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ABSTRACT. Practical stability properties of generalized proportional Caputo fractional delay dif-

ferential equations are presented and exponential practical stability is introduced and studied. This

type of stability on one hand is deeply connected with the used generalized proportional derivative

and on the other hand it is a generalization of classical practical stability. Three types of sufficient

conditions are obtained. Since the considered fractional derivative is a generalization of the Caputo

fractional derivative, the connection with sufficient conditions in the literature concerning Caputo

fractional differential equations is discussed. Some examples are given illustrate our theory.
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1. INTRODUCTION

Recently fractional differential equations were studied extensively due to their

applications in modeling in various fields of engineering and science (see, for example,

the monographs [1, 2, 3], and the cited therein references). In the literature there are

various types of fractional derivatives with different properties. The main common

property of fractional derivatives is connected with the memory which differs from

integer order derivatives. Recently ([4, 5]) generalized proportional integrals and

derivatives were introduced and applied to differential equations (see, for examples,

[6, 7, 8]). These integrals and derivatives generalize the classical Riemann-Liouville

and Caputo fractional integrals and derivatives.

In the qualitative study for nonlinear systems stability properties are important.

One of the approaches in studying stability is the application of Lyapunov functions.
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The presence of the fractional derivative in differential equations leads one to consider

an appropriate application of the derivative of Lyapunov functions (see, for example,

[9, 10, 11, 12]). LaSalle and Lefschetz [13] introduced the so called practical stabil-

ity which do not provide stability of the equilibrium point but it is connected with

its boundedness. This type of stability is studied for various types of differential

equations in the literature (see, for example, [14, 15]).

The main goal of this paper is the study some stability properties of generalized

proportional Caputo fractional differential equations. We define the exponential prac-

tical stability which has a deep connection with the considered fractional derivative.

Also, this type of stability is a generalization of the known and studied practical sta-

bility in the literature. To the best of our knowledge, this is the first paper presenting

practical stability properties of generalized proportional Caputo fractional differential

equations. Three types of sufficient conditions are obtained based on the application

of Lyapunov functions, their generalized proportional fractional derivatives, and com-

parison results. The connection of these results with the results in the literature for

Caputo fractional differential equations is discussed. Some examples are provided to

illustrate the application of the obtained sufficient conditions.

2. NOTES ON FRACTIONAL CALCULUS

In many applications in science and engineering, the fractional order q is often

less than 1, so we restrict q ∈ (0, 1) everywhere in the paper.

Let the function u : [a, b]→ R with a, b ∈ R, b ≤ ∞ (if b =∞ then the interval

is half open). Then the generalized proportional fractional integral is defined by (as

long as all intebgrals are well defined, see [4])

(aIq,ρu)(t) =
1

ρqΓ(q)

∫ t

a

e
ρ−1
ρ

(t−s) (t− s)q−1 u(s) ds, for t ∈ (a, b], q ≥ 0, ρ ∈ (0, 1],

and the generalized proportional Caputo fractional derivative is defined by (as long

as all integrals are well defined, see [4])

(CaDq,ρu)(t) =
1

ρ1−qΓ(1− α)

∫ t

a

e
ρ−1
ρ

(t−s) (t− s)−q (D1,ρu)(s) ds,

for t ∈ (a, b], q ∈ (0, 1), ρ ∈ (0, 1],

(2.1)

where (D1,ρu)(t) = (1− ρ)u(t) + ρu′(t).

Remark 2.1. If ρ = 1, then the generalized Caputo proportional fractional derivative

(2.1) is reduced to the classical Caputo fractional derivative of order q ∈ (0, 1) :
C
aDqu(t).

Remark 2.2. The generalized proportional Caputo fractional derivative of a con-

stant is not zero for ρ ∈ (0, 1) and q ∈ (0, 1) (compare with the Caputo fractional

derivative).
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Remark 2.3. The relation

(CaDq,ρe
ρ−1
ρ

(.))(t) = 0 for t > a

is known from [4, Remark 3.2].

Lemma 2.4. (Proposition 5.2[4]) For ρ ∈ (0, 1] and q ∈ (0, 1) we have

(CaDq,ρ(e
ρ−1
ρ
t(t− a)β−1)(t) =

ρqΓ(β)

Γ(β − q)
e
ρ−1
ρ
t(t− a)β−1−q, β > 0.

We will use the explicit form of the solution of the initial value problem for the

scalar linear generalized proportional Caputo fractional differential equation which is

given in Example 5.7 [4] and which is (with necessary slight corrections) given in the

following result.

