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ABSTRACT. The aim of this paper is to obtain the some new oscillatory conditions for all solutions

of nonlinear difference equation

(⋆) ∆x(n) +
m∑
i=1

pi(n)fi (x (τi(n))) = 0, n = 0, 1, · · · ,

where, for i = 1, 2, . . . ,m, (pi(n)) are sequences of nonnegative real numbers and (τi(n)) are not

necessarily monotone sequences, fi ∈ C(R,R) and xfi(x) > 0 (i = 1, 2, . . . ,m) for x ̸= 0.
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1. INTRODUCTION

Oscillation theory of difference equations has attracted many researchers. In

recent years there has been much research activity concerning the oscillation and

nonoscillation of solutions of delay difference equations. For these oscillatory and

nonoscillatory results, we refer, for instance, [1 − 15]. So, in the present paper,

our aim is to obtain some new oscillatory conditions of all solutions for first order

nonlinear delay difference equation. Consider the nonlinear delay difference equation

with non-monotone arguments

(1.1) ∆x(n) +
m∑
i=1

pi(n)fi (x (τi(n))) = 0, n = 0, 1, · · · ,
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where, for i = 1, 2, . . . ,m, (pi(n)) are sequences of nonnegative real numbers and

(τi(n)) are sequences of integers such that

(1.2) τi(n) ≤ n for all n ≥ 0 and lim
n→∞

τi(n) = ∞,

and

(1.3) fi ∈ C(R,R) and xfi(x) > 0 for x ̸= 0.

∆ denotes the forward difference operator ∆x(n) = x(n+ 1)− x(n).

Define, for i = 1, 2, . . . ,m

r = −min
n≥0

τi(n). (Clearly, r is a positive integer).

By a solution of the difference equation (1.1), we mean a sequence of real numbers

(x(n))n≥−r which satisfies (1.1) for all n ≥ 0.

A solution (x(n))n≥−r of the difference equation (1.1) is called oscillatory, if the terms

x(n) of the sequence are neither eventually positive nor eventually negative. Other-

wise, the solution is said to be nonoscillatory.

For 1 ≤ i ≤ m, if fi(x) = x, then equation (1.1) takes the form

(1.4) ∆x(n) +
m∑
i=1

pi(n)x (τi(n)) = 0, n = 0, 1, · · · .

In 2006, Berezansky and Braverman [1] established the following result for equation

(1.4). If (τi(n))(i = 1, . . . ,m) are not necessarily monotone and

(1.5) lim sup
n→∞

m∑
i=1

pi(n) > 0 and lim inf
n→∞

n−1∑
j=τ(n)

m∑
i=1

pi(j) >
1

e
,

where τ(n) = max1≤i≤m τi(n), then all solutions of (1.4) oscillate.

In 2013, Chatzarakis et al. [3], studied the equation (1.4) and proved that, if (τi(n))

are nondecreasing and

(1.6) lim sup
n→∞

n∑
j=τ(n)

m∑
i=1

pi(j) > 1,

where τ(n) = max1≤i≤m τi(n), then all solutions of (1.4) oscillate.

Set

(1.7) hi(n) := max
s≤n

τi(s), n ≥ 0 and h(n) = max
1≤i≤m

hi(n).

Clearly, (hi(n))(i = 1, . . . ,m) are nondecreasing and τi(n) ≤ hi(n) ≤ h(n) for all

n ≥ 0 and 1 ≤ i ≤ m.

In 2015, Braverman et al. [2], analyzed the equation (1.4) and proved that, if

(τi(n))(i = 1, . . . ,m) are not necessarily monotone and

(1.8) lim sup
n→∞

n∑
j=h(n)

m∑
i=1

pi(j) > 1,
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where h(n) is defined by (1.7), then all solutions of (1.4) oscillate.

In 2020, Kılıç and Öcalan [9], studied the equation (1.4) and proved that, if (τi(n))(i =

1, . . . ,m) are not necessarily monotone and

(1.9) lim inf
n→∞

n−1∑
j=τ(n)

m∑
i=1

pi(j) >
1

e
,

where h(n) is defined by (1.7), then all solutions of (1.4) oscillate.

For m = 1, equation (1.1) reduces to

(1.10) ∆x(n) + p(n)f (x (τ(n))) = 0, n = 0, 1, · · · .

In 2018, Öcalan et al. [11], studied the equation (1.10) and obtained some new

oscillatory conditions for all solutions of equation (1.10) to be oscillatory.

2. MAIN RESULTS

In this section, we investigated the oscillatory behavior of all solutions of equation

(1.1). We obtain some new sufficient conditions for the oscillation of all solutions of

equation (1.1) under the assumption that the argument (τi(n)) (i = 1, . . . ,m) are not

necessarily monotone.

