_2)^{(\zeta)} = \beta_1^{\zeta} \prod_{\xi=0}^{\infty} \left(\frac{\beta_1 - \beta_2 q^{\xi}}{\beta_1 - \beta_2 q^{\xi+\zeta}} \right); \ \beta_1, \beta_2, \zeta \in \mathbb{R}.$$

Definition 2.1. [33] The *q*-gamma function is given by

$$\Gamma_q(\varepsilon) = \frac{(1-q)^{(\varepsilon-1)}}{(1-q)^{\varepsilon-1}}; \ \varepsilon \in \mathbb{R} - \{0, -1, -2, \ldots\},$$

where $\Gamma_q(1+\varepsilon) = [\varepsilon]_q \Gamma_q(\varepsilon)$.

Definition 2.2. [33] The q-derivative of order $\alpha \in \mathbb{N}$ of a function $\mathfrak{w} : \Theta \to \Xi$ is given by $(D^0_q \mathfrak{w})(\vartheta) = \mathfrak{w}(\vartheta)$,

$$(D_q \mathfrak{w})(\vartheta) := (D_q^1 \mathfrak{w})(\vartheta) = \frac{\mathfrak{w}(\vartheta) - \mathfrak{w}(q\vartheta)}{(1-q)\vartheta}; \ \vartheta \neq 0, \ (D_q \mathfrak{w})(0) = \lim_{\vartheta \to 0} (D_q \mathfrak{w})(\vartheta),$$

and

$$(D_q^{\alpha}\mathfrak{w})(\vartheta) = (D_q D_q^{\alpha-1}\mathfrak{w})(\vartheta); \ \vartheta \in \Theta, \ \alpha \in \{1, 2, \ldots\}$$

Set $\Theta_{\vartheta} := \{ \vartheta q^{\alpha} : \alpha \in \mathbb{N} \} \cup \{ 0 \}.$

Definition 2.3. [33] The q-integral of a function $\mathfrak{w} : \Theta_{\vartheta} \to \Xi$ is defined by

$$(I_q \mathfrak{w})(\vartheta) = \int_0^\vartheta \mathfrak{w}(\varrho) d_q \varrho = \sum_{\alpha=0}^\infty \vartheta(1-q) q^\alpha \psi(\vartheta q^\alpha).$$

It should be noted that $(D_q I_q \mathfrak{w})(\vartheta) = \mathfrak{w}(\vartheta)$, while if \mathfrak{w} is continuous at 0, then

$$(I_q D_q \mathfrak{w})(\vartheta) = \mathfrak{w}(\vartheta) - \mathfrak{w}(0).$$

Definition 2.4. [9] The Riemann-Liouville fractional q-integral of order $\zeta \in \mathbb{R}_+ := [0, \infty)$ of a function $\mathfrak{w} : \Theta \to \Xi$ is given by $(I_q^0 \mathfrak{w})(\vartheta) = \mathfrak{w}(\vartheta)$, and

$$(I_q^{\zeta} \mathfrak{w})(\vartheta) = \int_0^{\vartheta} \frac{(\vartheta - q\varrho)^{(\zeta - 1)}}{\Gamma_q(\zeta)} \mathfrak{w}(\varrho) d_q \varrho; \ \vartheta \in \Theta$$

Lemma 2.5. [40] For $\zeta \in \mathbb{R}_+ := [0, \infty)$ and $\varpi \in (-1, \infty)$ we have

$$(I_q^{\zeta}(\vartheta - a)^{(\varpi)})(\vartheta) = \frac{\Gamma_q(1 + \varpi)}{\Gamma(1 + \varpi + \zeta)}(\vartheta - a)^{(\varpi + \zeta)}; \ 0 < a < \vartheta < \kappa.$$

In particular,

$$(I_q^{\zeta}1)(\vartheta) = \frac{1}{\Gamma_q(1+\zeta)}\vartheta^{(\zeta)}.$$

Definition 2.6. [41] The Riemann-Liouville fractional q-derivative of order $\zeta \in \mathbb{R}_+$ of a function $\mathfrak{w} : \Theta \to \Xi$ is given by $(D^0_q \mathfrak{w})(\vartheta) = \mathfrak{w}(\vartheta)$, and

$$(D_q^{\zeta}\mathfrak{w})(\vartheta) = (D_q^{[\zeta]}I_q^{[\zeta]-\zeta}\mathfrak{w})(\vartheta); \ \vartheta \in \Theta,$$

where $[\zeta]$ is the integer part of ζ .

2(BDELKRIM SALIM^{*a*}, SAÏD ABBAS^{*b*}, MOUFFAK BENCHOHRA^{*a*}, AND ERDAL KARAPINAR^{*c*,*d*²} **Definition 2.7.** [41] The Caputo fractional q-derivative of order $\zeta \in \mathbb{R}_+$ of a function $\mathfrak{w} : \Theta \to \Xi$ is defined by $({}^{C}D_{q}^{0}\mathfrak{w})(\vartheta) = \mathfrak{w}(\vartheta)$, and

$$(^{C}D_{q}^{\zeta}\mathfrak{w})(\vartheta)=(I_{q}^{[\zeta]-\zeta}D_{q}^{[\zeta]}\mathfrak{w})(\vartheta); \ \vartheta\in\Theta.$$

Lemma 2.8. [41] Let $\zeta \in \mathbb{R}_+$. Then the following holds:

$$(I_q^{\zeta \ C} D_q^{\zeta} \mathfrak{w})(\vartheta) = \mathfrak{w}(\vartheta) - \sum_{\xi=0}^{[\zeta]-1} \frac{\vartheta^{\xi}}{\Gamma_q(1+\xi)} (D_q^{\xi} \mathfrak{w})(0).$$

In particular, if $\zeta \in (0, 1)$, then

$$(I_q^{\zeta \ C} D_q^{\zeta} \mathfrak{w})(\vartheta) = \mathfrak{w}(\vartheta) - \mathfrak{w}(0)$$

We also use the subsets of $\mathcal{P}(\Xi)$ that follow (see [31] for more details):

 $P_{cl}(\Xi) = \{ \Phi \in \mathcal{P}(\Xi) : \Phi \text{ is closed} \},\$ $P_{b}(\Xi) = \{ \Phi \in \mathcal{P}(\Xi) : \Phi \text{ is bounded} \},\$ $P_{cp}(\Xi) = \{ \Phi \in \mathcal{P}(\Xi) : \Phi \text{ is compact} \}$ $P_{cv}(\Xi) = \{ \Phi \in \mathcal{P}(\Xi) : \Phi \text{ is convex} \}$ $P_{cp,cv}(\Xi) = P_{cp}(\Xi) \cap P_{cv}(\Xi).$

We denote by $Fix\mathfrak{S}$ the fixed point set of the multivalued operator \mathfrak{S}.

Definition 2.9. A multivalued map $\mathfrak{S} : \Theta \to P_{cl}(\Xi)$ is said to be measurable if for every $\mathfrak{z}_1 \in \Xi$, the function:

$$\vartheta \to d(\mathfrak{z}_1,\mathfrak{S}(\vartheta)) = \inf\{|\mathfrak{z}_1 - \mathfrak{z}_2| : \mathfrak{z}_2 \in \mathfrak{S}(\vartheta)\}$$

is measurable.

Lemma 2.10. [31,32] Let \mathfrak{S} be a completely continuous multivalued map with nonempty compact values, then \mathfrak{S} is upper semi-continuous (u.s.c.) if and only if \mathfrak{S} has a closed graph.

Definition 2.11. A multi-valued map $\Psi: \Theta \times \Xi \times \Xi \to \mathcal{P}(\Xi)$ is Carathéodory if:

- (1) $\vartheta \to \Psi(\vartheta, \mathfrak{w}, \mathfrak{y})$ is measurable for each $\mathfrak{w}, \mathfrak{y} \in \Xi$;
- (2) $\mathfrak{w} \to \Psi(\vartheta, \mathfrak{w}, \mathfrak{y})$ is upper semicontinuous for almost all $\vartheta \in \Theta$.

