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ABSTRACT. This work is devoted to studying the effects of time-delay on the dynamics of a
two prey-one predator system with quadratic self-interaction. The essential dynamical structures
of the delayed system are analyzed by means of local stability analysis and bifurcation theory.
Taking the time lag τ as a free parameter, the necessary conditions for the existence of the Hopf
bifurcation around the interior equilibrium of the system has been derived both analytically and
numerically. It is observed that a Hopf bifurcation occurs when the bifurcation parameter crosses a
certain threshold value and it is found that the dynamics of the system can be effected significantly
by the time delay which has both stabilizing and destabilizing impacts depending on the magnitude
of the delay. Moreover, we derived the explicit formulas in order to determine the direction of the
Hopf bifurcation and examine the nature of the bifurcating periodic solution by using the normal
form method and the center manifold theorem. Eventually, some numerical simulations are given to
verify the derived theoretical analysis.
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1. INTRODUCTION

In ecological systems, the interaction between prey and predator is one of the
basic interspecies relations, which shapes the community structure and ecosystem
stability. Usually, the species regarded as food is called the prey and the consuming
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species the predator [7]. Also, a predation is known as a biological interaction in
ecology where a predator feeds on a prey while the accessibility of prey for predation
is recognized as a functional response. Among this interaction, the rate at which
prey are consumed by the predator can be determined by the a particular functional
response [1, 5, 6].

Thus, the predator–prey models are playing a fundamental role in mathematical
ecology due to their importance and universal existence. The mathematical model
of predator–prey which is originally introduced by Lotka and Volterra, describe the
growth rate of the population involved in predation process and it is known as Lotka–
Volterra model [1, 3]. There has been great attention with a huge number of stud-
ies in population models during the last few decades which amongst of them, the
predator-prey systems play an important role in population dynamics. Many applied
mathematicians and ecologists have focused on the stability of the predator–prey
models and in particular, they have analyzed the stability and dynamical behavior
of such systems by incorporating the time delays into the models. Hence, a system
of predator–prey becomes more realistic by introducing time-delays into the system
[8, 15].

Introducing of delay in a system makes the system infinite-dimensional and gen-
erally, delay differential equations (DDEs) exhibit very complicated dynamics than
ordinary differential equations (ODEs) since a time delay destabilizes the system’s
equilibria and could cause fluctuation in the population. Therefore, one of the es-
sential topics concerning predator-prey systems is to investigate the influence of time
delays on the dynamical behaviors of the systems such as periodic structure, bifurca-
tion and so on [4, 8, 9, 25]. Time-delay dynamical systems are generally described by
DDEs which arise frequently in various models and have wide range of applications
in science and engineering [10, 11]. For the earlier years, DDEs has attracted many
researchers’ attention in diverse subjects, including mathematics, physics, biology,
economics, engineering, etc [19, 22, 23]. Also, many natural systems are mathemat-
ically modeled by nonlinear delay differential equations which contain one or more
time delays. For example, several practical systems such as controlling systems, net-
work communication systems, manufacturing processes, population dynamics, rocket
motors, nuclear reactors, load balancing instability in parallel calculation, and other
various physical phenomena can be described by delayed models [19, 22, 25]. Recently,
the influence of time delay in the predator-prey system with functional response func-
tions are studied by many scholars [16–18]. The stability analysis of time delay system
has been an active field in the control community since time delay can considerably
change the performance and stability of a control system [13]. The stability changes
can take place when the time delay crosses a threshold, a stable limit cycle may
emerge through a local Hopf bifurcation [5, 20]. Hence, Hopf bifurcation scheme has
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been extensively used to acquire more information about periodic solution properties
near an equilibrium point of a nonlinear system [21].
In [2], I.K. Aybar et al. discussed the two prey-one predator system consisting of
quadratic self interaction in the prey equations. In fact, the predator species of the
considered system interacts with two prey species described by:

(1.1)

dx

dt
= x(a1 − b1x− c1y),

dy

dt
= y(−a2 + b2x+ c2z),

dz

dt
= z(a3 − b3y − c3z),

where x and z represent the population densities of prey-A and prey-B, respectively,
and y denotes the predator’s population density. In order to have physical and bio-
logical descriptions, all parameters and variables of system (1.1) are assumed to be
nonnegative. The detailed biological meanings of parameters are shown in Table 1.
The authors of [2] investigated the the singular points’ stability of system (1.1), and

Table 1. Biological meaning of parameters.

Parameter Biological meaning

a1 Growth rate of prey-A in the absence of predator
a2 The death rate of the predator in the absence of the preys
a3 Growth rate of prey-B in the absence of predator
b1 Quadratic self interaction rate of prey-A
b2 Consumption rate of the predator over prey-A
b3 The death rate of prey-B due to predation
c1 The death rate of prey-A due to predation
c2 Consumption rate of the predator over prey-B
c3 Quadratic self interaction rate of prey-B

by means of numerical simulation, they showed that solutions trajectories of the sys-
tem can be approached to the stable singular points under given conditions. They
also introduced an approach for examining the existence of Hopf bifurcation.

Motivated by the recent work of I.K. Aybar et al. [2] with considering the fact
that the more realistic models should consist of delay differential equations without
instantaneous feedbacks, we focus on the following time delayed predator-prey system
with a single delay consisting of three species which represent the population densities
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of two prey and one predator species:

(1.2)



dx(t)

dt
= x(t)

(
a1 − b1x(t− τ)− c1y(t)

)
,

dy(t)

dt
= y(t)

(
− a2 + b2x(t− τ) + c2z(t− τ)

)
,

dz(t)

dt
= z(t)

(
a3 − b3y(t)− c3z(t− τ)

)
.

The initial conditions of the delayed system (1.2) can be chosen as:

(1.3)
x(θ) = ϕ1(θ), y(θ) = ϕ2(θ),

z(θ) = ϕ3(θ), θ ∈ [−τ, 0],

where ϕ = (ϕ1, ϕ2, ϕ3)
T ∈ C. Here C represents the Banach space C([−τ, 0],R3)

of continuous functions mapping from the interval [−τ, 0] into R3 = {(x, y, z) |x ≥
0, y ≥ 0, z ≥ 0}. For biological feasibility, the initial functions are considered as

ϕi(θ) ≥ 0, θ ∈ [−τ, 0], i = 1, 2, 3.