We assume that fi (i = 1, . . . ,m) hold the following condition;

(2.1) lim sup
x→0

x

fi(x)
= Mi, 0 ≤ Mi < ∞.

The following result was given in [5].

Lemma 2.1. Assume that (1.1) holds and α > 0. Then we have

α = lim inf
n→∞

n−1∑
j=h(n)

m∑
i=1

pi(j) = lim inf
n→∞

n−1∑
j=τ(n)

m∑
i=1

pi(j),

where h(n) is defined by (1.7) and τ(n) = max1≤i≤m τi(n).

Lemma 2.2. Assume that (x(n)) is an eventually positive solution of (1.1). If

(2.2) lim sup
n→∞

n∑
j=h(n)

m∑
i=1

pi(j) > 0,

where h(n) is defined by (1.7), then limn→∞ x(n) = 0.

Also, assume that (x(n)) is an eventually negative solution of (1.1). If (2.2) holds,

then limn→∞ x(n) = 0.

Proof. Let (x(n)) be an eventually positive solution of (1.1). Then, there exists

n1 > n0 such that x(n), x (τ(n)) > 0 for all n ≥ n1. Thus, from (1.1), we get

∆x(n) = −
m∑
i=1

pi(n)fi (x (τi(n))) ≤ 0, for all n ≥ n1,
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which means that x(n) is nondecreasing and has a limit l ≥ 0. Now, we claim that

l = 0. Otherwise, l > 0. Summing up (1.1) from h(n) to n, then we have

(2.3) x(n+ 1)− x(h(n)) +
n∑

j=h(n)

m∑
i=1

pi(n)fi (x (τi(n))) = 0, n ≥ n1.

Since fi(i = 1, . . . ,m) are continuous, then limn→∞ fi (x (τi(n))) = fi(l) > 0 for

1 ≤ i ≤ m. So, there exists a n2 such that fi (x (τi(n))) ≥ di > 0 for n ≥ n2 and

1 ≤ i ≤ m. By using this fact and (2.3), we get the following inequality

(2.4) x(n+ 1)− x(h(n)) + d
n∑

j=h(n)

m∑
i=1

pi(j) ≤ 0, n ≥ n2,

where d = min1≤i≤m{di} > 0. Then, (2.2) implies that there exists at least one

sequence {nk} such that nk → ∞ as k → ∞ and

(2.5) lim
k→∞

nk∑
j=h(nk)

m∑
i=1

pi(j) > 0.

By writing n → nk and taking limit as k → ∞ in (2.4), we get

d lim
k→∞

nk∑
j=h(nk)

m∑
i=1

pi(j) ≤ 0,

but this contradicts to (2.5).

By using same process, it is easy to see that when (x(n)) is an eventually negative

solution of (1.1) under assumption that (2.2), then limn→∞ x(n) = 0.

Theorem 2.3. Assume that (1.2), (1.3) and (2.1) hold. If (τi(n)) are not necessarily

monotone and

(2.6) lim inf
n→∞

n−1∑
j=τ(n)

m∑
i=1

pi(j) >
M∗

e
,

where M∗ = max1≤i≤m{Mi}, then all solutions of (1.1) oscillate.

Proof. Assume, for the sake of contradiction, that (x(n)) is an eventually positive

solution of (1.1). If there exists an eventually negative solution (x(n)) of (1.1), then

the proof can be done similarly as below. Then there exists n1 ≥ n0 such that

x(n), x (τi(n)) , x (h(n)) > 0 for all n ≥ n1 and 1 ≤ i ≤ m. Thus, from Eq.(1.1) we

have

∆x(n) = −
m∑
i=1

pi(n)fi (x (τi(n))) ≤ 0, for all n ≥ n1,

which means that (x(n)) is eventually nondecreasing. Thus, condition (2.6) and

Lemma 2.2 imply that limn→∞ x(n) = 0.
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Now, suppose that Mi > 0 for 1 ≤ i ≤ m. Then, in view of (2.1) we can choose

n2 ≥ n1 so large that

(2.7) fi(x (n)) ≥
1

2Mi

x(n) ≥ 1

2M∗x(n) for n ≥ n2.

Since h(n) ≥ τi(n) for 1 ≤ i ≤ m and (x(n)) is nonincreasing , by using (1.1) and

(2.7) we have

(2.8) ∆x(n) +
1

2M∗

m∑
i=1

pi(n)x (h(n)) ≤ 0, n ≥ n2.

Also, from (2.6) and Lemma 2.1, it follows that there exists a constant c > 0 such

that

(2.9)
n∑

j=h(n)

m∑
i=1

pi(j) ≥
n−1∑

j=h(n)

m∑
i=1

pi(j) ≥ c >
M∗

e
, n ≥ n3 ≥ n2.