 Ψ is called L¹-Carathéodory if (1), (2) and the following requirements are met:

(3) For each q > 0, there exists $\varphi_q \in L^1(\Theta, \mathbb{R}^+)$ where

 $\|\Psi(\vartheta,\mathfrak{w},\mathfrak{y})\|_{\mathcal{P}} = \sup\{|\mathfrak{z}_2| : \mathfrak{z}_2 \in \Psi(\vartheta,\mathfrak{w},\mathfrak{y})\} \leq \varphi_q \text{ for all } |\mathfrak{w}|, |\mathfrak{y}| \leq q \text{ and for a.e. } \vartheta \in \Theta.$

For each $\mathfrak{z}_1 \in \mathfrak{F}(\Theta)$, define the set of selections of Ψ by

$$S_{\Psi \circ \mathfrak{z}_1} = \{ \mathfrak{z}_2 \in L^1(\Theta) : \mathfrak{z}_2(\vartheta) \in \Psi(\vartheta, \mathfrak{z}_1(\vartheta), {^cD}_q^{\zeta} \mathfrak{z}_1(\vartheta)) \text{ a.e. } \vartheta \in \Theta \}.$$

Let (Ξ, d) be a metric space induced from the normed space $(\Xi, |\cdot|)$. The function $\mathcal{H}_d : \mathcal{P}(\Xi) \times \mathcal{P}(\Xi) \to \mathbb{R}_+ \cup \{\infty\}$ given by:

$$\mathcal{H}_d(\Phi_1, \Phi_2) = \max\{\sup_{\beta_1 \in \Phi_1} d(\beta_1, \Phi_2), \sup_{\beta_2 \in \Phi_2} d(\Phi_1, \beta_2)\}$$

is referred to as the Hausdorff-Pompeiu metric. For further details on multivalued maps see works by Hu and Papageorgiou [32].

The symbol $\mathcal{M}_{\bar{\Xi}}$ stands for the class of all bounded subsets of a metric space $\bar{\Xi}$.

Definition 2.12. Let $\overline{\Xi}$ be a complete metric space. A function $\mu : \mathcal{M}_{\overline{\Xi}} \to [0, \infty)$ is said to be a measure of noncompactness on $\overline{\Xi}$ if the following conditions are verified for all $\Omega, \Omega_1, \Omega_2 \in \mathcal{M}_{\overline{\Xi}}$.

- (a) Regularity, i.e., $\mu(\Omega) = 0$ if and only if Ω is precompact,
- (b) invariance under closure, i.e., $\mu(\Omega) = \mu(\overline{\Omega})$,
- (c) semi-additivity, i.e., $\mu(\Omega_1 \cup \Omega_2) = \max\{\mu(\Omega_1), \mu(\Omega_2)\}.$

Definition 2.13. [16] Let Ξ be a Banach space and denote by Ω_{Ξ} the family of bounded subsets of Ξ . the map $\mu : \Omega_{\Xi} \to [0, \infty)$ defined by

$$\mu(\tilde{\Phi}) = \inf\{\nu > 0 : \tilde{\Phi} \subset \bigcup_{j=1}^{m} \tilde{\Phi}_j, \operatorname{diam}(\tilde{\Phi}_j) \le \nu\}, \ \tilde{\Phi} \in \Omega_{\Xi},$$

is called the Kuratowski measure of noncompactness.

Theorem 2.14. [30] Let Ξ be a Banach space. Let $\tilde{\Omega} \subset L^1(\Theta)$ be a countable set with $|\mathfrak{w}(\vartheta)| \leq \delta(\vartheta)$ for a.e. $\vartheta \in \Theta$ and every $\mathfrak{w} \in \tilde{\Omega}$, where $\delta \in L^1(\Theta, \mathbb{R}_+)$. Then $\mu(\tilde{\Omega}(\vartheta)) \in L^1(\Theta, \mathbb{R}_+)$ and verifies

$$\mu\left(\left\{\int_0^\kappa \mathfrak{w}(\varrho)\,d\varrho:\mathfrak{w}\in\tilde{\Omega}\right\}\right)\leq 2\int_0^\kappa \mu(\tilde{\Omega}(\varrho))\,d\varrho,$$

where μ is the Kuratowski measure of noncompactness on the set Ξ .

Lemma 2.15. [35] Let Θ be a compact real interval. Let Ψ be a Carathéodory multivalued map and let \mathfrak{S} be a linear continuous map from $L^1(\Theta) \to \mathfrak{F}(\Theta)$. Then the operator

$$\mathfrak{S} \circ S_{\Psi \circ \mathfrak{w}} : \mathfrak{F}(\Theta) \to \mathcal{P}_{cv,cp}(\mathfrak{F}(\Theta)), \quad \mathfrak{w} \mapsto (\mathfrak{S} \circ S_{\Psi \circ \mathfrak{w}})(\mathfrak{w}) = \mathfrak{S}(S_{\Psi \circ \mathfrak{w}})$$

is a closed graph operator in $\mathfrak{F}(\Theta) \times \mathfrak{F}(\Theta)$.

Definition 2.16. Let $\bar{\Xi}$ be Banach space. A multivalued mapping $\mathfrak{S} : \bar{\Xi} \to \mathcal{P}_{cl,b}(\bar{\Xi})$ is ξ -set- Lipschitz if there exists a constant $\xi > 0$, where $\mu(\mathfrak{S}(\Omega)) \leq \xi \mu(\Omega)$ for all $\Omega \in \mathcal{P}_{cl,b}(\Xi)$ with $\mathfrak{S}(\Omega) \in \mathcal{P}_{cl,b}(\Xi)$. If $\xi < 1$, then \mathfrak{S} is said to be a ξ -set-contraction on $\bar{\Xi}$.

Theorem 2.17. (Mönch fixed point theorem) [38] Let Ξ be Banach space and $\Omega_1 \subset \Xi$ be a closed and convex set. Also, let Ω_2 be a relatively open subset of Ω_1 and $\mathfrak{S} : \overline{\Omega_2} \to$ **22**BDELKRIM SALIM^a, SAÏD ABBAS^b, MOUFFAK BENCHOHRA^a, AND ERDAL KARAPINAR^{c,d3} $\mathcal{P}_c(\Omega_1)$. Suppose that \mathfrak{S} maps compact sets into relatively compact sets, graph(\mathfrak{S}) is closed and for some $x_0 \in \Omega_2$, we have (2.1)

 $\operatorname{conv}(x_0 \cup \mathfrak{S}(\Phi)) \supset \Phi \subset \overline{\Omega_2} \text{ and } \overline{\Phi} = \overline{\Omega_2} \ (\tilde{\Omega} \subset \Phi \text{ countable}) \text{ imply } \overline{\Phi} \text{ is compact}$ and

(2.2)
$$x \notin (1 - \varpi)x_0 + \varpi \mathfrak{S}(x) \quad \forall x \in \overline{\Omega_2} \backslash \Omega_2, \ \varpi \in (0, 1).$$

Then there exists $x \in \overline{\Omega_2}$ with $x \in \mathfrak{S}(x)$.

Also, we recall the Schauder-Tikhonov fixed point theorem:

Theorem 2.18. (Schauder-Tikhonov fixed point theorem) [15] Let Ξ be a locally convex space, $\tilde{\Omega}$ a convex closed subset of Ξ and $\mathfrak{S} : \tilde{\Omega} \to \tilde{\Omega}$ is a continuous, compact map. Then \mathfrak{S} has at least one fixed point in $\tilde{\Omega}$.

3. Filippov's Theorem

Consider $\mathfrak{T} : \mathfrak{F}(\Theta) \to \mathcal{P}(\mathfrak{F}(\Theta))$, the operator defined by:

(3.1)
$$\mathfrak{T}(\mathfrak{w}) = \left\{ \delta \in \mathfrak{F}(\Theta) : \delta(\vartheta) = \mathfrak{w}_0 + \int_0^\vartheta \frac{(\vartheta - q\varrho)^{(\zeta - 1)}}{\Gamma_q(\zeta)} \mathfrak{z}(\varrho) d_q \varrho; \ \mathfrak{z} \in S_{\Psi \circ \mathfrak{w}} \right\}.$$

It is clear that the fixed points of \mathfrak{T} are solutions of (1.1)-(1.2). First, we state the definition of a solution of the problem (1.1)-(1.2).

Definition 3.1. By a solution of the problem (1.1)-(1.2) we mean a function $\delta \in \mathfrak{F}(\Theta)$ that verifies

$$\delta(\vartheta) = \mathfrak{w}_0 + \int_0^\vartheta \frac{(\vartheta - q\varrho)^{(\zeta-1)}}{\Gamma_q(\zeta)} \mathfrak{z}(\varrho) d_q \varrho,$$

where $\mathfrak{z} \in S_{\Psi \circ \mathfrak{w}}$.