The paper main concern is to study the possible stability switches of the predator–
prey system (1.2) with time delay and investigate how the time lag effects on the
dynamical behavior of this system. As the time delay τ is treated as a bifurcation
parameter and when it is passed though its critical value, we observe that the positive
equilibrium losses its stability and the system exhibits limit cycle oscillations, i.e. a
Hopf bifurcation occurs.
The remainder parts of the paper are arranged as follows. In Section 2, by linearizing
the system (1.2) around the positive equilibrium point, the associated characteristic
equation is discussed and stability analysis is performed. Furthermore, by taking τ as
a bifurcation parameter, the conditions for the existence of Hopf bifurcations at the
positive equilibrium are obtained. In Section 3, by the help of normal form method
and theory of center manifold discussed in [27], we derive an explicit statement in
order to determine the direction of the Hopf bifurcations and stability of the bifurca-
tion periodic solutions. In Section 4, some numerical simulations are performed based
on the suitable parameters’ values and time delay to examine the derived analytical
results. A brief conclusion is included in Section 5.

2. STABILITY OF POSITIVE EQUILIBRIUM AND HOPF
BIFURCATION ANALYSIS

In this section, we investigate the local stability and effect of delay on the
dynamic behavior of system (1.2) around the positive equilibrium (i.e., coexistence
equilibrium) based on its linearized form. So if the conditions

(H1) a2c3 > a3c2, a1b2 > a2b1, a3c1 > a1b3.
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are fulfilled, then system (1.2) has a unique positive equilibrium E∗(x∗, y∗, z∗), where

x∗ =
a1b3c2 + c1(a2c3 − a3c2)

b1b3c2 + b2c1c3
,

y∗ =
a3b1c2 + c3(a1b2 − a2b1)

b1b3c2 + b2c1c3
,

z∗ =
a2b1b3 + b2(a3c1 − a1b3)

b1b3c2 + b2c1c3
.

For local stability analysis, we use the transformation X(t) = x(t)−x∗, Y (t) = y(t)−
y∗ and Z(t) = z(t)− z∗ to obtain the linearized system. Therefore, the linearization
of (1.2) around E∗ takes the form:

(2.1)



dX(t)

dt
= a11X(t) + a12Y (t) + b11X(t− τ),

dY (t)

dt
= a22Y (t) + b21X(t− τ) + b23Z(t− τ),

dZ(t)

dt
= a32Y (t) + a33Z(t) + b33Z(t− τ),

which can be written as Ẋ(t)

Ẏ (t)

Ż(t)

 = A1

 X(t)

Y (t)

Z(t)

+ A2

 X(t− τ)

Y (t− τ)

Z(t− τ)

 ,(2.2)

where

A1 =

 a1 − b1x
∗ − c1y

∗ −c1x∗ 0

0 −a2 + b2x
∗ + c2z

∗ 0

0 −b3z∗ a3 − b3y
∗ − c3z

∗

 =

 a11 a12 0

0 a22 0

0 a32 a33

 ,
and

A2 =

 −b1x∗ 0 0

b2y
∗ 0 c2y

∗

0 0 −c3z∗

 =

 b11 0 0

b21 0 b23

0 0 b33

 .
The characteristic polynomial of the delayed system (1.2), depending on τ , can be
described by

det

 λ− (a11 + b11e
−λτ ) −a12 0

−b21e−λτ λ− a22 −b23e−λτ

0 −a32 λ− (a33 + b33e
−λτ )

 = 0.

Then, a straightforward calculation leads to

△(λ, τ) = λ3 + p2λ
2 + p1λ+ p0 + (q2λ

2 + q1λ+ q0)e
−λτ + (h1λ+ h0)e

−2λτ = 0,

(2.3)
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where

p2 = −a33 − a22 − a11, p1 = a22a33 − (−a33 − a22)a11, p0 = −a11a22a33,

q2 = −b33 − b11, q1 = (b11 + b33)a22 − b23a32 + b33a11 − a12b21 + b11a33,

q0 = (−a11b33 − b11a33)a22 + a11a32b23 + a12a33b21, h1 = b11b33,

h0 = (a12b21 − a22b11)b33 + a32b11b23.

Multiplying both sides of (2.3) by eλτ , gives

(λ3 + p2λ
2 + p1λ+ p0)e

λτ + q2λ
2 + q1λ+ q0 + (h1λ+ h0)e

−λτ = 0.(2.4)

In order to analyze the distribution of roots of Eq. (2.4), we use the following result
given in [26].

Lemma 2.1. Consider the transcendental equation

P (λ, e−λτ1 , · · · , e−λτm) = λn + p
(0)
1 λ(n−1) + · · ·+ p

(0)
(n−1)λ+ p(0)n

+
[
p
(1)
1 λ(n−1) + · · ·+ p

(1)
(n−1)λ+ p(1)n

]
e−λτ1

+ · · ·+
[
p
(m)
1 λ(n−1) + · · ·+ p

(m)
(n−1)λ+ p(m)

n

]
e−λτm = 0,

where τi ≥ 0 (i = 1, 2, · · · ,m) and p(i)j (i = 0, 1, · · · ,m; j = 1, 2, · · · , n) are constants.
As (τ1, τ2, · · · , τm) vary, the sum of orders of the zeros of P (λ, e−λτ1 , · · · , e−λτm) in the
open right half plane can change, and only a zero appears on or crosses the imaginary
axis.

For analyzing the system (1.2) dynamically, we consider the following two cases.

Case I: τ = 0. To examine the stability of E∗ for τ = 0, we substitue τ = 0 into Eq.
(2.4) which reduces to

△(λ) = λ3 + (p2 + q2)λ
2 + (p1 + q1 + h1)λ+ p0 + q0 + h0 = 0.(2.5)

So based on Routh–Hurwitz criterion [12], we know that all roots of Eq. (2.5) have
negative real parts if the following conditions hold

(H2) p2 + q2 > 0, p0 + q0 + h0 > 0, (p2 + q2)(p1 + q1 + h1) > p0 + q0 + h0.

Hence, we have the following lemma.

Lemma 2.2. If the conditions (H1) and (H2) hold, then the equilibrium point E∗ of
system (1.2) becomes locally asymptotically stable for τ = 0.
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Case II: τ ̸= 0. In this case, we apply the Hopf bifurcation theory i.e. a dynamical
system undergos a Hopf bifurcation if its corresponding characteristic equation has a
pair of complex conjugate pure imaginary roots. Obviously, ±iω (ω > 0) are a pair
of purely imaginary roots of Eq. (2.4) if and only if ω satisfies

(2.6) (−iω3 − p2ω
2 + p1ωi + p0)e

iωτ − q2ω
2 + q1ωi + q0 + (h1ωi + h0)e

−iωτ = 0.