Lemma 2.5. The solution of the scalar linear generalized proportional Caputo frac-

tional initial value problem

(CaDq,ρu)(t) = λu(t), u(a) = u0, q ∈ (0, 1), ρ ∈ (0, 1]

has a solution

u(t) = u0e
ρ−1
ρ

(t−a)Eq(λ(
t− a
ρ

)q),

where Eq(t) is the Mittag-Leffler function of one parameter.

Lemma 2.6. ([6]) Let the function u ∈ C1([a, b],R) with a, b ∈ R, b ≤ ∞ (if b =∞
then the interval is half open), and q ∈ (0, 1), ρ ∈ (0, 1] be two reals. Then,

(CaDq,ρu2)(t) ≤ 2u(t)(CaDq,ρu)(t), t ∈ (a, b].

We recall the following result for generalized proportional Caputo fractional

derivatives of continuous functions.

Lemma 2.7. (Lemma 5 [7]) Let u ∈ C([t0, T ],R), T > t0, and suppose that there

exist t∗ ∈ (t0, T ] such that u(t∗) = 0, and u(t) < 0, for t0 ≤ t < t∗. Then, if

the generalized proportional Caputo fractional derivative of u exists at t∗, then the

inequality ( c
t0
Dq,ρu)t|t=t∗ > 0 holds.

The generalized proportional Caputo fractional derivatives for scalar functions

could be easily generalized to the vector case by taking generalized proportional

Caputo fractional derivatives with the same fractional order for all components.
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3. STATEMENT OF THE PROBLEM

Consider the initial value problem (IVP) for a nonlinear system of generalized

proportional Caputo fractional differential equations (FrDE)

( C
t0
Dq,ρt y)(t) = f(t, y(t)), for t > t0,

y(t0) = y0,
(3.1)

where y0 ∈ Rn, t0 ≥ 0 is the initial time, ( C
t0
Dq,ρ
t y)(t) denotes the generalized propor-

tional Caputo fractional derivative for the state y, f : [t0,∞) × Rn → Rn, ρ ∈ (0, 1]

and q ∈ (0, 1).

We introduce the following assumption:

A1. The function f belongs to C([t0,∞)×Rn,Rn), f(t, 0) = 0 for t ≥ t0 and for any

y0 ∈ Rn, the IVP for the FrDE (3.1) has a solution y(t; t0, y0).

Remark 3.1. We note that the change of the initial time t0 leads to a change of

FrDE(3.1) and not only on the initial condition (which is different to the case of

ordinary differential equations).

We will illustrate Remark 3.1 with an Example.

Example 3.2. Consider the scalar linear generalized proportional Caputo fractional

differential equation

(CaDq,ρu)(t) = λu(t), q ∈ (0, 1), ρ ∈ (0, 1],

where λ ∈ R is a given constant.

According to Lemma 2.5 it has a solution

u(t) = u(a)e
ρ−1
ρ

(t−a)Eq(λ(
t− a
ρ

)q).

It is obvious that the change of the lower limit of the proportional fractional derivative

leads to a change of the solution.

Remark 3.3. According to Remark 3.1 and Example 3.2 the meaning of uniform

stability properties in fractional differential equations is changing and we will not

consider and study these types of stability properties (which is different in the case

of integer order differential equations).

Now we will define practical stability for the nonlinear Caputo FrDDE following

the ideas for practical stability for ordinary differential equations ([13]).

Definition 3.4. The zero solution of FrDE (3.1) with zero initial function is called

- practically stable w.r.t. (λ,A), if for any initial value y0 ∈ Rn : ‖y0‖ < λ, the

inequality ‖y(t; t0, y0)‖ < A for t ≥ t0, holds, where the real numbers (λ,A)

with 0 < λ < A are given;



EXPONENTIAL PRACTICAL STABILITY OF GENERALIZED 93

- exponentially practically stable w.r.t. (λ,A), if for any initial value y0 ∈ Rn :

‖y0‖ < λ, the inequality ‖y(t; t0, y0)‖ < Ae
ρ−1
ρ

(t−t0) for t ≥ t0, holds, where the

real numbers (λ,A) with 0 < λ < A are given.

Here, y(t; t0, y0) is a solution of (3.1).

Remark 3.5. Note that, from exponential practical stability of the zero solution of

(3.1), we have the practical stability but the opposite is not true.

Remark 3.6. Note that, from stability properties of the zero solution of (3.1), we

have practical stability but the opposite is not true.