Lemma 3.2. [39] Let $\mathfrak{S} : \Theta \to \mathcal{P}_{cl}(\Xi)$ be a measurable multifunction and $\mathfrak{w} : \Theta \to \Xi$ be a measurable function. Assume that there exists $p \in L^1(\Theta, \Xi)$ such that $\mathfrak{S}(\vartheta) \subset p(\vartheta)\Omega_0$, where $\Omega_0 := \Omega(0, 1)$ denotes the closed ball in Ξ . Then there exists a measurable selection \varkappa of \mathfrak{S} such that for a.e. $\vartheta \in \Theta$,

$$\|\mathfrak{w}(\vartheta) - \varkappa(\vartheta)\| \le d(\mathfrak{w}(\vartheta), \mathfrak{S}(\vartheta)).$$

Let $x_0 \in \Xi$, $\varkappa \in L^1(\Theta, \Xi)$, and let $x \in \mathfrak{F}(\Theta)$ be a solution of the fractional q-difference problem:

(3.2)
$$\begin{cases} (^{c}D_{q}^{\zeta}x)(\vartheta) = \varkappa(\vartheta), \ \vartheta \in \Theta, \\ x(0) = x_{0}. \end{cases}$$

The hypotheses:

- (\mathcal{A}_1) The multivalued map $\Psi: \Theta \times \Xi \times \Xi \to \mathcal{P}(\Xi)$ satisfies:
- (\mathcal{A}_{1a}) the map $\vartheta \mapsto \Psi(\vartheta, \mathfrak{w}, \mathfrak{y})$ is measurable; for all $\mathfrak{w}, \mathfrak{y} \in \Xi$,
- (\mathcal{A}_{1b}) the map $\varpi : \vartheta \mapsto d\left(\psi(\vartheta), \Psi(\vartheta, x(\vartheta), {}^{c}D_{q}^{\zeta}x(\vartheta))\right)$ is integrable.
- (\mathcal{A}_2) There exists a function $\omega_1 \in L^{\infty}(\Theta, \mathbb{R}_+)$ such that

$$\mathcal{H}_d(\Psi(\vartheta,\mathfrak{w},\mathfrak{y}),\Psi(\vartheta,\mathfrak{z},\bar{\mathfrak{y}})) \leq \omega_1(\vartheta) \|\mathfrak{w}-\mathfrak{z}\|;$$

for a.e. $\vartheta \in \Theta$, and each $\mathfrak{w}, \mathfrak{z}, \mathfrak{y}, \overline{\mathfrak{y}} \in \Xi$.

Remark 3.3. From Assumptions (\mathcal{A}_{1a}) and (\mathcal{A}_{1b}) , the multi-function $\vartheta \mapsto \Psi(\vartheta, \mathfrak{w}, \mathfrak{y})$ is measurable, and by Lemmas 1.4 and 1.5 from [27], $\mathfrak{z}(\vartheta) = d\left(\psi(\vartheta), \Psi(\vartheta, x(\vartheta), {}^{c}D_{q}^{\zeta}x(\vartheta))\right)$ is measurable.

Set

$$\omega_1^* = esssup_{\vartheta \in \Theta} \omega_1(\vartheta).$$

Theorem 3.4. If (\mathcal{A}_1) and (\mathcal{A}_2) are met, then the (1.1)-(1.2) has at least one solution \mathfrak{w} defined on Θ . Moreover, for a.e. $\vartheta \in \Theta$, \mathfrak{w} satisfies the estimates:

$$\|\mathbf{\mathfrak{w}}(\vartheta) - x(\vartheta)\| \le \|\mathbf{\mathfrak{w}}_0 - x_0\| + \frac{\omega_1^* \kappa^{(\zeta-1)}}{\Gamma_q(\zeta)} \int_0^\vartheta \sum_{i=2}^\infty \|x_i(\varrho) - x_{i-1}(\varrho)\| d_q \varrho,$$

and

$$\|(^{c}D_{q}^{\zeta}\mathfrak{w})(\vartheta)-\varkappa(\vartheta)\|\leq \omega_{1}^{*}\sum_{i=2}^{\infty}\|x_{i}(\vartheta)-x_{i-1}(\vartheta)\|,$$

where

$$\begin{aligned} \|x_{\alpha}(\vartheta) - x_{\alpha-1}(\vartheta)\| &\leq \left(\frac{\omega_{1}^{*}\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)}\right)^{\alpha-1} \int_{0}^{\vartheta} \int_{0}^{\varrho_{1}} \int_{0}^{\varrho_{2}} \cdots \int_{0}^{\varrho_{\alpha-2}} \left(\|\mathfrak{w}_{0} - x_{0}\|\right. \\ &+ \frac{\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\varrho_{\alpha-1}} \varpi(\tau) d_{q}\tau\right) d_{q}\varrho_{\alpha-1} d_{q}\varrho_{\alpha-2} \cdots d_{q}\varrho_{1}. \end{aligned}$$

Proof. First, we establish a sequence of functions $(\mathfrak{w}_{\alpha})_{\alpha \in \mathbb{N}}$ which will be demonstrated to converges to a solution of (1.1)-(1.2) on Θ . Let $\psi_0 = \varkappa$ on Θ . So, we have

$$x(\vartheta) = x_0 + \int_0^\vartheta \frac{(\vartheta - q\varrho)^{(\zeta - 1)}}{\Gamma_q(\zeta)} \psi_0(\varrho) d_q \varrho.$$

Define the multi-valued map $\Lambda_1: \Theta \to \mathcal{P}(\Xi)$ by

$$\Lambda_1(\vartheta) + \Psi(\vartheta, x(\vartheta), {^cD}_q^{\zeta} x(\vartheta)) \cap (\psi_0(\vartheta) + \varpi(\vartheta)\Omega_0).$$

Since ψ_0 and ϖ are measurable, the ball $(\psi_0(\vartheta) + \varpi(\vartheta)\Omega_0)$ is measurable from Theorem III.4.1 in [20]. Moreover $\Psi(\vartheta, x(\vartheta), {}^cD_q^{\zeta}x(\vartheta))$ is measurable and Λ_1 is nonempty. It is

24BDELKRIM SALIM^{*a*}, SAÏD ABBAS^{*b*}, MOUFFAK BENCHOHRA^{*a*}, AND ERDAL KARAPINAR^{*c*,*d*4} clear that for a.e. $\vartheta \in \Theta$,

$$\begin{aligned} d(0,\Psi(\vartheta,0,0)) \\ &\leq d(0,\psi_0(\vartheta)) + d(\psi_0(\vartheta),\Psi(\vartheta,x(\vartheta),{}^cD_q^{\zeta}x(\vartheta))) + \mathcal{H}_d(\Psi(\vartheta,x(\vartheta),{}^cD_q^{\zeta}x(\vartheta)),\Psi(\vartheta,0,0)) \\ &\leq \|\psi_0(\vartheta)\| + \varpi(\vartheta) + \omega_1(\vartheta)\|x(\vartheta)\|. \end{aligned}$$

Hence for all $\mathfrak{d} \in \Psi(\vartheta, x(\vartheta), {}^cD_q^{\zeta}x(\vartheta))$, we have

$$\begin{aligned} \|\mathfrak{d}\| &\leq d(0, \Psi(\vartheta, 0, 0)) + \mathcal{H}_d(\Psi(\vartheta, 0), \Psi(\vartheta, x(\vartheta), {}^cD_q^{\zeta}x(\vartheta))) \\ &\leq \|\psi_0(\vartheta)\| + \varpi(\vartheta) + 2p(\vartheta)\|x(\vartheta)\| := \gamma(\vartheta). \end{aligned}$$

This implies that

$$\Psi(\vartheta, x(\vartheta), {}^{c}D_{q}^{\zeta}x(\vartheta)) \subset \gamma(\vartheta)\Omega_{0}; \ \vartheta \in \Theta.$$

From Lemma 3.2, there exists \mathfrak{w} which is a measurable selection of $\Psi(\vartheta, x(\vartheta), {}^{c}D_{q}^{\zeta}x(\vartheta))$ such that

$$\|\mathfrak{w}(\vartheta) - \psi_0(\vartheta)\| \le d(\psi_0(\vartheta), \Psi(\vartheta, x(\vartheta), {^cD}_q^{\zeta}x(\vartheta))) = \varpi(\vartheta).$$

Then $\mathfrak{w} \in \Lambda_1(\vartheta)$. We conclude that the intersection multivalued operator $\Lambda_1(\vartheta)$ is measurable (see [20, 39]). By Kuratowski-Ryll-Nardzewski selection theorem, there exists a function $\vartheta \to \psi_1(\vartheta)$ which is a measurable selection for Λ_1 . Suppose

$$x_1(\vartheta) = \mathfrak{w}_0 + \int_0^\vartheta \frac{(\vartheta - q\varrho)^{(\zeta-1)}}{\Gamma_q(\zeta)} \psi_1(\varrho) d_q \varrho$$

For each $\vartheta \in \Theta$, we have

$$\|x_1(\vartheta) - x(\vartheta)\| \le \|\mathfrak{w}_0 - x_0\| + \int_0^\vartheta \frac{(\vartheta - q\varrho)^{(\zeta - 1)}}{\Gamma_q(\zeta)} \|\psi_1(\varrho) - \psi_0(\varrho)\| d_q \varrho$$

(3.3)
$$\leq \|\mathfrak{w}_0 - x_0\| + \frac{\kappa^{(\zeta-1)}}{\Gamma_q(\zeta)} \int_0^\vartheta \varpi(\varrho) d_q \varrho.$$

Next, from Lemma 1.4 in [27], $\Psi(\vartheta, x_1(\vartheta), {}^cD_q^{\zeta}x_1(\vartheta))$ is measurable.