Then we get

(2.7)
(p0 + h0 − p2ω

2) cos(ωτ) + ω(h1 − p1 + ω2) sin(ωτ) = q2ω
2 − q0,

ω(h1 + p1 − ω2) cos(ωτ) + (p0 − h0 − p2ω
2) sin(ωτ) = −q1ω.

which leads to

(2.8) Q2 cos
2(ω0τ) +Q1 sin(ω0τ) cos(ω0τ) +Q0 = 0,

where

Q2 = 4h1ω
2
0 − 4(h1p1 − h0p2)ω

2
0 + 4h0p0,

Q1 = 4
(
(h1p2 − h0)ω

2
0 + h0p1 − h1p0

)
ω0,

Q0 = −ω6
0 + q22ω

4
0 +

(
q21 − 2q0q2

)
ω2
0 + q20 − (p22 + 2h1 − 2p1)ω

4
0

− (h21 + p21 + 2h0p2 − 2h1p1 − 2p0p2)ω
2
0 − (h0 − p0)

2.

According to sin(ω0τ) = ±
√

1− cos2(ω0τ) and (2.8), we get

l2 cos
4(ω0τ) + l1 cos

2(ω0τ) + l0 = 0,(2.9)

where

l2 = Q2
1 +Q2

2, l1 = 2Q1Q2 −Q2
1, l0 = Q2

0.

Let cos(ω0τ) = r, then we have

l2r
4 + l1r

2 + l0 = 0.(2.10)

Let ∆ = l21 − 4l0l2, then the roots of (2.10) are as follows:

r1 =

√
2

2

√
l2(−l1 +

√
∆)

l2
, r2 = −

√
2

2

√
l2(−l1 +

√
∆)

l2
,

r3 =

√
2i

2

√
l2(l1 +

√
∆)

l2
, r4 = −

√
2i

2

√
l2(l1 +

√
∆)

l2
.

According to the analysis above, the expression of cos(ω0τ) can be derived as

cos(ω0τ) = f1(ω0),(2.11)

where f1(ω0) is a function w.r.t. ω0. By substituting (2.11) into (2.8), the expression
of sin(ω0τ) can be obtained as

sin(ω0τ) = f2(ω0),(2.12)



70 ABDUL HUSSAIN SUROSHa,b, REZA KHOSHSIAR GHAZIANIa,∗, AND JAVAD ALIDOUSTIa

where f2(ω0) is a function w.r.t. ω0. Thus we can get

f 2
1 (ω0) + f 2

2 (ω0) = 1.(2.13)

We can obtain ω0 from (2.13) by using mathematical software. Then, based on (2.11),
we have

τ
(j)
k =

1

ωk
[arccos(f1(ω0)) + 2jπ], (j = 0, 1, 2, · · · ).(2.14)

Hence, we can derive a more clear explicit formula for determining the values of τ (j)k

by direct computation of (2.7), i.e.

τ
(j)
k =

 1
ωk
[arccos(Q) + 2jπ], L ≥ 0

1
ωk
[2π − arccos(Q) + 2jπ], L < 0,

(2.15)

where
L = sin(ωkτk)

=

(
− q2ω

4
k +

(
(h1 + p1)q2 − p2q1 + q0

)
ω2
k − (p1 + h1)q0 + (p0 + h0)q1

)
ωk

−ω6
k + (2p1 − p22)ω

4
k + (h21 + 2p0p2 − p21)ω

2
k + h20 − p20

,

Q = cos(ωkτk) =
(p2q2 − q1)ω

4
k +

(
(p1 − h1)q1 + (h0 − p0)q2 − p2q0

)
ω2
k − (h0 − p0)q0

−ω6
k + (2p1 − p22)ω

4
k + (h21 + 2p0p2 − p21)ω

2
k + h20 − p20

.

Lemma 2.3. Let τ = τ
(j)
k be defined by (2.14) or (2.15). Assume the conditions (H1)

and (H2) hold, then we deduce the following statements:

(i): If τ ∈ [0, τ0), then Eq. (2.4) have the roots with strictly negative real parts.
(ii): At τ = τ

(j)
k (k = 1, 2, 3; j = 0, 1, 2, · · · ), Eq. (2.4) has a pair of complex

conjugate roots ±iωk and all other roots have negative real parts.

Moreover, in order to discuss the existence of Hopf bifurcation with respect to
the bifurcation parameter τ , we need further analysis, i.e, to verify the transversality
condition.

Lemma 2.4. Let λ(τ) = η(τ) + iω(τ) be a root of (2.4) near τ = τ
(j)
k satisfying

η(τ
(j)
k ) = 0 and ω(τ (j)k ) = ωk, then, the following cross-sectional condition holds[ d

dτ
Re(λ(τ))

]
λ=iω0,τ=τ0

̸= 0,

where ω0, τ0 are the critical frequency and bifurcation point of system (1.2), respec-
tively.

Proof. Differentiating the characteristic Eq. (2.4) w.r.t. τ , we get[
(3λ2 + 2p2λ+ p1)e

λτ + (λ3 + p2λ
2 + p1λ+ p0)τe

λτ + 2q2λ+ q1 + h1e
−λτ

− (h1λ+ h0)τe
−λτ

]
dλ

dτ
= −

(
λ3 + p2λ

2 + p1λ+ p0

)
λeλτ + (h1λ+ h0)λe

−λτ ,
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which can be written as(
dλ

dτ

)−1

=
3λ2 + 2(p2 + q2)λ+ p1 + q1 + h1e

−λτ

−λ
(
λ3 + p2λ2 + p1λ+ p0 − (h1λ+ h0)e−λτ

) − τ

λ
.(2.16)

By substituting λ = iω0 into (2.16) and straightforward computation, we obtain

Re
(
dλ

dτ

)−1∣∣∣∣∣
λ=iω0,τ=τ0

= Re
(χ1 + iχ2

χ3 + iχ4

)
=
χ1χ3 + χ2χ4

χ2
3 + χ2

4

,

where

χ1 =
[(
2τ0p2 + 6

)
ω2
0 − 2τ0p0 − 2p1

]
cos2(ω0τ0) +

[
2ω0

(
− ω2

0τ0 + p1τ0 + 2p2
)
cos(ω0τ0)

+ 2q2ω0

]
sin(ω0τ0)− q1 cos(ω0τ0) +

(
− p2ω0 − 3

)
ω2
0 + (h0 + p0)τ0 − h1 + p1,

χ2 = −2
(
− ω2

0τ0 + p1τ0 + 2p2
)
ω0 cos

2(ωτ0) +
[(
ω2
0(6 + 2p2τ0)− 2p0τ0 − 2p1

)
− q1

]
sin(ω0τ0)− 2q2ω0 cos(ω0τ0) +

(
− ω2

0τ0 + h1τ0 + p1τ0 + 2p2
)
ω0

χ3 = −2
(
− ω2

0p2 + p0
)
ω2
0 cos

2(ω0τ0)− 2ω0 sin(ω0τ0)
(
− p2ω

2
0 + p0

)
cos(ω0τ0)

+
(
− ω2

0 + h1 + p1
)
ω2
0,

χ4 = −2
(
p2ω

2
0 − p0

)
ω0 cos

2(ω0τ0)− 2ω2
0 sin(ω0τ0)

(
− ω2

0 + p1
)
cos(ω0τ0)

−
(
− p2ω

2
0 + h0 + p0

)
ω0.