Example 3.7. According to Remark 2.3 the function u(t) = u0e
ρ−1
ρ

(t−t0), u0 ∈ R is

the unique solution of the IVP for scalar FrDE (3.1) with n = 1, f(t, x) ≡ 0, y0 = u0.

Obviously, it is stable, it is exponentially practical stable for any couple (λ, λ), λ > 0

and it is practically stable.

Example 3.8. From Eq. (2.1) we get

(C0 Dq,ρ1)(t) =
(1− ρ)

ρ1−qΓ(1− q)

∫ t

0

e
ρ−1
ρ

(t−s) (t− s)−q ds

=
(1− ρ)

ρ1−qΓ(1− q)
(

ρ

1− ρ
)1−q

(
Γ(1− q)− Γ(1− q, 1− ρ

ρ
t)
)

=
(1− ρ)q

Γ(1− q)

(
Γ(1− q)− Γ(1− q, 1− ρ

ρ
t)
)

=
(1− ρ)q

Γ(1− q)
γ(1− q, 1− ρ

ρ
t)

where γ(., .) is the lower incomplete gamma function.

Therefore, the constant function u(t) = K ∈ R is a solution of the FrDE (3.1)

with n = 1, t0 = 0, f(t, x) = (1−ρ)q

Γ(1−q)γ(1− q, 1−ρ
ρ
t)x, x ∈ R, y0 = u(0) = K. Obviously,

it is stable, it is not exponentially practically stable, and it is practically stable.

Examples 3.7 and 3.8 prove the necessity of studying exponential practical stabil-

ity independent of stability of generalized proportional Caputo fractional differential

equations.

We will use comparison results for the IVP for the scalar generalized proportional

Caputo fractional differential equation (SFrDE)

(3.2) c
t0
Dq,ρu(t) = g (t, u) , for t > t0, u(t0) = u0,

where u0 ∈ R and g : [t0,∞)× R→ R.

We denote the solution of the IVP for the scalar SFrDE (3.2) by u(t; t0, u0). In

the case of non-uniqueness of the solution we will assume the existence of a maximal

one.

We introduce the assumption:
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A2. The function g ∈ C([t0,∞)×R,R), g(t, 0) ≡ 0, and for any u0 ∈ R, the IVP for

the SFrDE (3.2) has a solution u(t; t0, u0).

Remark 3.9. Practical stability properties of the SIVP (3.2) is defined similar to

Definition 3.4.

Remark 3.10. We will study the practical stability of (3.1) or (3.2) in the case when

the right side part depends on the unknown function. In the case f(t, y) ≡ F (t) or

g(t, u) ≡ G(t), then the equation could not have a zero solution.

In this paper we study the connection between the practical stability properties

of the zero solution of the system of FrDE (3.1) and the practical stability of the zero

solution of the SFrDE (3.2) by applying an appropriate Lyapunov functions and their

generalized proportional Caputo fractional derivatives.

We introduce the class Λ of Lyapunov-like functions which will be used to inves-

tigate the practical stability of the system FrDE (3.1).

Definition 3.11. Let I ⊂ R+ and D ⊂ Rn. We say that the function V : I×D → R+

belongs to the class Λ(I,D) if V is continuous and locally Lipschitzian with respect

to its second argument in I ×D.

We will apply the following comparison results:

Lemma 3.12. (Lemma 6[7]) Assume the following conditions are satisfied:

1. The function x̃(.) = y(.; t0, y0) ∈ ∆, ∆ ⊂ Rn, 0 ∈ ∆, is a solution of IVP for

FrDE (3.1) defined for t ∈ [t0, T ], T > t0, y0 ∈ ∆.

2. The function g ∈ C([t0, T ]× R+,R).

3. The function V ∈ Λ([t0, T ],∆) and, for any point t ∈ [t0, T ] the inequality

(3.3) ( c
t0
Dq,ρV (., x̃(.))(t) ≤ g(t, V (t, x̃(t)))

holds.

4. The function u∗(t) = u(t; t0, u0) is the maximal solution of IVP for SFrDE (3.2)

on [t0, T ].

Then, the inequality

V (t0, y0) ≤ u0

implies

V (t, x̃(t)) ≤ u∗(t), for t ∈ [t0, T ].

Corollary 3.13. Let Condition 1 of Lemma 3.12 be satisfied and the function V ∈
Λ([t0, T ],∆) be such that, for any point t ∈ [t0, T ] the inequality

(3.4) ( c
t0
Dq,ρV (., x̃(.)))(t) ≤ 0
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holds.