The ball $(\psi_1(\vartheta) + \omega_1(\vartheta) \| x_1(t) - x(\vartheta) \| \Omega_0)$ is also measurable. The set $\Lambda_2(\vartheta) = \Psi(\vartheta, x_1(\vartheta), {}^cD_q^{\zeta}x_1(\vartheta)) \cap (\psi_1(\vartheta) + \omega_1(\vartheta) \| x_1(\vartheta) - x(\vartheta) \| \Omega_0)$ is nonempty. Since ψ_1 is a measurable function, Lemma 3.2 yields a measurable selection \mathfrak{w} of $\Psi(\vartheta, x_1(\vartheta), {}^cD_q^{\zeta}x_1(\vartheta))$ such that

$$\|\mathbf{\mathfrak{w}}(\vartheta) - \psi_1(\vartheta)\| \le d(\psi_1(\vartheta), \Psi(\vartheta, x_1(\vartheta), {^cD}_q^{\zeta}x_1(\vartheta))).$$

Then using (\mathcal{A}_2) , we get

$$\begin{split} \|\mathfrak{w}(\vartheta) - \psi_1(\vartheta)\| &\leq d(\psi_1(\vartheta), \Psi(\vartheta, x_1(\vartheta), {^cD}_q^{\zeta}x_1(\vartheta))) \\ &\leq \mathcal{H}_d(\Psi(\vartheta, x(\vartheta)), \Psi(\vartheta, x_1(\vartheta), {^cD}_q^{\zeta}x_1(\vartheta))) \\ &\leq \omega_1(\vartheta) \|x(\vartheta) - x_1(\vartheta)\|. \end{split}$$

Thus, $\mathfrak{w} \in \Lambda_2(\vartheta)$. Further, as the intersection multi-valued operator Λ_2 given previously is measurable, there exists a measurable selection $\psi_2(\vartheta) \in \Lambda_2(\vartheta)$. Thus

(3.4)
$$\|\psi_2(\vartheta) - \psi_1(\vartheta)\| \le \omega_1(\vartheta) \|x_1(\vartheta) - x(\vartheta)\|.$$

Consider

$$x_2(\vartheta) = x_0 + \int_0^\vartheta \frac{(\vartheta - q\varrho)^{(\zeta - 1)}}{\Gamma_q(\zeta)} \psi_2(\varrho) d_q \varrho.$$

Using (3.3) and (3.4), for every $\vartheta \in \Theta$,

$$\begin{aligned} \|x_{2}(\vartheta) - x_{1}(\vartheta)\| &\leq \frac{\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\vartheta} \|\psi_{2}(\varrho) - \psi_{1}(\varrho)\| d_{q}\varrho \\ &\leq \frac{\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\vartheta} \omega_{1}(\varrho) \|x_{1}(\varrho) - x(\varrho)\| d_{q}\varrho \\ &\leq \frac{\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\vartheta} \omega_{1}(\varrho) \left(\|\mathfrak{w}_{0} - x_{0}\| + \frac{\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\varrho} \varpi(\tau) d_{q}\tau \right) d_{q}\varrho \\ &\leq \frac{\omega_{1}^{*} \kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\vartheta} \left(\|\mathfrak{w}_{0} - x_{0}\| + \frac{\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\varrho} \varpi(\tau) d_{q}\tau \right) d_{q}\varrho. \end{aligned}$$

Let $\Lambda_3(\vartheta) = \Psi(\vartheta, x_2(\vartheta), {}^cD_q^{\zeta}x_2(\vartheta)) \cap (\psi_2(\vartheta) + \omega_1(\vartheta) ||x_2(\vartheta) - x_1(\vartheta)||\Omega_0)$. Similarly to Λ_2 , we may demonstrate that Λ_3 is a measurable multi-valued map with nonempty values; so there exists a measurable selection $\psi_3(\vartheta) \in \Lambda_3(\vartheta)$. This gives us the ability to express the following:

$$x_3(\vartheta) = x_0 + \int_0^\vartheta \frac{(\vartheta - q\varrho)^{(\zeta - 1)}}{\Gamma_q(\zeta)} \psi_3(\varrho) d_q \varrho.$$

Then, for each $\vartheta \in \Theta$,

$$\begin{aligned} \|x_{3}(\vartheta) - x_{2}(\vartheta)\| &\leq \frac{\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\vartheta} \|\psi_{3}(\varrho) - \psi_{2}(\varrho)\| d_{q}\varrho \\ &\leq \frac{\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\vartheta} \omega_{1}(\varrho) \|x_{2}(\varrho) - x_{1}(\varrho)\| d_{q}\varrho \\ &\leq \frac{\omega_{1}^{*}\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\vartheta} \left(\frac{\omega_{1}^{*}\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\varrho_{1}} \left(\|\mathfrak{w}_{0} - x_{0}\|\right) \\ &+ \frac{\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\varrho_{2}} \varpi(\tau) d_{q}\tau \right) d_{q}\varrho_{2} d_{q}\varrho_{1} \\ &\leq \left(\frac{\omega_{1}^{*}\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)}\right)^{2} \int_{0}^{\vartheta} \int_{0}^{\varrho_{1}} \left(\|\mathfrak{w}_{0} - x_{0}\| + \frac{\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\varrho_{2}} \varpi(\tau) d_{q}\tau \right) d_{q}\varrho_{2} d_{q}\varrho_{1}.\end{aligned}$$

Repeating the process for $\alpha = 1, 2, \cdots$, for each $\vartheta \in \Theta$,

$$\begin{aligned} \|x_{\alpha}(\vartheta) - x_{\alpha-1}(\vartheta)\| &\leq \frac{\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\vartheta} \|\psi_{\alpha}(\varrho) - \psi_{\alpha-1}(\varrho)\| d_{q}\varrho \\ &\leq \frac{\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\vartheta} \omega_{1}(\varrho) \|x_{\alpha}(\varrho) - x_{\alpha-1}(\varrho)\| d_{q}\varrho. \end{aligned}$$

26BDELKRIM SALIM^{*a*}, SAÏD ABBAS^{*b*}, MOUFFAK BENCHOHRA^{*a*}, AND ERDAL KARAPINAR^{*c*,*d*5} Hence, we get

$$\|x_{\alpha}(\vartheta) - x_{\alpha-1}(\vartheta)\| \leq \left(\frac{\omega_{1}^{*}\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)}\right)^{\alpha-1} \int_{0}^{\vartheta} \int_{0}^{\varrho_{1}} \int_{0}^{\varrho_{2}} \cdots \int_{0}^{\varrho_{\alpha-2}} \left(\|\mathfrak{w}_{0} - x_{0}\|\right)^{\alpha} + \frac{\kappa^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \int_{0}^{\varrho_{\alpha-1}} \varpi(\tau) d_{q}\tau d_{q}\varrho_{\alpha-1} d_{q}\varrho_{\alpha-2} \cdots d_{q}\varrho_{1}.$$

By induction, assume that (3.5) holds for some α and check (3.5) for $\alpha + 1$. Let $\Lambda_{\alpha+1}(\vartheta) = \Psi(\vartheta, x_{\alpha}(\vartheta), {}^{c}D_{q}^{\zeta}x_{\alpha}(\vartheta)) \cap (\psi_{\alpha} + \omega_{1}(\vartheta) ||x_{\alpha}(\vartheta) - x_{\alpha-1}(\vartheta)||\Omega_{0})$. Since $\Lambda_{\alpha+1}$ is a nonempty measurable set, there exists a measurable selection $\psi_{\alpha+1}(\vartheta) \in \Lambda_{\alpha+1}(\vartheta)$, it enables us to define $\alpha \in \mathbb{N}$,

(3.6)
$$x_{\alpha+1}(\vartheta) = x_0 + \int_0^{\vartheta} \frac{(\vartheta - q\varrho)^{(\zeta-1)}}{\Gamma_q(\zeta)} \psi_{\alpha+1}(\varrho) d_q \varrho$$