So, from (2.9), there exists an integer n∗ ∈ [h(n), n], for all n ≥ n3 such that

(2.10)
n∗∑

j=h(n)

m∑
i=1

pi(j) >
M∗

2e
and

n∑
j=n∗

m∑
i=1

pi(j) >
M∗

2e
.

Summing up (2.8) from h(n) to n∗ and using (x(n)) is nonincreasing, then we

have

x(n∗ + 1)− x (h(n)) +
1

2M∗

n∗∑
j=h(n)

m∑
i=1

pi(j)x (h(j)) ≤ 0,

or

x(n∗ + 1)− x (h(n)) +
1

2M∗x (h(n
∗))

n∗∑
j=h(n)

m∑
i=1

pi(j) ≤ 0.

Thus, by (2.10), we have

(2.11) −x (h(n)) +
1

2M∗x (h(n
∗))

M∗

2e
< 0.

Summing (2.8) from n∗ to n and using the same facts , we get

x(n+ 1)− x (n∗) +
1

2M∗

n∑
j=n∗

m∑
i=1

pi(j)x (h(j)) ds ≤ 0.

Thus, by (2.10), we have

(2.12) −x (n∗) +
1

2M∗x (h(n))
M∗

2e
< 0.

Combining the inequalities (2.11) and (2.12), we obtain

x(n∗) > x (h(n))
1

4e
> x (h(n∗))

(
1

4e

)2

,

and hence we have
x (h(n∗))

x(n∗)
< (4e)2 for n ≥ n3.
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Let

(2.13) w = lim inf
n→∞

x(h(n∗))

x(n∗)
≥ 1,

and because of 1 ≤ w ≤ (4e)2, w is finite.

Now dividing (1.1) with x(n) and then summing up from h(n) to n− 1 we obtain

(2.14)
n−1∑

j=h(n)

∆x(j)

x(j)
+

n−1∑
j=h(n)

m∑
i=1

pi(j)
fi(x(τi(j)))

x(j)
= 0.

It is well known that

(2.15) ln
x(n)

x(h(n))
≤

n−1∑
j=h(n)

∆x(j)

x(j)
.

So, by (2.14) and (2.15), we have

ln
x(n)

x(h(n))
+

n−1∑
j=h(n)

m∑
i=1

pi(j)
fi(x(τi(j)))

x(τi(j))

x(τi(j))

x(j)
≤ 0.

Since h(n) ≥ τi(n) for 1 ≤ i ≤ m and (x(n)) is nonincreasing, we get

(2.16) ln
x(h(n))

x(n)
≥

n−1∑
j=h(n)

m∑
i=1

pi(j)
f(x(τi(j)))

x(τi(j))

x(h(j))

x(j)
.

Also, there exists an integer µ such that h(n) ≤ µ ≤ n. Then, from (2.16), we

have

(2.17) ln
x(h(n))

x(n)
≥

m∑
i=1

f(x(τi(µ)))

x(τi(µ))

x(h(µ))

x(µ)

n−1∑
j=h(n)

pi(j).

Taking lower limits on both of (2.17) and using (2.1), (2.6) and (2.13), we obtain

lnw > w
e
. But this is impossible since ln x ≤ x

e
for all x > 0.

Now, we consider the case where Mi = 0 for 1 ≤ i ≤ m. In this case, it is clear that

by (2.1), we have

(2.18) lim
x→0

x

fi(x)
= 0 for 1 ≤ i ≤ m.

Since x
fi(x)

> 0, by (2.17), for sufficiently large integers, we get

x

fi(x)
< ϵi ≤ ϵ∗ for 1 ≤ i ≤ m,

or

(2.19)
fi(x)

x
>

1

ϵ∗
for 1 ≤ i ≤ m,
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where ϵ∗ = max1≤i≤m{ϵi} > 0 is an arbitrary real number. Thus, since τi(n) ≤ h(n)

for 1 ≤ i ≤ m and (x(n)) is nonincreasing, by (1.1) and (2.19), we have

(2.20) ∆x(n) +
1

ϵ∗

m∑
i=1

pi(n)x(h(n)) < 0, n ≥ n1.

Summing up (2.19) from h(n) to n, and using (h(n)) is nondecreasing we obtain

x(n+ 1)− x(h(n)) +
1

ϵ∗

n∑
j=h(n)

m∑
i=1

pi(j)x(h(j)) < 0,

and so, we get

(2.21) −x(h(n)) +
1

ϵ∗
x(h(n))

n∑
j=h(n)

m∑
i=1

pi(j) < 0.

Thus, by (2.9) and (2.21), we can write

c

ϵ∗
< 1

or

ϵ∗ > c.