Since Re
(

dλ
dτ1

)−1∣∣∣
λ=iω0

and
[
d(Reλ)

dτ

]
λ=iω0

have the same sign, therefore, if the condition

(H41) : χ1χ3+χ2χ4 ̸= 0 holds, then we conclude that
[
d(Reλ)

dτ

]
λ=iω0

̸= 0. This implies
that by increasing of the delay τ , all the roots pass through the imaginary axis from
left to right at iω. Hence, the transversality condition holds and accordingly a Hopf
bifurcation occurs. This completes the proof.

Define τ0 = τk0 = min1≤k≤3{τk}, ω0 = ωk0 , and applying the theory of Hopf
bifurcation for functional differential equations [27], we can conclude the following
theorem for the existence of Hopf bifurcation.

Theorem 2.5. For system (1.2) with τ ̸= 0, if the assumptions (H1) − (H3) hold,
then we have the following results.

(i): The positive equilibrium E∗ is asymptotically stable for τ ∈ [0, τ0) and unstable
for τ > τ0.

(ii): When τ = τ0, a Hopf bifurcation occurs at E∗ as τ passes through the critical
value τ0.
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3. PROPERTIES OF THE HOPF BIFURCATION

In this part, we investigate the direction of Hopf bifurcation and the stability
of the bifurcating periodic solutions arising through Hopf bifurcation. We employed
the helpful analytical methods, i.e, the normal form and the center manifold theory
proposed by Hassard et al. [27]. Throughout this section, we suppose that system
(1.2) undergoes a Hopf bifurcation at the positive equilibrium E∗ for τ = τ0, and iω0 is
a pure imaginary root of the corresponding characteristic equation at this equilibrium
point.
By changing of variables u1(t) = x(t)−x∗, u2(t) = y(t)− y∗, u3(t) = z(t)− z∗, we can
rewrite the system (2.1) by adding the nonlinear parts as the following form:



u̇1(t) = a11u1(t) + a12u2(t) + b11u1(t− τ) + a13u
2
1(t)

+b12u1(t)u1(t− τ) + a14u1(t)u2(t) + h.o.t.,

u̇2(t) = a22u2(t) + b21u1(t− τ) + b23u3(t− τ) + a23u1(t)u2(t)

+b24u1(t− τ)u2(t) + a24u2(t)u3(t) + b25u2(t)u3(t− τ) + h.o.t.,

u̇3(t) = a32u2(t) + a33u3(t) + b33u3(t− τ)

+a34u2(t)u3(t) + a35u
2
3(t) + b34u3(t)u3(t− τ) + h.o.t.,

(3.1)

where

a13 = b12 = −b1, a14 = −c1, a23 = b24 = b2,

a24 = b25 = c2, a34 = −b3, a35 = b34 = −c3.

Notice that the coefficients of linear part of (3.1) have been determined in Section 2.
Without loss of generality, denote the critical value τ0 by τ̄ , and let τ = τ̄+µ, (µ ∈ R)
in which the µ is a new bifurcation parameter. Then µ = 0 is the bifurcating point of
the system (1.2). For sake of simplicity, we use τ instead of τ̄ . To reduce the system to
its central manifold, it is necessary to convert the system into a functional differential
equation. Therefore, by normalizing the delay by the scaling t −→ t/τ , system (3.1)
can be transformed into functional differential equation (FDE) in C = C

(
[−1, 0],R3

)
:

u̇(t) = Lµ(ut) +F(µ, ut),(3.2)

where

ut(θ) = u(t+ θ) =
(
x(t+ θ), y(t+ θ), z(t+ θ)

)T ∈ R3,

ϕ(t) =
(
ϕ1(θ), ϕ2(θ), ϕ3(θ)

)T ∈ C,
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and Lµ : R× C → R3,F : R× C → R3 are defined, respectively, by

Lµ(ϕ) = (τ0 + µ)

 a11 a12 0

0 a22 0

0 a32 a33


 ϕ1(0)

ϕ2(0)

ϕ3(0)



+ (τ0 + µ)

 b11 0 0

b21 0 b23

0 0 b33


 ϕ1(−1)

ϕ2(−1)

ϕ3(−1)

 ,

(3.3)

and

F(µ, ϕ) = (τ0 + µ)


a13ϕ

2
1(0) + b12ϕ1(0)ϕ1(−1) + a14ϕ1(0)ϕ2(0) + h.o.t.

a23ϕ1(0)ϕ2(0) + b24ϕ1(−1)ϕ2(0) + a24ϕ2(0)ϕ3(0)

+b25ϕ2(0)ϕ3(−1) + h.o.t.

a34ϕ2(0)ϕ3(0) + a35ϕ
2
3(0) + b34ϕ3(0)ϕ3(−1) + h.o.t.

 .(3.4)

Based on Riesz representation theorem [27], there exists a function η(θ, µ) whose
components are bounded variation for θ ∈ [−1, 0] such that the operator Lµ can be
defined in an integral form:

Lµ(ϕ) =

∫ 0

−1

dη(θ, µ)ϕ(θ), θ ∈ C.

In fact, η(θ, µ) can be written as

η(θ, µ) = (τ0 + µ)

 a11 a12 0

0 a22 0

0 a32 a33

 δ(θ)− (τ0 + µ)

 b11 0 0

b21 0 b23

0 0 b33

 δ(θ + 1),

where δ(θ) =

0, θ ̸= 0

1, θ = 0.