Thus, for a.e. $\vartheta \in \Theta$, we obtain

$$\begin{aligned} \|x_{\alpha+1}(\vartheta) - x_{\alpha}(\vartheta)\| &\leq \frac{\kappa^{(\zeta-1)}}{\Gamma_q(\zeta)} \int_0^\vartheta \|\psi_{\alpha+1}(\varrho) - \psi_{\alpha}(\varrho)\| d_q \varrho \\ &\leq \frac{\kappa^{(\zeta-1)}}{\Gamma_q(\zeta)} \int_0^\vartheta \omega_1(\varrho) \|x_{\alpha+1}(\varrho) - x_{\alpha}(\varrho)\| d_q \varrho \\ &\leq \left(\frac{\omega_1^* \kappa^{(\zeta-1)}}{\Gamma_q(\zeta)}\right)^{\alpha-1} \int_0^\vartheta \int_0^{\varrho_1} \int_0^{\varrho_2} \cdots \int_0^{\varrho_{\alpha-1}} \left(\|\mathfrak{w}_0 - x_0\|\right)^{\alpha-1} + \frac{\kappa^{(\zeta-1)}}{\Gamma_q(\zeta)} \int_0^{\varrho_{\alpha}} \varpi(\tau) d_q \tau d_q \varrho d_{\alpha} d_q \varrho_{\alpha-1} \cdots d_q \varrho_1. \end{aligned}$$

Consequently, (3.5) is true for all $\alpha \in \mathbb{N}$. We deduce that $\{x_{\alpha}\}_{\alpha}$ is a Cauchy sequence in $\mathfrak{F}(\Theta)$, converging uniformly to a limit function $\mathfrak{w} \in \mathfrak{F}(\Theta)$. Furthermore, from the definition of $\{\Lambda_{\alpha}\}_{\alpha}$, we get

$$\|\psi_{\alpha+1} - \psi_{\alpha}\| \le \omega_1(\vartheta) \|x_{\alpha} - x_{\alpha-1}\|; \quad a.e. \ \vartheta \in \Theta,$$

Thus, for almost every $\vartheta \in \Theta$, $\{\psi_{\alpha}(\vartheta)\}_{\alpha}$ is also a Cauchy sequence in Ξ and then converges almost everywhere to some measurable function $\psi(\cdot)$ in Ξ . And, since $\psi_0 = \varkappa$, we have for a.e. $\vartheta \in \Theta$,

$$\begin{aligned} \|\psi_{\alpha}(\vartheta)\| &\leq \sum_{i=1}^{\alpha} \|\psi_{i}(\vartheta) - \psi_{i-1}(\vartheta)\| + \|\psi_{0}(\vartheta)\| \\ &\leq \omega_{1}(\vartheta) \sum_{i=2}^{\infty} \|x_{i}(\vartheta) - x_{i-1}(\vartheta)\| + \|\mathfrak{w}_{0} - x_{0}\| + \|\psi_{0}(\vartheta)\| \end{aligned}$$

We can now conclude that $\{\psi_{\alpha}\}_{\alpha}$ converges to $\psi \in L^{1}(\Theta, \Xi)$. Passing to the limit in (3.6), we obtain

$$\mathfrak{w}(\vartheta) = \mathfrak{w}_0 + \int_0^\vartheta \frac{(\vartheta - q\varrho)^{(\zeta-1)}}{\Gamma_q(\zeta)} \psi(\varrho) d_q \varrho,$$

is a solution of problem (1.1)-(1.2).

Further, for a.e. $\vartheta \in \Theta$, we get

$$\begin{split} \|\mathbf{w}(\vartheta) - x(\vartheta)\| &\leq \|\mathbf{w}_0 - x_0\| + \frac{\kappa^{(\zeta-1)}}{\Gamma_q(\zeta)} \int_0^\vartheta \|\psi(\varrho) - \psi_0(\varrho)\| d_q \varrho \\ &\leq \|\mathbf{w}_0 - x_0\| + \frac{\kappa^{(\zeta-1)}}{\Gamma_q(\zeta)} \int_0^\vartheta \|\psi(\varrho) - \psi_\alpha(\varrho)\| d_q \varrho \\ &+ \frac{\kappa^{(\zeta-1)}}{\Gamma_q(\zeta)} \int_0^\vartheta \|\psi_\alpha(\varrho) - \psi_0(\varrho)\| d_q \varrho \\ &\leq \|\mathbf{w}_0 - x_0\| + \frac{\kappa^{(\zeta-1)}}{\Gamma_q(\zeta)} \int_0^\vartheta \|\psi(\varrho) - \psi_\alpha(\varrho)\| d_q \varrho \\ &+ \frac{\omega_1^* \kappa^{(\zeta-1)}}{\Gamma_q(\zeta)} \int_0^\vartheta \sum_{i=2}^\infty \|x_i(\varrho) - x_{i-1}(\varrho)\| d_q \varrho. \end{split}$$

As $\alpha \to \infty$, we get

$$\|\mathfrak{w}(\vartheta) - x(\vartheta)\| \le \|\mathfrak{w}_0 - x_0\| + \frac{{\omega_1}^* \kappa^{(\zeta-1)}}{\Gamma_q(\zeta)} \int_0^\vartheta \sum_{i=2}^\infty \|x_i(\varrho) - x_{i-1}(\varrho)\| d_q \varrho.$$

Next, we give an estimate for $\|({}^{c}D_{q}^{\zeta}\mathfrak{w})(\vartheta) - \varkappa(\vartheta)\|$ for $\vartheta \in \Theta$. We have

$$\begin{split} \|(^{c}D_{q}^{\zeta}\mathfrak{w})(\vartheta) - \varkappa(\vartheta)\| &= \|\psi(\vartheta) - \psi_{0}(\vartheta)\| \\ &\leq \|\psi_{\alpha}(\vartheta) - \psi_{0}(\vartheta)\| + \|\psi_{\alpha}(\vartheta) - \psi(\vartheta)\| \\ &\leq \|\psi_{\alpha}(\vartheta) - \psi(\vartheta)\| + \omega_{1}^{*}\sum_{i=2}^{\infty} \|x_{i}(\vartheta) - x_{i-1}(\vartheta)\| \end{split}$$

As $\alpha \to \infty$, we get

$$\|(^{c}D_{q}^{\zeta}\mathfrak{w})(\vartheta)-\varkappa(\vartheta)\|\leq \omega_{1}^{*}\sum_{i=2}^{\infty}\|x_{i}(\vartheta)-x_{i-1}(\vartheta)\|.$$

4. Topological Structure of Solution Sets

4.1. The upper semi-continuous case. In this part, we provide a global existence result and demonstrate the compactness of our solution set by combining Mönch's fixed point theorem for multivalued maps with the measure of noncompactness.

The hypotheses:

- (\mathcal{B}_1) The multivalued map $\Psi: \Theta \times \Xi \times \Xi \to \mathcal{P}_{cp,c}(\Xi)$ is Carathéodory.
- (\mathcal{B}_2) There exists a function $\omega_1 \in L^{\infty}(\Theta, \mathbb{R}_+)$ such that

$$\|\Psi(\vartheta,\mathfrak{w},\mathfrak{y})\|_{\mathcal{P}} = \sup\{\|\mathfrak{z}\|_{C}:\mathfrak{z}(\vartheta)\in\Psi(\vartheta,\mathfrak{w},\mathfrak{y})\}\leq\omega_{1}(\vartheta);$$

for a.e. $\vartheta \in \Theta$, and each $\mathfrak{w}, \mathfrak{y} \in \Xi$.

 (\mathcal{B}_3) For each bounded sets $\Omega \subset \Xi$ and for each $\vartheta \in \Theta$, we have

$$\mu(\Psi(\vartheta,\Omega,(^{c}D_{q}^{\zeta}\Omega))) \leq \omega_{1}(\vartheta)\mu(\Omega).$$

28BDELKRIM SALIM^{*a*}, SAÏD ABBAS^{*b*}, MOUFFAK BENCHOHRA^{*a*}, AND ERDAL KARAPINAR^{*c*,*d*6} (\mathcal{B}_4) The function $\tilde{\Psi} \equiv 0$ is the unique solution in $\mathfrak{F}(\Theta)$ of the inequality

$$\tilde{\Psi}(\vartheta) \le 2\omega_1^* (I_q^{\zeta} \tilde{\Psi})(\vartheta).$$

Theorem 4.1. If $(\mathcal{B}_1) - (\mathcal{B}_4)$ are met, then (1.1)-(1.2) has at least one solution defined on Θ . Furthermore, the solution set

$$S_{\Psi}(\mathfrak{w}_0) = \{\mathfrak{w} \in \mathfrak{F}(\Theta) : \mathfrak{w} \text{ is a solution of problem } (1.1) - (1.2)\},\$$

is compact and the multivalued map $S_{\Psi}: \mathfrak{w}_0 \to (S_{\Psi})(\mathfrak{w}_0)$ is u.s.c.

Proof. Consider the operator $\mathfrak{T} : \mathfrak{F}(\Theta) \to \mathcal{P}(\mathfrak{F}(\Theta))$ defined in (3.1).

Step 1. Existence of solutions.