Then, for t ∈ [t0, T ], the inequality

V (t, x̃(t)) ≤ V (t0, y0)e
ρ−1
ρ

(t−t0)

holds.

Proof. The proof of Corollary 3.13 follows from Lemma 3.12 and the fact that the

corresponding IVP for the SFrDE (3.2) with g(t, u) ≡ 0, u0 = V (t0, y0) according to

Remark 2.3 has a unique solution u(t) = V (t0, y0)e
ρ−1
ρ

(t−t0) for t ∈ [t0, T ].

Remark 3.14. The result of Lemma 3.12 and Corollary 3.13 are also true on the

half line.

4. Practical stability results.

We will give sufficient conditions for exponential practical stability and practical

stability of the zero solution of FrDE (3.1) applying the generalized proportional

Caputo fractional derivative of the Lyapunov function.

Define the following sets:

K = {a ∈ C(R+,R+) : a is strictly increasing and a(0) = 0};

M = {a ∈ K : there exists a function b ∈ K : a(Ce
ρ−1
ρ
s) ≤ b(C)e

ρ−1
ρ
s

for any constant C > 0 and s ≥ 0};

SA = {x ∈ Rn : ‖x‖ ≤ A}, A > 0.

We will prove sufficient conditions for the exponential practical stability of FrDE

(3.1) depending on the exponential practical stability of the SFrDE (3.2) .

Theorem 4.1. Let the following conditions be satisfied:

1. The conditions (A1) and (A2) are satisfied for the given t0.

2. There exists a function V ∈ Λ([t0,∞),Rn) with V (t, 0) = 0 such that

(i) the inequalities

α1(‖x‖) ≤ V (t, x) for t ≥ t0, x ∈ Rn,

V (t, x) ≤ α2(‖x‖) for t ≥ t0, x ∈ Sλ,

hold, where a1 ∈M (with a function b ∈ K), α2 ∈ K, i = 1, 2, and λ > 0 is

a given number;

(ii) there exists a constant α > b(a2(λ)) > 0 such that if the solution y(t) of

(3.1) satisfies y(t) ∈ Sα on an interval [t0, τ ] then the inequality

(4.1) ( C
t0
Dq,ρV (., y(.)))(t) ≤ g(t, V (t, y(t))), t ∈ (t0, τ ]

holds.
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3. The zero solution of the SFrDE (3.2) is exponentially practically stable w.r.t.

(α2(λ), A), where A ∈ [α2(λ), b−1(α)] is a given number.

Then, the zero solution of FrDE (3.1) is exponentially practically stable w.r.t. (λ, b(A)).

Proof. From condition 3 of Theorem 4.1, for u0 ∈ R with |u0| < α2(λ), we have

(4.2) |u(t; t0, u0)| < Ae
ρ−1
ρ

(t−t0), for t ≥ t0,

where u(t; t0, u0) is a solution of FrDE (3.2).

Let y(t) = y(t; t0, y0) be any solution of FrDE (3.1) with ||y0|| < λ. From condi-

tion 2(i) it follows that α2(λ) ≥ α1(λ). Thus, A ≥ α1(λ), or a−1
1 (A) ≥ λ. Therefore,

||y0|| < a−1
1 (A) ≤ b(A).

We will prove that

(4.3) ‖y (t)‖ < b(A)e
ρ−1
ρ

(t−t0) for t ≥ t0.

Assume the opposite, i.e., there exists a point T > t0 such that

||y(s)|| < b(A)e
ρ−1
ρ

(s−t0), s ∈ [t0, T ), ||y(T )|| = b(A)e
ρ−1
ρ

(T−t0).

From the choice of the point T we have that ||y(t)|| ≤ b(A) for t ∈ [t0, T ], i.e.,

y(t) ∈ Sb(A) ⊂ Sα on [t0, T ]. From condition 2(ii) with τ = T the inequality

(4.4) ( C
t0
Dq,ρV (., y(.)))(t) ≤ g(t, V (t, y(t))) t ∈ (t0, T ]

holds.

Let ũ0 = V (t0, y0). Consider the maximal solution u∗(t) = u(t; t0, ũ0) of SFrDE

(3.2). Thus, the conditions of Lemma 3.12 are satisfied with ∆ = Sb(A). According

to Lemma 3.12, the inequality

(4.5) V (t, y (t)) ≤ u∗(t) for t ∈ [t0, T ]

holds.