For ϕ ∈ C1([−1, 0],R3), we define the operator A(µ) as

A(µ)ϕ(θ) =


dϕ(θ)
dθ

, θ ∈ [−1, 0)∫ 0

−1
dη(θ, µ)ϕ(θ), θ = 0

(3.5)

and

R(µ)ϕ(θ) =

0, θ ∈ [−1, 0)

F(µ, ϕ), θ = 0.
(3.6)

Then system (3.2) is equivalent to the following operator equation

u̇t = A(µ)ut +R(µ)ut,(3.7)
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where ut(θ) = u(t + θ), θ ∈ [−1, 0]. For ψ ∈ C1([0, 1], (R3)∗), where (R3)∗ is the
three-dimensional space of row vectors, we define the adjoint operator A∗ of A(0) as

A∗(µ)ψ(s) =


−dψ(s)
ds

, s ∈ (0, 1]∫ 0

−1
dηT (s, µ)ψ(−s), s = 0

(3.8)

where ηT is the transpose of the matrix η.
To normalize the eigenvector of A and its adjoint A∗, we define a bilinear inner
product for ϕ ∈ C1([−1, 0],R3) and ψ ∈ C1([0, 1], (R3)∗) as

⟨ψ(s), ϕ(θ)⟩ = ψ(0)ϕ(0)−
∫ 0

θ=−1

∫ θ

ξ=0

ψ
T
(ξ − θ)dη(θ)ϕ(ξ) dξ,(3.9)

where η(θ) = η(θ, 0). Then A(0) and A∗(0) are a pair of adjoint operators.
From Section 2, we see that ±iω0τ0 are eigenvalues of A(0) and therefore they

are also eigenvalues of A∗(0). We first need to compute the eigenvector q(θ) of A(0)

corresponding to iω0τ0 and eigenvector q∗(s) of A∗ corresponding to the eigenvalue
−iω0τ0.

Let q(θ) = (1, α1, α2)
T eiω0τ0θ be the eigenvector of A(0) corresponding to iω0τ0,

i.e. A(0)q(θ) = iω0τ0q(θ). Then, it follows from the definition of A(0) and (3.3) that

τ0

 iω0 − (a11 + b11e
−iω0τ ) −a12 0

−b21e−iω0τ iω0 − a22 −b23e−iω0τ

0 −a32 iω0 − (a33 + b33e
−iω0τ )

 (q(0)) =

 0

0

0

 .

(3.10)

By direct calculation, we get

q(0) = (1, α1, α2)
T =

(
1,

iω0 − a11 − b11e
−iω0τ0

a12
,
a32
(
b11e

−iω0τ0 − iω0 + a11
)

a12
(
b33e−iω0τ0 − iω0 + a33

))T

.

If q∗(s) = B(1, α∗
1, α

∗
2)
T eiω

∗
0τ0s be the eigenvector of A∗ related to −iω∗

0τ0, i.e.
A∗(0)q∗T (θ) = −iω0τ0q

∗T (θ), then

α∗
1 =

(−iω0 − a11)e
−iω0τ0 − b11

b21
, α∗

2 =
b23(iω0 + a11 + b11e

iω0τ0)

b21(iω0 + a33 + b33eiω0τ0)
.

To verify the conditions

⟨q∗(s), q(θ)⟩ = 1 and ⟨q∗(s), q(θ)⟩ = 0,
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we need to calculate the value of B. By Eq. (3.9), we have

⟨q∗(s), q(θ)⟩ = q∗(0)q(0)−
∫ 0

θ=−1

∫ θ

ξ=0

q∗
T
(ξ − θ)dη(θ)q(ξ) dξ

= B̄(1, α∗
1, α

∗
2)(1, α1, α2)

T

−
∫ 0

θ=−1

∫ θ

ξ=0

B̄(1, α∗
1, α

∗
2)e

−iω0τ0(ξ−θ)dη(θ)× (1, α1, α2)
T eiω0τ0ξ dξ

= B̄
{
1 + α1α∗

1 + α2α∗
2 −

∫ 0

−1

(1, α∗
1, α

∗
2)θe

iω0τ0θdη(θ)(1, α1, α2)
T
}

= B̄
{
1 + α1α∗

1 + α2α∗
2 + τ0

(
b11 + b21α∗

1 + b23α∗
1α2 + b33α2α∗

2

)
e−iω0τ0

}
.

Hence, according to ⟨q∗(s), q(θ)⟩ = 1, we get

B̄ =
1

1 + α1α∗
1 + α2α∗

2 + τ0
(
b11 + b21α∗

1 + b23α∗
1α2 + b33α2α∗

2)e
−iω0τ0

,

i.e.

B =
1

1 + α1α∗
1 + α2α∗

2 + τ0
(
b11 + b21α∗

1 + b23α∗
1α2 + b33α2α∗

2

)
e−iω0τ0

.

Next, we determine the stability of bifurcating periodic solution. So, we will follow
the same notations as given in Hassard et al.[27] as well as same algorithms and
computation given in [14, 15]. The bifurcating periodic solutions z(t, µ(ξ)) have the
amplitude O(ξ) and nonzero Floquet exponent β(ξ) with β(0) = 0. Then, µ and β

can be defined by

µ = µ2ξ2 + µ4ξ4 + · · · ,

β = β2ξ2 + β4ξ4 + · · · .

Here, the sign of µ2 denotes the direction of bifurcating periodic solution while β2
specifies the stability of z(t, µ(ξ)), which is stable if β2 < 0 and unstable if β2 > 0.
The next step is to compute the coordinates of a local invariant manifold C0 at
µ = 0, which is attracting a two-dimensional manifold and known as a center manifold
[15, 27]. Let ut be a solution of Eq.(3.2) when µ = 0. Define

z(t) = ⟨q∗, ut⟩, W (t, θ) = ut(θ)− 2Re{z(t), q(t)}.(3.11)

On the center manifold C0, we obtain W (t, θ) = W (z(t), z(t), θ), where

W (z, z, θ) = W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+W30(θ)

z3

6
+ · · · .(3.12)

In Eq. (3.12), z and z represent the coordinates of center manifold C0 in the
direction of q∗ and q∗, respectively. In fact, it is the help of center manifold which
we are enable to reduce (3.2) to the form of an ordinary differential equation with a
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single complex variable on C0. In (3.11) and (3.12), W is real if ut is real. Therefore,
we consider only the real solutions. For the solution ut ∈ C0 of (3.2), we have

(3.13)

ż(t) = ⟨q∗, u̇t⟩ = ⟨q∗,A(ut) +R(ut)⟩

= ⟨q∗,A(ut)⟩+ ⟨q∗,R(ut)⟩

= ⟨A(q∗), ut⟩+ ⟨q∗,R(ut)⟩

= iω0τ0z + q∗(θ) ·F
(
0,W (z, z, θ) + 2Re[z(t)q(θ)]

)
= iω0τ0z + q∗(0) ·F

(
0,W (z, z, 0) + 2Re[z(t)q(0)]

)
= iω0τ0z + q∗(0) ·F0

(
z, z
)
,

which can be rewriten as

ż(t) = iω0τ0z + g(z, z),(3.14)

where

g(z, z) = g20(θ)
z2

2
+ g11(θ)zz + g02(θ)

z2

2
+ g21(θ)

z2z

2
+ · · · .(3.15)

According to (3.13) and (3.14), we can obtain the coefficients of the expansion (3.15)
as follows

g(z, z) = q∗
T
(0)F(z, z) = τ0B(1, α∗

1, α
∗
2)