From Theorem 5 in [13], the operator \mathfrak{T} verifies all the requirements of Theorem 2.17, and we deduce that \mathfrak{T} has at least one fixed point $\mathfrak{w} \in \mathfrak{F}(\Theta)$ which is a solution of (1.1)-(1.2).

Step 2. Compactness of the solution set.

For each a $\mathfrak{w}_0 \in \Xi$, we consider the set $S_{\Psi}(\mathfrak{w}_0)$. From Step 1, there exists $\gamma > 0$ such that for every $\mathfrak{w} \in S_{\Psi}(\mathfrak{w}_0) : \|\mathfrak{w}\|_{\infty} \leq \gamma$. Since \mathfrak{T} is completely continuous, $\mathfrak{T}(S_{\Psi}(\mathfrak{w}_0))$ is relatively compact in $\mathfrak{F}(\Theta)$. Let $\mathfrak{w} \in S_{\Psi}(\mathfrak{w}_0)$; then $\mathfrak{w} \in \mathfrak{T}(\mathfrak{w})$. Hence $S_{\Psi}(\mathfrak{w}_0) \subset \mathfrak{T}(S_{\Psi}(\mathfrak{w}_0))$. Now, let us demonstrate that $S_{\Psi}(\mathfrak{w}_0)$ is a closed subset in $\mathfrak{F}(\Theta)$. Let $\{\mathfrak{w}_{\alpha} : \alpha \in \mathbb{N}\} \subset S_{\Psi}(\mathfrak{w}_0)$ be such that the sequence $(\mathfrak{w}_{\alpha})_{\alpha \in \mathbb{N}}$ converges to \mathfrak{w} . For every $\alpha \in \mathbb{N}$, there exists \mathfrak{z}_{α} such that $\mathfrak{z}_{\alpha}(\vartheta) \in \Psi(\vartheta, \mathfrak{w}_{\alpha}(\vartheta), ({}^{c}D_{q}^{\zeta}\mathfrak{w}_{\alpha})(\vartheta))$; a.e. $\vartheta \in \Theta$, and

$$\mathfrak{w}_{\alpha}(\vartheta) = \mathfrak{w}_{0} + \int_{0}^{\vartheta} \frac{(\vartheta - q\varrho)^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \mathfrak{z}_{\alpha}(\varrho) d_{q}\varrho.$$

Since $\mathfrak{w}_{\alpha} \to \mathfrak{w}$, Lemma 2.15 implies that there exists \mathfrak{z} , where $\mathfrak{z}(\vartheta) \in \Psi(\vartheta, \mathfrak{w}(\vartheta))$; *a.e.* $\vartheta \in \Theta$, and

(4.1)
$$\mathfrak{w}(\vartheta) = \mathfrak{w}_0 + \int_0^\vartheta \frac{(\vartheta - q\varrho)^{(\zeta-1)}}{\Gamma_q(\zeta)} \mathfrak{z}(\varrho) d_q \varrho.$$

Therefore $\mathfrak{w} \in S_{\Psi}(\mathfrak{w}_0)$ which yields that $S_{\Psi}(\mathfrak{w}_0)$ is closed, hence compact in $\mathfrak{F}(\Theta)$.

Step 3. $S_{\Psi}(\cdot)$ is u.s.c.

To do this, we prove that the graph $\Gamma_{S_{\Psi}}$ of S_{Ψ} is closed. We have

$$\Gamma_{S_{\Psi}} = \{ (\mathfrak{w}_0, \mathfrak{w}) : \mathfrak{w} \in S_{\Psi}(\mathfrak{w}_0) \},\$$

Let $(\mathfrak{w}_{0n}, \mathfrak{w}_{\alpha}) \in \Gamma_{S_{\Psi}}$ be such that $(\mathfrak{w}_{0n}, \mathfrak{w}_{\alpha}) \to (\mathfrak{w}_0, \mathfrak{w})$; as $\alpha \to \infty$. Since $\mathfrak{w}_{\alpha} \in S_{\Psi}(\mathfrak{w}_{0n})$, there exists $\mathfrak{z}_{\alpha} \in L^1(\Theta)$ such that

(4.2)
$$\mathfrak{w}_{\alpha}(\vartheta) = \mathfrak{w}_{0n} + \int_{0}^{\vartheta} \frac{(\vartheta - q\varrho)^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \mathfrak{z}_{\alpha}(\varrho) d_{q}\varrho$$

From Lemma 2.15, we can show that there exists $\mathfrak{z} \in S_{\Psi \circ \mathfrak{w}}$ where \mathfrak{w} verifies (4.1). Thus, $\mathfrak{w} \in S_{\Psi}(\mathfrak{w}_0)$. Now, we demonstrate that S_{Ψ} maps bounded sets into relatively compact sets of $\mathfrak{F}(\Theta)$. Let Ω be a bounded set in Ξ and let $\{\mathfrak{w}_{\alpha}\} \subset S_{\Psi}(\Omega)$. Then there exists $\{\mathfrak{w}_{0n}\} \subset \Omega$ and $\mathfrak{z}_{\alpha} \in S_{\Psi \circ \mathfrak{w}_{\alpha}}$; $\alpha \in \mathbb{N}$ such that (4.2) is satisfied. Since $\{\mathfrak{w}_{0n}\}$ bounded sequence, there exists a subsequence of $\{\mathfrak{w}_{0n}\}$ converging to \mathfrak{w}_0 . As in the proof of Theorem 5 in [13], we can show that $\{\mathfrak{w}_{\alpha}\}$ is compact on Θ . We deduce that there exists a subsequence of $\{\mathfrak{w}_{\alpha}\}$ converging to \mathfrak{w} in $\mathfrak{F}(\Theta)$. Also; from Lemma 2.15, we can prove that \mathfrak{w} satisfies (4.1) for some $\mathfrak{z} \in S_{\Psi \circ \mathfrak{w}}$. Hence, $S_{\Psi}(\mathfrak{w}_0)$ is u.s.c.

4.2. The lower semi-continuous case. The following existence result for problem (1.1)-(1.2) addresses the situation in which the nonlinearity is lower semi-continuous with concerning the second parameter which does not have convex values. We will apply Mönch's fixed point theorem for multivalued maps in conjunction with a selection theorem for lower semi-continuous (l.s.c.) multivalued maps with decomposable variables.

The preceding assumption is required for the sequel.

- (\mathcal{B}_5) The multivalued map Ψ is nonempty compact valued where
- (a) the mapping $(\vartheta, \mathfrak{w}) \to \Psi(\vartheta, \mathfrak{w}, \mathfrak{y})$ is $\mathcal{L} \otimes \mathcal{B}$ measurable
- (b) The mapping $\mathfrak{w} \to \Psi(\vartheta, \mathfrak{w}, \mathfrak{y})$ is l.s.c. for each $\vartheta \in \Theta$.

Let us we state the celebrated selection theorem of Fryszkowski.

Lemma 4.2. [29] Let $\overline{\Xi}$ be a separable metric space and let Ξ be a Banach space. Then every l.s.c. multivalued operator $\mathfrak{T} : \overline{\Xi} \to \mathcal{P}_{cl}(L^1(\Theta, \Xi))$ with nonempty closed decomposable values has a continuous selection, i.e. there exists a continuous singlevalued function $\psi : \overline{\Xi} \to L^1(\Theta, \Xi)$ such that $\psi(\mathfrak{z}) \in \mathfrak{T}(\mathfrak{z})$ for every $\mathfrak{z} \in \overline{\Xi}$.

Lemma 4.3. [28] Let $\mathfrak{T} : \Theta \times \Xi \times \Xi \to \mathcal{P}_{cp}(L^1(\Theta, \Xi))$ be a locally integrably bounded multivalued map satisfying (\mathcal{B}_5) . Then \mathfrak{T} is of l.s.c. type.

Theorem 4.4. If (\mathcal{B}_2) and (\mathcal{B}_5) are met, then (1.1)-(1.2) has at least one solution defined on Θ .

Proof. By Lemma 4.3, Ψ is of l.s.c. type. From Lemma 4.2, there exists a continuous selection $\psi : \mathfrak{F}(\Theta) \to L^1(\Theta)$ such that $\psi(\mathfrak{w}) \in S_{\Psi}(\mathfrak{w})$ for every $\mathfrak{w} \in \mathfrak{F}(\Theta)$. Consider the problem

(4.3)
$$\begin{cases} (^{c}D_{q}^{\zeta}\mathfrak{w})(\vartheta) = (\psi\mathfrak{w})(\vartheta); \ \vartheta \in \Theta, \\ \mathfrak{w}(0) = \mathfrak{w}_{0} \in \Xi, \end{cases}$$

and the operator $\mathfrak{S}:\mathfrak{F}(\Theta)\to\mathfrak{F}(\Theta)$ defined by

$$(\mathfrak{Sw})(\vartheta) = \mathfrak{w}_0 + \int_0^\vartheta \frac{(\vartheta - q\varrho)^{(\zeta - 1)}}{\Gamma_q(\zeta)} (\psi \mathfrak{w})(\varrho) d_q \varrho$$

MBDELKRIM SALIM^{*a*}, SAÏD ABBAS^{*b*}, MOUFFAK BENCHOHRA^{*a*}, AND ERDAL KARAPINAR^{*c*,*d*7} It is clear that the fixed points of \mathfrak{S} are solutions of problem (1.1)-(1.2).