From the choice of ũ0 and condition 2(i) it follows that |ũ0| ≤ a2(||y0||) < α2(λ),

and therefore the inequality (4.2) holds for u∗(t).

Then, from condition 2 (i) and inequalities (4.2), (4.5) we obtain

α1(‖y(T )‖) ≤ V (T, y (T )) ≤ u∗(T ) < Ae
ρ−1
ρ

(t−t0),

which implies that

b(A)e
ρ−1
ρ

(T−t0) = ‖y (T )‖ < a−1
1 (Ae

ρ−1
ρ

(t−t0)) ≤ b(A)e
ρ−1
ρ

(t−t0).

The obtained contradiction proves the inequality (4.3). Therefore, according to Def-

inition 3.4, the zero solution is exponentially practically stable w.r.t. (λ, b(A)).

Corollary 4.2. Let the conditions 1,2 of Theorem 4.1 be satisfied with g(t, u) ≡ 0.

Then the zero solution of FrDE (3.1) is exponentially practically stable.
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The proof of Corollary 4.2 follows from Example 3.7 and the exponential practical

stability of the zero solution of SFrDE (3.2) with g(t, u) ≡ 0.

We will prove sufficient conditions for the practical stability of FrDE (3.1) de-

pending on the practical stability of the SFrDE (3.2) .

Theorem 4.3. Let the following conditions be satisfied:

1. The conditions (A1) and (A2) are satisfied for the given t0.

2. There exists a function V ∈ Λ([t0,∞),Rn) with V (t, 0) = 0 such that

(i) the inequalities

α1(‖x‖) ≤ V (t, x) for t ≥ t0, x ∈ Rn,

V (t, x) ≤ α2(‖x‖) for t ≥ t0, x ∈ Sλ,

hold, where a1, α2 ∈ K, i = 1, 2, and λ > 0 is a given number;

(ii) there exists a constant A ≥ α−1
1 (α2(λ)) > 0 such that if the solution y(t) of

(3.1) satisfies y(t) ∈ SA on an interval [t0, τ ], τ > t0, then the inequality

(4.6) ( C
t0
Dq,ρV (., y(.)))(t) ≤ g(t, V (t, y(t))), for t ∈ (t0, τ ]

holds.

3. The zero solution of the SFrDE (3.2) is practically stable w.r.t. (α2(λ), α1(A)).

Then, the zero solution of FrDE (3.1) is practically stable w.r.t. (λ,A).

Proof. From condition 3 of Theorem 4.3, for u0 ∈ R with |u0| < α2(λ), we have

(4.7) |u(t; t0, u0)| < α1(A), for t ≥ t0,

where u(t; t0, u0) is a solution of FrDE (3.2).

Note from condition 2(i) we have that α1(λ) < α2(λ) and λ < α−1
1 (λ2(λ)) ≤ A.

Let y(t) = y(t; t0, y0) be any solution of FrDE (3.1) with ||y0|| < λ. Thus,

||y0|| < A.

We will prove that

(4.8) ‖y (t)‖ < A for t ≥ t0.

Assume the opposite, i.e., there exists a point T > t0 such that

||y(s)|| < A, s ∈ [t0, T ), ||y(T )|| = A.

From the choice of the point T it follows that ||y(t)|| ≤ A for t ∈ [t0, T ], i.e., y(t) ∈ SA
on [t0, T ] and according to condition 2(ii) with τ = T the inequality

(4.9) ( C
t0
Dq,ρV (., y(.)))(t) ≤ g(t, V (t, y(t))) t ∈ (t0, T ]

holds.
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Let ũ0 = V (t0, y0). Consider the maximal solution u∗(t) = u(t; t0, ũ0) of SFrDE

(3.2). Thus, the conditions of Lemma 3.12 are satisfied with ∆ = SA. According to

Lemma 3.12, the inequality

(4.10) V (t, y (t)) ≤ u∗(t) for t ∈ [t0, T ]

holds.

From the choice of ũ0 and condition 2(i) we have |ũ0| = V (t0, y0) ≤ α2(||y0||) <
α2(λ), and therefore the inequality (4.7) holds for u∗(t).

Then, from condition 2 (i) and inequalities (4.7), (4.10) we obtain

α1(‖y(T )‖) ≤ V (T, y (T )) ≤ u∗(T ) < α1(A),

which implies that

A = ‖y (T )‖ < A.

The obtained contradiction proves the inequality (4.8). Therefore, according to Def-

inition 3.4, the zero solution is exponentially practically stable w.r.t. (λ,A).