Since ϵ∗ is an arbitrary real number, this contradicts to limx→0
x

f(x)
= 0. The proof

of the theorem is completed.

Theorem 2.4. Assume that (1.2), (1.3), (1.7) and (2.1) hold with 0 < M∗ < ∞. If

(2.22) lim sup
n→∞

n∑
j=h(n)

m∑
i=1

pi(j) > M∗,

where h(n) is defined by (1.7) and M∗ = max1≤i≤m{Mi}, then all solutions of (1.1)

oscillate.

Proof. Assume, for the sake of contradiction, that there exists an eventually positive

solution (x(n)) of (1.1). Then there exists n1 ≥ n0 such that x(n), x (τi(n)) , x (h(n)) >

0 for all n ≥ n1 and 1 ≤ i ≤ m. In view of Theorem 2.3, (x(n)) is eventually nonde-

creasing and also, from (2.22) and Lemma 2.2, we have limn→∞ x(n) = 0.

On the other hand, by (2.1) for θ > 1, we get the following inequality

(2.23) fi(x(n)) ≥
1

θMi

x(n) ≥ 1

θM∗x(n) for 1 ≤ i ≤ m.

From (2.22), there exists a constant K > 0 such that

(2.24) lim sup
n→∞

n∑
j=h(n)

m∑
i=1

pi(j) = K > M∗.
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Since K > M∗, we have M∗ < K+M∗

2
< K. Also, with the help of (2.23) and (1.1),

we get

∆x(n) +
1

θM∗

m∑
i=1

pi(j)x(τi(n)) ≤ 0.

As h(n) ≥ τi(n) for 1 ≤ i ≤ m and (x(n)) is nonincreasing, we obtain

(2.25) ∆x(n) +
1

θM∗

m∑
i=1

pi(j)x(h(n)) ≤ 0.

Summing up (2.25) from h(n) to n, and using the fact that (h(n)) is nondecreasing

x(n+ 1)− x(h(n)) +
1

θM∗

n∑
j=h(n)

m∑
i=1

pi(j)x(h(j)) ≤ 0

or

−x(h(n)) +
1

θM∗x(h(n))
n∑

j=h(n)

m∑
i=1

pi(j) < 0.

This implies that

−x(h(n))

1− 1

θM∗

n∑
j=h(n)

m∑
i=1

pi(j)

 < 0 for n ≥ n2,

and hence

n∑
j=h(n)

m∑
i=1

pi(j) < θM∗.

Therefore, we obtain

lim sup
n→∞

n∑
j=h(n)

m∑
i=1

pi(j) ≤ θM∗.

Since θ > 1 and K+M∗

2M∗ > 1, we can choose this term instead of θ. If the term

θ = K+M∗

2M∗ > 1 is replaced in the last inequality, we get

lim sup
n→∞

n∑
j=h(n)

m∑
i=1

pi(j) = K ≤ K +M∗

2
.

But, this contradicts to K > K+M∗

2
, then the proof of the theorem is completed.

Now, we present an example to show that the significance of our results.

Example 2.5. Consider the nonlinear delay difference equation

(2.26)

∆x(n)+
0.2

e
x (τ1(n)) ln (10 + |x (τ1(n))|)+

0.5

e
x (τ2(n)) ln (5 + |x (τ2(n))|) = 0, n ≥ 0,
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where

τ1(n) =


n− 1, if n ∈ [3k, 3k + 1]

−3n+ 12k + 3, if n ∈ [3k + 1, 3k + 2]

5n− 12k − 13, if n ∈ [3k + 2, 3k + 3]

, k ∈ N0,

and

τ2(n) = τ1(n)− 1.

By (1.7), we see that

h1(n) := max
s≤n

τ1(s) =


n− 1, if n ∈ [3k, 3k + 1]

3k, if n ∈ [3k + 1, 3k + 2.6]

5n− 12k − 13, if n ∈ [3k + 2.6, 3k + 3]

, k ∈ N0,

and

h2(n) = h1(n)− 1.

Therefore,

h(n) = max
1≤i≤2

{hi(n)} = h1(n).

On the other hand,

M1 = lim sup
x→0

x

f1(x)
= lim sup

x→0

x

x ln(10 + |x|)
=

1

ln 10
,

and

M2 = lim sup
x→0

x

f2(x)
= lim sup

x→0

x

x ln(5 + |x|)
=

1

ln 5
.

So, we have

M∗ = max
1≤i≤2

{Mi} = M2

and

lim inf
n→∞

n−1∑
j=τ(n)

m∑
i=1

pi(j) =
0.7

e
>

M∗

e
=

1

e ln 5
,

that is, all conditions of Theorem 2.3 are satisfied and therefore all solutions of (2.26)

oscillate.
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