Let $\mathfrak{w} \in \mathfrak{F}(\Theta)$. Then for each $\vartheta \in \Theta$ we have

$$(\mathfrak{Sw})(\vartheta) = \mathfrak{w}_0 + \int_0^\vartheta \frac{(\vartheta - q\varrho)^{(\zeta-1)}}{\Gamma_q(\zeta)} \mathfrak{z}(\varrho) d_q \varrho,$$

for some $\mathfrak{z} \in S_{\Psi \circ \mathfrak{w}}$. On the other hand,

$$\begin{split} \|\delta(\vartheta)\| &\leq \|\mathfrak{w}_0\| + \int_0^\vartheta \frac{(\vartheta - q\varrho)^{(\zeta - 1)}}{\Gamma_q(\zeta)} (\psi \mathfrak{w})(\varrho) d_q \varrho \\ &\leq \|\mathfrak{w}_0\| + \int_0^\vartheta \frac{(\vartheta - q\varrho)^{(\zeta - 1)}}{\Gamma_q(\zeta)} \omega_1(\varrho) d_q \varrho \\ &\leq \|\mathfrak{w}_0\| + \frac{\omega_1^* \kappa^{(\zeta)}}{\Gamma_q(1 + \zeta)} \\ &= R. \end{split}$$

Hence $\|(\mathfrak{Sw})(\mathfrak{w})\|_{\infty} \leq R$, and so $\mathfrak{S}(\Omega_R) \subset \Omega_R$, where $\Omega_R := \{\mathfrak{w} \in \mathfrak{F}(\Theta) : \|\mathfrak{w}\|_{\infty} \leq R\}$ be the bounded, closed and convex ball of $\mathfrak{F}(\Theta)$. We will demonstrate that $\mathfrak{S} : \Omega_R \to \Omega_R$ verifies all the requirements of Theorem 2.18. Now, proving that $\mathfrak{S}(\Omega_R)$ is relatively compact.

Let (δ_{α}) by any sequence in $\mathfrak{S}(\Omega_R)$. By, Arzéla-Ascoli compactness criterion in $\mathfrak{F}(\Theta)$, we demonstrate (δ_{α}) has a convergent subsequence. As $\delta_{\alpha} \in \mathfrak{S}(\Omega_R)$ there are $\mathfrak{w}_{\alpha} \in \Omega_R$ and $\mathfrak{z}_{\alpha} \in S_{\Psi \circ \mathfrak{w}_{\alpha}}$ where

$$\delta_{\alpha}(\vartheta) = \mathfrak{w}_0 + \int_0^{\vartheta} \frac{(\vartheta - q\varrho)^{(\zeta-1)}}{\Gamma_q(\zeta)} \mathfrak{z}_{\alpha}(\varrho) d_q \varrho.$$

We can show that $\{\delta_{\alpha}(\vartheta) : \alpha \geq 1\}$ is relatively compact for each $\vartheta \in \Theta$. And, for each ϑ_1 and ϑ_2 from Θ , with $\vartheta_1 < \vartheta_2$, we get

$$\begin{split} \|\delta_{\alpha}(\vartheta_{2}) - \delta_{\alpha}(\vartheta_{1})\| \\ &\leq \left\| \int_{0}^{\vartheta_{2}} \frac{(\vartheta_{2} - q\varrho)^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \omega_{1}(\varrho) d_{q}\varrho - \int_{0}^{\vartheta_{1}} \frac{(\vartheta_{1} - q\varrho)^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \omega_{1}(\varrho) d_{q}\varrho \right\| \\ &\leq \int_{\vartheta_{1}}^{\vartheta_{2}} \frac{(\vartheta_{2} - q\varrho)^{(\zeta-1)}}{\Gamma_{q}(\zeta)} \omega_{1}(\varrho) d_{q}\varrho \\ &+ \int_{0}^{\vartheta_{1}} \frac{|(\vartheta_{2} - q\varrho)^{(\zeta-1)} - (\vartheta_{1} - q\varrho)^{(\zeta-1)}|}{\Gamma_{q}(\zeta)} \omega_{1}(\varrho) d_{q}\varrho \\ &\leq \frac{\omega_{1}^{*} \kappa^{\zeta}}{\Gamma_{q}(1+\zeta)} (\vartheta_{2} - \vartheta_{1})^{\zeta} \\ &+ \omega_{1}^{*} \int_{0}^{\vartheta_{1}} \frac{|(\vartheta_{2} - q\varrho)^{(\zeta-1)} - (\vartheta_{1} - q\varrho)^{(\zeta-1)}|}{\Gamma_{q}(\zeta)} d_{q}\varrho \\ &\rightarrow 0 \text{ as } \vartheta_{1} \longrightarrow \vartheta_{2}. \end{split}$$

This shows that $\{\delta_{\alpha} : \alpha \geq 1\}$ is equicontinuous. Consequently, by the Arzéla-Ascoli theorem, $\{\delta_{\alpha} : \alpha \geq 1\}$ is relatively compact in Ω_R . By Theorem 2.18, we deduce that \mathfrak{S} has at least one fixed point, which is a solution of (1.1)-(1.2).

5. An Example

Let

$$\Xi = l^1 = \left\{ \mathfrak{w} = (\mathfrak{w}_1, \mathfrak{w}_2, \dots, \mathfrak{w}_{\alpha}, \dots), \sum_{\alpha=1}^{\infty} |\mathfrak{w}_{\alpha}| < \infty \right\}$$

be the Banach space with the norm

$$\|\mathfrak{w}\|_E = \sum_{lpha=1}^{\infty} |\mathfrak{w}_{lpha}|.$$

Consider now the following problem of fractional $\frac{1}{4}$ -difference inclusion

(5.1)
$$\begin{cases} {}^{(c}D_{\frac{1}{3}}^{\frac{1}{2}}\mathfrak{w}_{\alpha})(\vartheta) \in \Psi_{\alpha}\left(\vartheta,\mathfrak{w}(\vartheta), {}^{(c}D_{\frac{1}{3}}^{\frac{1}{2}}\mathfrak{w}_{\alpha})(\vartheta)\right); \ \vartheta \in [0,e],\\ \mathfrak{w}(0) = (1,0,\ldots,0,\ldots), \end{cases}$$

where

$$\Psi_{\alpha}(\vartheta, \mathfrak{w}(\vartheta)) = \frac{\vartheta^2 e^{-5-\vartheta}}{1 + \|\mathfrak{w}(\vartheta)\|_E + \|({}^cD_{\frac{1}{3}}^{\frac{1}{2}}\mathfrak{w}_{\alpha})(\vartheta)\|_E} [\mathfrak{w}_{\alpha}(\vartheta) - 1, \mathfrak{w}_{\alpha}(\vartheta)]; \ \vartheta \in \Theta,$$

with $\mathfrak{w} = (\mathfrak{w}_1, \mathfrak{w}_2, \dots, \mathfrak{w}_{\alpha}, \dots)$. Set $\zeta = \frac{1}{2}$, and $\Psi = (\Psi_1, \Psi_2, \dots, \Psi_{\alpha}, \dots)$. For each $\mathfrak{w} \in \Xi$ and $\vartheta \in \Theta$, we have

$$\|\Psi(\vartheta, \mathfrak{w})\|_{\mathcal{P}} \le c\vartheta^2 e^{-\vartheta-5}.$$

Thus, the condition (\mathcal{B}_2) is verified with $\omega_1^* = ce^{-3}$. We can easily show that all requirements of Theorem 4.1 are verified. Hence, (5.1) has at least one solution defined on Θ . Moreover, the solution set $S_{\Psi}(\mathfrak{w}_0)$ is compact and the multivalued map $S_{\Psi} : \mathfrak{w}_0 \to (S_{\Psi})(\mathfrak{w}_0)$ is u.s.c.