×


a13u

2
1t(0) + b12u1t(0)u1t(−1) + a14u1t(0)u2t(0)

a23u1t(0)u2t(0) + b24u1t(−1)u2t(0) + a24u2t(0)u3t(0)

+b25u2t(0)u3t(−1)

a34u2t(0)u3t(0) + a35u
2
3t(0) + b34u3t(0)u3t(−1)

 .
(3.16)

Notice that

u(t) = (u1t(θ), u2t(θ), u3t(θ)) = W (t, θ) + z(t)q(θ) + z(t)q(θ),

= W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+ (1, α1, α2)

T eθiω0τ0z

+ (1, α1, α2)
T eθiω0τ0z + · · · ,
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and q(θ) = (1, α1, α2)
T eiω0τ0θ, then we obtain

u1t(0) = z + z +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+O(|z, z|3),

u2t(0) = α1z + α1z +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+O(|z, z|3),

u3t(0) = α2z + α2z +W
(3)
20 (0)

z2

2
+W

(3)
11 (0)zz +W

(3)
02 (0)

z2

2
+O(|z, z|3),

u1t(−1) = ze−iω0 + zeiω0 +W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz

+W
(1)
02 (−1)

z2

2
+O(|z, z|3),

u2t(−1) = α1ze
−iω0 + α1ze

iω0 +W
(2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz

+W
(2)
02 (−1)

z2

2
+O(|z, z|3),

u3t(−1) = α2ze
−iω0 + α2ze

iω0 +W
(3)
20 (−1)

z2

2
+W

(3)
11 (−1)zz

+W
(3)
02 (−1)

z2

2
+O(|z, z|3).

(3.17)

From (3.16) and (3.17), we get

g(z, z) = τ0B̄
[
a13u

2
1t(0) + b12u1t(0)u1t(−1) + a14u1t(0)u2t(0)

]
+ τ0B̄α∗

1

[
a23u1t(0)u2t(0) + b24u1t(−1)u2t(0) + a24u2t(0)u3t(0)

+ b25u2t(0)u3t(−1)
]

+ τ0B̄α∗
2

[
a34u2t(0)u3t(0) + a35u

2
3t(0) + b34u3t(0)u3t(−1)

]
.

(3.18)

It follows that

g(z, z) = τ0B̄

{
a13
(
z + z +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+O(|z, z|3)

)2
+ b12

(
z + z +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+O(|z, z|3))

×
(
ze−iω0 + zeiω0 +W

(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz +W

(1)
02 (−1)

z2

2
+O(|z, z|3)

)
+ a14

(
z + z +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+O(|z, z|3)

)
×
[
α1z + α1z +W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+O(|z, z|3)

]}
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+ τ0B̄

{
α∗
1

[
a23
(
z + z +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+O(|z, z|3)

)2
×
[
α1z + α1z +W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+O(|z, z|3)

]
+ b24

(
ze−iω0 + zeiω0 +W

(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz +W

(1)
02 (−1)

z2

2
+O(|z, z|3)

)
×
[
α1z + α1z +W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+O(|z, z|3)

]
+ a24

[
α1z + α1z +W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+O(|z, z|3)

]
×
(
α2z + α2z +W

(3)
20 (0)

z2

2
+W

(3)
11 (0)zz +W

(3)
02 (0)

z2

2
+O(|z, z|3)

)
+ b25

(
α2z + α2z +W

(3)
20 (0)

z2

2
+W

(3)
11 (0)zz +W

(3)
02 (0)

z2

2
+O(|z, z|3)

)
×
(
α2ze

−iω0 + α2ze
iω0 +W

(3)
20 (−1)

z2

2
+W

(3)
11 (−1)zz

+W
(3)
02 (−1)

z2

2
+O(|z, z|3)

)]}

+τ0B̄

{
α∗
2

[
a34

(
α1z + α1z +W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+O(|z, z|3)

)
×
(
α2z + α2z +W

(3)
20 (0)

z2

2
+W

(3)
11 (0)zz +W

(3)
02 (0)

z2

2
+O(|z, z|3)

)
+ a35

(
α2ze

−iω0 + α2ze
iω0 +W

(3)
20 (−1)

z2

2
+W

(3)
11 (−1)zz

+W
(3)
02 (−1)

z2

2
+O(|z, z|3)

)2
+ b34

(
α2z + α2z +W

(3)
20 (0)

z2

2
+W

(3)
11 (0)zz +W

(3)
02 (0)

z2

2
+O(|z, z|3)

)
×
(
α2ze

−iω0 + α2ze
iω0 +W

(3)
20 (−1)

z2

2
+W

(3)
11 (−1)zz +W

(3)
02 (−1)

z2

2
+ · · ·

)]}
.
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Comparing the coefficients of above equation with (3.15), we obtain the following
relevant parameters.

g20 = 2τ0B̄
[
a13 + b12e

−iω0τ0 + a14α1 + α∗
1

(
b25α1α2e

−iω0τ0

+ b24α1e
−iω0τ0 + a24α1α2 + a23α1

)
+ α∗

2

(
b34α

2
2e

−iω0τ0

+ a34α1α2 + a35α
2
2

)]
,

g11 = 2τ0B̄

[
a13 + b12Re{e−iω0τ0}+ a14Re{α1}

+ α∗
1

(
b25Re{α1α2e

−iω0τ0}+ b24Re{α1e
−iω0τ0}

+ a24Re{α1α2}+ a23Re{α1}
)
+ α∗

2

(
b34Re{α1α2e

−iω0τ0}

+ a34Re{α1α2}+ a35|α2|2
)]
,

g02 = 2τ0B̄
[
a13 + b12e

iω0τ0 + a14α1 + α∗
1

(
b25α1α2e

iω0τ0

+ b24α1e
iω0τ0 + a23α1 + a24α1α2

)
+ α∗

2

(
b34α2

2eiω0τ0

+ a34α1α2 + a35α2
2
)]
,

g21 = 2τ0B̄

{
a13

(
W

(1)
20 (0) + 2W

(1)
11 (0)

)
+ b12

(1
2
W

(1)
20 (−1)

+W
(1)
11 (−1)e−iω0τ0 +W

(1)
11 (−1) +

1

2
W

(1)
20 (−1)eiω0τ0

)
+ a14

(1
2
W

(2)
20 (0) + α1W

(1)
11 (0) +W

(2)
11 (0) +

1

2
α1W

(1)
20 (0)

)
+ α∗

1

[
a23

(1
2
W

(2)
20 (0) + α1W

(1)
11 (0) +W

(2)
11 (0) +

1

2
α1W

(1)
20 (0)