According to Corollary 4.2 in the case when the generalized proportional Caputo

fractional derivative of Lyapunov function is non-positive we obtain the exponential

practical stability of the zero solution of (3.1).

We could obtain sufficient conditions for practical stability for non-positive gener-

alized proportional Caputo fractional derivative of Lyapunov function of any solution

without the restriction of the solution being on a ball.

Theorem 4.4. Let condition (A1) be satisfied and there exists a continuously differ-

entiable Lyapunov function V ∈ Λ([t0,∞),Rn) with V (t, 0) = 0, such that

(i) the inequalities

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖), for t ≥ t0, x ∈ Rn,

hold, where αi ∈ K, i = 1, 2, and λ > 0 is a given number.

(ii) for any t > t0 and for any solution y(t) = y(t; t0, y0) of (3.1) such that ||y0|| < λ

the inequality

(Ct0D
q,ρ
t V (., y(.)))(t) ≤ 0,

holds.

Then, the zero solution of (3.1) is practically stable w.r.t. (λ, α−1
1 (α2(λ))).

Proof. Let y(t) = y(t; t0, x0) be a solution of FrDE (3.1) with ||x0|| < λ. Define the

function

v(t) = sup
s∈[t0,t]

V (s, y(s)), t ≥ t0.
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Obviously, the function v is nondecreasing. We will prove that

(4.11) v(t) = v(t0) for t ≥ t0.

Assume that (4.11) is not true, i.e., there exists a point T > t0 such that v(t) =

v(t0), for t ∈ [t0, T ], but v(t) > v(t0) and v is strictly increasing for t ∈ (T, T + ε],

ε > 0 is a small enough number. Then v(s) = v(t0) ≥ V (s, y(s)), for s ∈ [t0, T ], and

v(t) = V (t, y(t)), for t ∈ (T, T + ε].

Then, for any fixed t ∈ (T, T + ε] from the inequality v(s) ≥ V (s, y(s)) for

s ∈ [t0, t] we get

(Ct0D
q,ρv)(t) =

1

ρ1−qΓ(1− q)

∫ t

t0

e
ρ−1
ρ

(t−s) (t− s)−q (Dρv)(s) ds

=
1

ρ1−qΓ(1− q)

(
(1− ρ)

∫ t

t0

e
ρ−1
ρ

(t−s) (t− s)−q v(s) ds

+ ρ

∫ t

t0

e
ρ−1
ρ

(t−s) (t− s)−q (v′(s) ds
)

=
1

ρ1−qΓ(1− q)

(
(1− ρ)

∫ t

t0

e
ρ−1
ρ

(t−s)V (s, y(s))

(t− s)−q
ds

+ ρ

∫ t

t0

e
ρ−1
ρ

(t−s) v′(s)

(t− s)−q
ds
)

(4.12)

where (Dρu)(t) = (1− ρ)u(t) + ρu′(t).

Define the function g(s) := v(s)−V (s,y(s))
(t−s)q , s ∈ [t0, t). Note g(t0) = 0 and g(s) > 0

because v(s) ≥ V (s, y(s)) for s ∈ [t0, t]. Thus, integrating by parts we get

t∫
t0

e
ρ−1
ρ

(t−s) v′(s)

(t− s)q
ds =

t∫
t0

e
ρ−1
ρ

(t−s)v
′(s)− V ′(s, y(s))

(t− s)q
ds+

t∫
t0

e
ρ−1
ρ

(t−s)V
′(s, y(s))

(t− s)q
ds

=

t∫
t0

e
ρ−1
ρ

(t−s)
[
g′(s)− qv(s)− V (s, y(s))

(t− s)q+1

]
ds+

t∫
t0

e
ρ−1
ρ

(t−s)V
′(s, y(s))

(t− s)q
ds

=

t∫
t0

e
ρ−1
ρ

(t−s)g′(s)ds− q
t∫

t0

e
ρ−1
ρ

(t−s)v(s)− V (s, y(s))

(t− s)q+1
ds+

t∫
t0

e
ρ−1
ρ

(t−s)V
′(s, y(s))

(t− s)q
ds

≤ e
ρ−1
ρ

(t−s)g(s)|s=ts=t0
− 1− ρ

ρ

t∫
t0

e
ρ−1
ρ

(t−s)g(s)ds+

t∫
t0

e
ρ−1
ρ

(t−s)V
′(s, y(s))

(t− s)q
ds

≤ lim
s→t−

e
ρ−1
ρ

(t−s)g(s) +

t∫
t0

e
ρ−1
ρ

(t−s)V
′(s, y(s))

(t− s)q
ds.