REFERENCES

- S. Abbas, M. Benchohra, J.R. Graef and J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018.
- [2] S. Abbas, M. Benchohra, S.Hamani and J. Henderson, Upper and lower solutions method for Caputo–Hadamard fractional differential inclusions. *Math. Moravica* 23 (1) (2019), 107-118.
- [3] S. Abbas, M. Benchohra and G. M. N'Guérékata, *Topics in Fractional Differential Equations*, Springer, New York, 2012.
- [4] S. Abbas, M. Benchohra and G. M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
- [5] C. R. Adams, On the linear ordinary q-difference equation, Annals Math. 30 (1928), 195-205.

𝗱 BDELKRIM SALIM^a, SAÏD ABBAS^b, MOUFFAK BENCHOHRA^a, AND ERDAL KARAPINAR^{c,d8}

- [6] R. S. Adiguzel, U. Aksoy, E. K., I.M. Erhan, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, *Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. RACSAM* **115** (2021) 115:155; https://doi.org/10.1007/s13398-021-01095-3
- [7] R. S. Adiguzel, U. Aksoy, E. Karapinar, .M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, *Math. Meth. Appl. Sci.* https://doi.org/10.1002/mma.665
- [8] R. S. Adiguzel, U. Aksoy, E. Karapinar, .M. Erhan, On the solutions of fractional differential equations via geraghty type hybrid contractions, *Appl. Comput. Math.* **20** (2) (2021), 310-330.
- [9] R. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Camb. Philos. Soc. 66 (1969), 365-370.
- B. Ahmad, Boundary value problem for nonlinear third order q-difference equations, *Electron. J. Differential Equations* 2011 (2011), No. 94, pp 1-7.
- [11] B. Ahmad, S.K. Ntouyas and L.K. Purnaras, Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations, Adv. Difference Equ. 2012, 2012:140.
- [12] S. Almezel, Q. H. Ansari and M. A. Khamsi, *Topics in Fixed Point Theory*, Springer-Verlag, New York, 2014.
- [13] B. Alqahtani, S. Abbas, M. Benchohra, S.S. Alzaid, Fractional q-difference inclusions in Banach spaces, *Mathematics*, 8 91 (2020), 1-12.
- [14] H. Afshari, E, Karapınar, A discussion on the existence of positive solutions of the boundary value problems via ϕ -Hilfer fractional derivative on b-metric spaces, *Adv. Difference Equ.* volume 2020, Article number: 616 (2020).
- [15] J. Andres and L. Górniewicz, Topological Fixed Point Principles for Boundary Value Problems, *Kluwer, Dordrecht*, 2003.
- [16] J. Banaš and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980.
- [17] M. Benchohra, F. Berhoun and G M. N'Guérékata, Bounded solutions for fractional order differential equations on the half-line, *Bull. Math. Anal. Appl.* 146 (4) (2012), 62-71.
- [18] M. Benchohra and M.S. Souid, L¹-solutions for implicit fractional order differential equations with nonlocal condition, *Filomat.* **30** (2016), 1485-1492.
- [19] R. D. Carmichael, The general theory of linear q-difference equations, Amer. J. Math. 34 (1912), 147-168.
- [20] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- [21] A. Cernea, A Filippov-type existence theorem for some nonlinear q-difference inclusions. Differential and difference equations with applications, 71–77, Springer Proc. Math. Stat., 164, Springer, [Cham], 2016.
- [22] A. Cernea, Filippov lemma for a class of Hadamard-type fractional differential inclusions. Fract. Calc. Appl. Anal. 18 (2015), no. 1, 163–171.
- [23] A. Cernea, On the mild solutions of a class of second order integro-differential inclusions, J. Nonlinear Var. Anal. 3 (2019), No. 3, 247-256.
- [24] B. C. Dhage, Some generalization of multi-valued version of Schauder's fixed point theorem with applications, *Cubo* 12 (2010), 139-151.
- [25] S. Djebali, L. Górniewicz, A. Ouahab, Topological structure of solution sets for impulsive differential inclusions in Frchet spaces, *Nonlinear Anal.* 74 (2011), 2141-2169.

- [26] M. El-Shahed, H. A. Hassan, Positive solutions of q-difference equation, Proc. Amer. Math. Soc. 138 (2010), 1733-1738.
- [27] H. Frankowska, A priori estimates for operational differential inclusions, J. Differential Equations 84 (1990), 100-128.
- [28] M. Frigon and A. Granas, Théorèmes dexistence pour des inclusions différentielles sans convexité, C. R. Acad. Sci. Paris, Ser. I 310 (1990) 819-822.
- [29] A. Fryszkowski, Fixed Point Theory for Decomposable Sets, Topological Fixed Point Theory and its Applications, 2 Kluwer Academic Pulishers, Dordrecht, 2004.
- [30] H. P. Heinz, On the behaviour of meusure of noncompacteness with respect of differentiation and integration of vector-valued function, *Nonlinear. Anal* 7 (1983), 1351-1371.
- [31] J. Henderson, A. Ouahab, A Filippov's theorem, some existence results and the compactness of solution sets of impulsive fractional order differential inclusions. *Mediterr. J. Math.* 9 (2012), no. 3, 453–485.
- [32] Sh. Hu, N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer, Dordrecht, Boston, London, 1997.
- [33] V. Kac and P. Cheung, Quantum Calculus. Springer, New York, 2002.
- [34] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc. 38 (6) (2001) 1191-1204.
- [35] A. Lasota, Z. Opial; An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equation, Bull. Accd. Pol. Sci., Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.
- [36] J. A. Tenreiro Machado, V. Kiryakova, The chronicles of fractional calculus, Fract. Calc. Appl. Anal. 20 (2017), 307-336.
- [37] J. Matkowski, Integrable solutions of functional equations, Dissertationes Math. 127 (1975), 1-68.
- [38] D. O'Regan, R. Precup; Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl. 245 (2000), 594-612.
- [39] A. Ouahab, Filippov's theorem for impulsive differential inclusions with fractional order, *Elect. J. Qualitative Theory of Differ. Equ. Spec. Ed. I, 2009 No. 23, 1-23.*
- [40] P.M. Rajkovic, S.D. Marinkovic and M.S. Stankovic, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math. 1 (2007), 311-323.
- [41] P.M. Rajkovic, S.D. Marinkovic and M.S. Stankovic, On q-analogues of Caputo derivative and Mittag-Leffler function, *Fract. Calc. Appl. Anal.* 10 (2007), 359-373.
- [42] J. Ren, C. Zhai, Characteristic of unique positive solution for a fractional q-difference equation with multistrip boundary conditions. *Math. Commun.* 24 (2019), no. 2, 181–192.
- [43] J. Ren, C. Zhai, A fractional q-difference equation with integral boundary conditions and comparison theorem. Int. J. Nonlinear Sci. Numer. Simul. 18 (2017), no. 7-8, 575–583.
- [44] A. Salim, M. Benchohra, J. R. Graef and J. E. Lazreg, Boundary value problem for fractional generalized Hilfer-type fractional derivative with non-instantaneous impulses. *Fractal Fract.* 5 (2021), 1-21. https://dx.doi.org/10.3390/fractalfract5010001
- [45] A. Salim, M. Benchohra, E. Karapnar and J. E. Lazreg, Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations. Adv. Difference Equ. 2020 (2020), 21 pp. https://doi.org/10.1186/s13662-020-03063-4
- [46] A. Salim, M. Benchohra, J. E. Lazreg and J. Henderson, Nonlinear implicit generalized Hilfertype fractional differential equations with non-instantaneous impulses in Banach spaces. Adv. Theory Nonlinear Anal. Appl. 4 (2020), 332-348. https://doi.org/10.31197/atnaa.825294

MBDELKRIM SALIM^a, SAÏD ABBAS^b, MOUFFAK BENCHOHRA^a, AND ERDAL KARAPINAR^{c,d9}

- [47] A. Salim, M. Benchohra, J. E. Lazreg and G. N'Guérékata, Boundary Value Problem for Nonlinear Implicit Generalized Hilfer-Type Fractional Differential Equations with Impulses. *Abst. Appl. Anal.* 2021 (2021), 17pp. https://doi.org/10.1155/2021/5592010
- [48] A. Salim, M. Benchohra, J. E. Lazreg, J. J. Nieto and Y. Zhou, Nonlocal Initial Value Problem for Hybrid Generalized Hilfer-type Fractional Implicit Differential Equations. *Nonauton. Dyn. Syst.* 8 (2021), 87-100. https://doi.org/10.1515/msds-2020-0127
- [49] A. Zahed, S. Hamani and J. R. Graef, Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions. Arch. Math. 57 (2021), 285-297.
- [50] T. Zhang, Y. Tang, A difference method for solving the q-fractional differential equations. Appl. Math. Lett. 98 (2019), 292–299.
- [51] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
- [52] M. Zuo, X. Hao, Xinan. Existence results for impulsive fractional q-difference equation with antiperiodic boundary conditions. J. Funct. Spaces 2018, Art. ID 3798342, 9 pp.