)
+ b24

(1
2
W

(2)
20 (−1)eiω0τ0 +W

(2)
11 (−1)e−iω0τ0 + α1W

(1)
11 (−1)

+
1

2
α1W

(1)
20 (−1)

)
+ a24

(1
2
α1W

(3)
20 (0) + α2W

(2)
11 (0) + α1W

(3)
11 (0)

+
1

2
α2W

(2)
20 (0)

)
+ b25

(1
2
α1W

(3)
20 (−1) + α2W

(2)
11 (−1)e−iω0τ0

+ α1W
(3)
11 (−1) + α2W

(2)
20 (−1)eiω0τ0

)]
,+α∗

2

[
a34

(1
2
α1W

(3)
20 (0)

+ α2W
(2)
11 (0) + α1W

(3)
11 (0) +

1

2
α2W

(2)
20 (0)

)
+ a35

(
α2W

(3)
20 (0)

+ 2α2W
(3)
11 (0)

)
+ b34

(1
2
α2W

(3)
20 (−1) + α2W

(3)
11 (−1)e−iω0τ0

+ α2W
(3)
11 (−1) +

1

2
α2W

(3)
11 (−1)eiω0τ0

)]}
.

(3.19)
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In order to obtain the expression of g21 we need to calculateW20(θ) =
(
W

(1)
20 ,W

(2)
20 ,W

(3)
20

)
and W11(θ) =

(
W

(1)
11 ,W

(2)
11 ,W

(3)
11

)
. From Eqs.(3.7) and (3.11), we have

Ẇ = u̇t − żq − ˙̄zq̄,

= A(µ)ut +Rut −
[
iω0τ0z + q∗(0)F0(z, z)

]
q −

[
− iω0τ0z + q∗(0)F0(z, z)

]
q,

= AW + 2ARe[zq] +Rut − 2Re[q∗(0)F0(z, z)q(θ)]− 2Re[iω0τ0zq(θ)],

= AW − 2Re[q∗(0)F0(z, z)q(θ)] +Rut,

=

AW − 2Re[q∗(0)F0(z, z)q(θ)], −1 ≤ θ < 0

AW − 2Re[q∗(0)F0(z, z)q(θ)] +Ft, θ = 0.
(3.20)

Let rewrite Eq. (3.20) as

Ẇ = AW +H(z, z̄, θ),(3.21)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+H21(θ)

z2z̄

2
+ · · · .(3.22)

Differentiating of Eq. (3.12) w.r.t. t, we get the following expression on the center
manifold C0 near to the origin

Ẇ = Wz ż +Wz̄ ˙̄z.(3.23)

Using Eqs. (3.23), (3.21) and (3.22), we obtain

(A − 2iω0τ0)W20(θ) = −H20(θ),(3.24)

AW11(θ) = −H11(θ).(3.25)

By Eqs. (3.20) and (3.21), we see that for θ ∈ [−1, 0),

H(z, z̄, θ) = −2Re(q̄∗(0)F0q(θ))

= −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ).(3.26)

Comparing the coefficients of Eq.(3.26) with Eq.(3.22) gives that

H20(θ) = −g(20)q(θ)− ḡ02q̄(θ),(3.27)

and

H11(θ) = −g(11)q(θ)− ḡ11q̄(θ).(3.28)

From Eqs.(3.24) - (3.28) and the definition of A, we obtain

(3.29)

 Ẇ20(θ) = 2iω0τ0W20(θ) + g20q(θ) + ḡ02q̄(θ),

Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ).
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where

(3.30)

 W20(θ) =
ig20
ω0τ0

q(0)eiθω0τ0 + iḡ20
3ω0τ0

q̄(0)e−iθω0τ0 + E1e
2iθω0τ0 ,

W11(θ) = − ig11
ω0τ0

q(0)eiθω0τ0 + iḡ11
ω0τ0

q̄(0)e−iθω0τ0 + E2.

Here, E1 =
(
E

(1)
1 , E

(2)
1 , E

(3)
1

)
and E2 =

(
E

(1)
2 , E

(2)
2 , E

(3)
2

)
are constant vectors in R3.

These vectors satisfy the following equations: 2iω0 − (a11 + b11e
−2iω0τ ) −a12 0

−b21e−2iω0τ 2iω0 − a22 −b23e−2iω0τ

0 −a32 2iω0 − (a33 + b33e
−2iω0τ )



×

 E
(1)
1

E
(2)
1

E
(3)
1

 = 2

 M11

M21

M31

 ,

(3.31)

where

M11 = a13 + b12e
−iω0τ0 + a14α1,

M21 = b25α1α2e
−iω0τ0 + b24α1e

−iω0τ0 + a24α1α2 + a23α1,

M31 = b34α
2
2e

−iω0τ0 + a34α1α2 + a35α
2
2,

and  −a11 − b11 −a12 0

−b21 −a22 −b23
0 −a32 −a33 − b33


 E

(1)
2

E
(2)
2

E
(3)
2

 = 2

 N11

N21

N31

 ,(3.32)

where

N11 = a13 + b12Re{e−iω0τ0}+ a14Re{α1},

N21 = b25Re{α1α2e
−iω0τ0}+ b24Re{α1e

−iω0τ0}+ a24Re{α1α2}+ a23Re{α1},

N31 = b34Re{α1α2e
−iω0τ0}+ a34Re{α1α2}+ a35|α2|2.

By the Cramer’s rule, we can get the solution of (3.31) as

E
(1)
1 =

2

∆̄

∣∣∣∣∣∣∣
M11 −a12 0

M21 2iω0 − a22 −b23e−2iω0τ

M31 −a32 2iω0 − (a33 + b33e
−2iω0τ )

∣∣∣∣∣∣∣ ,

E
(2)
1 =

2

∆̄

∣∣∣∣∣∣∣
2iω0 − (a11 + b11e

−2iω0τ ) M11 0

−b21e−2iω0τ M21 −b23e−2iω0τ

0 M31 2iω0 − (a33 + b33e
−2iω0τ )

∣∣∣∣∣∣∣ ,

E
(3)
1 =

2

∆̄

∣∣∣∣∣∣∣
2iω0 − (a11 + b11e

−2iω0τ ) −a12 M11

−b21e−2iω0τ 2iω0 − a22 M21

0 −a32 M31

∣∣∣∣∣∣∣ ,
where
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∆̄ =

∣∣∣∣∣∣∣
2iω0 − (a11 + b11e

−2iω0τ ) −a12 0

−b21e−2iω0τ 2iω0 − a22 −b23e−2iω0τ

0 −a32 2iω0 − (a33 + b33e
−2iω0τ )

∣∣∣∣∣∣∣ .