(4.13)
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Use L’Hôpital’s rule to obtain

lim
s→t−

e
ρ−1
ρ

(t−s)g(s) = lim
s→t−

e
ρ−1
ρ

(t−s)h(s)

(t− s)q

= lim
s→t−

e
ρ−1
ρ

(t−s)h′(s) + 1−ρ
ρ
e
ρ−1
ρ

(t−s)h(s)

q(t− s)q−1
= 0,

(4.14)

where h(s) = v(s)− V (s, y(s)), s ∈ [t0, t].

From (4.12), (4.13) and (4.14) we obtain

(4.15) (Ct0D
q,ρv)(t) ≤ (Ct0D

q,ρV (., y(.)))(t) ≤ 0.

According to the assumption, we get v′(t) = 0, for t ∈ [t0, T ], and v′(t) > 0, for

t ∈ (T, T + ε]. Then, for any t ∈ (T, T + ε], we obtain (Dρv)(t) = (1− ρ)v(t) + ρv′(t)

c
t0
Dq,ρv(t) =

1

ρ1−qΓ(1− q)

∫ t

t0

e
ρ−1
ρ

(t−s) (t− s)−q (Dρv)(s) ds

=
1

ρ1−qΓ(1− q)

(∫ T

t0

e
ρ−1
ρ

(t−s) (1− ρ)v(t0)

(t− s)q
ds

+

∫ t

T

e
ρ−1
ρ

(t−s)

(t− s)q
((1− ρ)v(s) + ρv′(s)) ds

)
>

1

ρ1−qΓ(1− q)

(∫ t

t0

e
ρ−1
ρ

(t−s) (1− ρ)v(t0)

(t− s)q
ds+

∫ t

T

e
ρ−1
ρ

(t−s)

(t− s)q
ρv′(s) ds

)
≥ 1

ρ1−qΓ(1− q)

∫ t

T

e
ρ−1
ρ

(t−s)

(t− s)q
ρv′(s) ds > 0.

(4.16)

Inequality (4.16) contradicts inequality (4.15). The contradiction proves the inequal-

ity (4.11).

From condition (i), we get

α1(‖y(t)‖) ≤ V (t, y(t)) ≤ v(t) = v(t0) = V (t0, y0) ≤ α2(||y0||) ≤ α2(λ).

In the case when the Lyapunov function is equal to the norm in Rn we obtain

the following sufficient conditions for exponential practical stability:

Theorem 4.5. Let the condition (A1) be satisfied and there exists a constant λ > 0

such that for any solution of (3.1) with y(t) ∈ Sλ on an interval [t0, τ ] the inequality

(4.17) ( C
t0
Dq,ρ||y(.)||)(t) ≤ 0, t ∈ [t0, τ ]

holds.

Then, the zero solution of FrDE (3.1) is exponentially practically stable w.r.t.

(λ, λ).
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Proof. Let y(t) = y(t; t0, y0) be any solution of FrDE (3.1) with ||y0|| < λ, i.e., y0 ∈ Sλ.

We will prove that

(4.18) ‖y (t)‖ < λe
ρ−1
ρ

(t−t0) for t ≥ t0.

Assume the opposite, i.e., there exists a point T > t0 such that

||y(s)|| < λe
ρ−1
ρ

(s−t0), s ∈ [t0, T ), ||y(T )|| = λe
ρ−1
ρ

(T−t0).

Thus, the function h(s) = ||y(s)|| ∈ Sλ, s ∈ [t0, T ] and according to condition 2 the

inequality (4.1) holds for τ = T .

Consider the function v(t) = ||y(t)|| − λe
ρ−1
ρ

(t−t0) defined on [t0, T ], v(t) < 0 on

[t0, t) and v(T ) = 0. According to Lemma 2.7 the inequality

( c
t0
Dq,ρv(.)(t)|t=T > 0

holds.

According to Remark 2.3 we have ( c
t0
Dq,ρv(.))(t)|t=T = ( c

t0
Dq,ρ||y(.)||)(t)|t=T > 0

which contradicts (4.17) for t = T = τ . The obtained contradiction proves the claim.