Similarly, solution of (3.32) is given by

E
(1)
2 =

2

∆̃

∣∣∣∣∣∣∣
N11 −a12 0

N21 −a22 −b23
N31 −a32 −a33 − b33

∣∣∣∣∣∣∣ , E
(2)
2 =

2

∆̃

∣∣∣∣∣∣∣
−a11 − b11 N11 0

−b21 N21 −b23
0 N31 −a33 − b33

∣∣∣∣∣∣∣ ,

E
(3)
2 =

2

∆̃

∣∣∣∣∣∣∣
−a11 − b11 −a12 N11

−b21 −a22 N21

0 −a32 N31

∣∣∣∣∣∣∣ ,
where

∆̃ =

∣∣∣∣∣∣∣
−a11 − b11 −a12 0

−b21 −a22 −b23
0 −a32 −a33 − b33

∣∣∣∣∣∣∣ .

Therefore, all gij can be expressed in terms of parameters. By using Eq. (3.19), we
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Figure 1. System (1.2) is locally asymptotically stable in the absence
of delay. (A) Three-dimensional view of phase portrait. (B) Time series
solution. The initial condition is (0.12, 0.54, 0.0024).
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can compute the following values:

C1(0) =
i

2ω0τ0

(
g11g20 − 2 |g11|2 −

|g02|2

3

)
+

g21
2
,

µ2 = −Re(C1(0))

Re(λ′(τ0))
,(3.33)

β2 = 2Re(C1(0)),

T2 = − 1

ω0τ0

[
Im{C1(0)}+ µ2Im{λ′(τ0)}

]
.

These expressions determine the quantities and qualitative behavior of bifurcating
periodic solutions on the center manifold of system (1.2) for the critical value τ = τ0.
Therefore, we can conclude the following main result.

Theorem 3.1. For system (1.2), the following conclusions hold:

(i): If µ2 > 0 (µ2 < 0), then the Hopf bifurcation is supercritical (subcritical), i.e.,
the bifurcating periodic solutions exist for τ > τ0 (τ < τ0).

(ii): The bifurcated periodic solutions are orbitally stable if β2 < 0 and unstable if
β2 > 0.

(iii): The period is increasing if T2 > 0 and decreasing if T2 < 0.

4. NUMERICAL SIMULATIONS

In this section, some numerical simulation results are presented to verify our
analytical analysis obtained in the previous section by using the calculation tools
MATLAB 2013a and Maple 2017. For the system (1.2), we choose the parameter
values as provided in Table 2, i.e. the system (1.2) has only one positive equilibrium
E∗ = (0.14105, 0.60087, 0.00385), which is feasible for these set of parameters. By

Table 2. The set of parameter values for simulating the dynamics of
the system (1.2).

Parameter a1 b1 c1 a2 b2 c2 a3 b3 c3

Value 3.12 0.82 5 0.35 2.48 0.05 0.25 0.32 15

Eq. (2.14) or direct computation of Eq. (2.15), we have obtained the critical value
of τ i.e. τ0 = 0.10544. Thus based on Lemma 2.2 and Theorem 2.5, the interior
equilibrium point E∗ becomes asymptotically stable for τ = 0 and τ = 0.065 < τ0,
that is, the population of prey-A, prey-B and the predator population have stable
dynamical behavior (see Figs.1 and 2). Moreover, when the time delay τ crosses the
critical value τ0 = 0.10544, E∗ losses its stability and a Hopf bifurcation occurs, i.e., a
family of periodic solutions bifurcations from E∗. Therefore, E∗ is destabilized when
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Figure 2. E∗ is locally asymptotically stable when τ = 0.065 <

τ0 = 0.10544. (A,B) phase-portraits in xyz-space and in xy plane,
(C) phase-portrait in txy-space, (D) time series evolution of species.
The initial value is (0.12, 0.54, 0.0024).

τ = 0.11 > τ0 and a stable limit cycle appeared beyond of τ0. Simulation results are
depicted in Figure 3, indicate a stable periodic solution which emerges around the
coexisting equilibrium point. According to Lemma 2.4, the transversality condition
is verified, i.e.[

d
(
Reλ(τ)

)
dτ

]−1

τ=τ0

≈ 0.0134942 > 0,

[
d
(
Reλ(τ)

)
dτ

]
τ=τ0

≈ 74.1055468 > 0,

and by the algorithm derived in previous section, we get

g20 ≈ −0.63006 + 0.5348i, g11 ≈ 0.0076 + 0.5261i,

g02 ≈ 0.6453 + 0.5174i, g21 ≈ −87437.69876 + 1492.66643i,

λ′(τ0) ≈ 57.96749− 30.58566i, C1(0) ≈ −43718.74485 + 745.99226i,

µ2 ≈ 754.19420 > 0, β2 ≈ −87437.48970 < 0,

T2 ≈ −15206.23002 < 0.
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Figure 3. Simulating solutions of system (1.2): E∗ is unstable when
τ = 0.11 which indicates that an stable periodic solution bifurcates
from E∗. (A,B) existence of periodic solutions, (C) time series evo-
lution of species, (D) phase-portrait in txy-space. The initial value is
(0.12, 0.54, 0.0024).

According to Theorem 3.1, we see that the Hopf bifurcation is supercritical. In addi-
tion, the numerical results imply that the bifurcated periodic solutions are orbitally
asymptotically stable and its period is decreasing, as β2 < 0 and T2 < 0.

5. CONCLUSION

In this article we have analyzed the dynamical behaviors of a three species
predator–prey model with time delay. It is shown that the time delay has great
impact on the dynamics of the system and makes the system more realistic. Usually
the dynamical system involving time delay can exhibit rich biological and dynamical
properties. It is observed that when the magnitude of delay increases, the system
dynamically becomes richer and leads to produce periodic solutions. In fact, this
work extensively study the effect of time delay around the interior equilibrium point
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of a predator-prey system consisting of three species which represent the population
densities of two prey and one predator species.

By analyzing the linearized system and related characteristic equation, some
necessary and sufficient conditions for asymptotic stability of the interior equilibrium
point and occurrence of Hopf bifurcation are proved. Based on the values of the se-
lected fixed parameters, we theoretically investigate the value of the time delay and
it has been shown that the existence of a time delay in a certain interval causes to
change the system stability and exhibits limit cycle oscillations. This implies that the
considered delayed system converges to a stable state when the delay parameter is
less than its critical value and a Hopf bifurcation occurs when the parameter τ passes
the critical value τ0. Furthermore, an explicit algorithm with sufficient criteria for
the stability, direction and other characterization of a Hopf bifurcation are derived
by means of normal form method and center manifold argument. Our theoretical
work as well as numerical simulations indicate that time delay plays a major role in
destabilization of stable equilibrium point and has a great impact on the nature of
the system dynamics.
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