5. Applications

Example 5.1. Consider the following system of fractional differential equations with

generalized proportional Caputo type derivative

(C0 Dq,ρy1)(t) = g1(t)y1 − g2(t)y2,

(C0 Dq,ρy)(t) = g1(t)y2 + g2(t)y1, for t > 0, q ∈ (0, 1), ρ ∈ (0, 1),
(5.1)

with initial conditions

y1(0) = y1,0, y2(0) = y2,0,

where y1,0, y2,0 ∈ R, g1(t) = 0.5 (1−ρ)q

Γ(1−q)γ(1− q, 1−ρ
ρ
t) for t ≥ 0 and g2 ∈ C(R+,R) is an

arbitrary function.

Note (5.1) is equivalent to (3.1) with y = (y1, y2), f = (f1, f2) where f1(t, y) =

g1(t)y1 − g2(t)y2 and f2(t, y) = g1(t)y2 + g2(t)y1.

Consider V (t, y) = y2
1 + y2

2 for t ∈ R+, y = (y1, y2) with α1(s) = α2(s) = s2 ∈ K
and A = λ be any positive number.

Let y(t) = (y1(t), y2(t)), t ≥ 0, be any solution of FrDE(5.1). Apply Lemma 2.6

and obtain

(C0 Dq,ρV (., y(.))(t) = (C0 Dq,ρy2
1(.))(t) + (C0 Dq,ρy2

2(.))(t)

≤ 2y1(t)(C0 Dq,ρy1(.))(t) + 2y2(t)(C0 Dq,ρy2(.))(t)

= 2g1(t)V (t, y(t)) =
(1− ρ)q

Γ(1− q)
γ(1− q, 1− ρ

ρ
t)V (t, y(t)).

(5.2)
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Figure 1. Graph of the function g(t) for

various values of ρ ∈ (0, 1] and

q ∈ (0, 1).

Consider the SFrDE (3.2) with t0 = 0, g(t, u) = (1−ρ)q

Γ(1−q)γ(1 − q, 1−ρ
ρ
t)u, u ∈ R, u0 =

u(0) = K whose solution is the constant function u(t) ≡ K, (see Example 3.8) and

it is practically stable w.r.t. (λ2, λ2). According to Theorem 4.3 the zero solution of

(5.1) is practically stable w.r.t. (λ, λ).

Since the function g(t) ≥ 0, t ≥ 0 (see Figure 1 for various values of ρ and q),

we are not able to apply Theorem 4.4 to conclude the exponential practical stability

of the zero solution of (5.1).

Example 5.2. Consider the following system of nonlinear generalized proportional

Caputo fractional differential equations

(C0 D
q,ρy1)(t) = (ey1(t) − e) sin(y1(t))− g(t)y2(t),

(C0 D
q,ρy2)(t) = g(t)y1(t), for t > 0, q ∈ (0, 1), ρ ∈ (0, 1),

(5.3)

with initial conditions

y1(0) = y1,0, y2(0) = y2,0,

where y1,0, y2,0 ∈ R, g ∈ C([0,∞),R) is an arbitrary function.

Consider V (t, y) = y2
1 + y2

2 for t ∈ R+, y = (y1, y2) with α1(s) = α2(s) =

s2, α1, α2 ∈ K. Also, α1(Ce
ρ−1
ρ
s) = C2e2 ρ−1

ρ
s ≤ C2e

ρ−1
ρ
s, i.e. a1 ∈ M with a1(s) =

b(s) = s2, i.e. condition 2(i) of Theorem 4.1 is satisfied.

Let y(t) = (y1(t), y2(t)), t ≥ 0, be any solution of FrDE(5.3) such that ||y0|| < 1,

Because of the continuity of the solution y(t) there exists a number τ > 0 such that

||y(t)|| < 1, t ∈ [0, τ ]. Then |y1(t)| ≤ 1 and ey1(t) ≤ e for t ∈ [0, τ ]. Also, u sin(u) ≥ 0

for u ∈ [−1, 1]. Thus, by Lemma 2.6 we obtain

(C0 D
q,ρV (., y(.)))(t) ≤ 2y1(t)(C0 D

q,ρy1(.))(t) + 2y2(t)(C0 D
q,ρy2(.))(t)

= 2(ey1(t) − e)y1(t) sin(y1(t))− 2g(t)y1(t)y2(t) + 2y2(t)g(t)y1(t)

≤ 0, t ∈ [0, τ ].

(5.4)

Therefore, condition 2(ii) of Theorem 4.1 is satisfied with λ = 1.

According to Corollary 4.2 the zero solution of FrDE (5.3) is exponentially prac-

tically stable w.r.t. (1, 1).
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