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ABSTRACT. In this paper we first observe that the classical Meir-Keeler fixed point theorem

admits a full extension to complete T1 quasi-metric spaces. Related to this fact we show that the

key example of the paper “On the MeirKeeler theorem in quasi-metric spaces” (J. Fixed Theory Appl.

23:37 (2021)) is not correct. We present a quasi-metric version of a fixed point theorem due to B.

Samet, C. Vetro and H. Yazidi, that involves a Meir-Keeler type contraction and, finally, connections

between our quasi-metric version of the Meir-Keeler theorem and discrete disperse dynamical systems

(D3-systems in short) are discussed.
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1. Introduction and preliminaries

We start by reminding some notions and properties which will be essential through-

out this paper. Our basic reference for quasi-metric spaces is [3].

Let us recall that a quasi-metric on a set X is a function d from X × X to R+

(the set of non-negative real numbers) such that for every x, y, z ∈ X the following

conditions are fulfilled:

(qm1) d(x, y) = d(y, x) = 0 ⇔ x = y;

(qm2) d(x, z) ≤ d(x, y) + d(y, z).

By a quasi-metric space we mean a pair (X, d) where X is a set and d is a

quasi-metric on X.
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Any quasi-metric d on a set X induces a T0 topology τd on X which has as a

base the family of open balls {Bd(x, ε) : x ∈ X, ε > 0}, where Bd(x, ε) = {y ∈ X :

d(x, y) < ε} for all x ∈ X and ε > 0.

A quasi-metric space (X, d) is said to be a T1 quasi-metric space provided that τd

is a T1 topology on X. Consequently, a quasi-metric space (X, d) is a T1 quasi-metric

space if and only if the following condition holds: d(x, y) = 0 ⇔ x = y.

According to [5] a sequence {xn} in a quasi-metric space (X, d) is called a Cauchy

sequence if for each ε > 0 there is a natural number nε such that d(xn, xm) whenever

n,m ≥ nε, and (X, d) is called complete (bicomplete in the classical terminology) if

for each Cauchy sequence {xn} in (X, d) there is an x ∈ X such that d(x, xn) → 0

and d(xn, x) → 0 as n → ∞.

There are abundant examples of complete quasi-metric spaces in the literature

(see e.g. [3, 8]).

Remark 1. It is well known, and easy to see, that given a quasi-metric d on a set

X, the function ds defined on X ×X by ds(x, y) = max{d(x, y), d(y, x)}, is a metric

on X. Thus, a sequence in a quasi-metric space (X, d) is a Cauchy sequence if and

only if it is a Cauchy sequence in (X, ds), and, hence, a quasi-metric space (X, d) is

complete if and only if the metric space (X, ds) is complete.

The problem of extending the celebrated Meir-Keeler fixed point theorem to

quasi-metric spaces has been recently discussed by Rachid, Mitrović, Parvaneh and

Bagheri [5]. This problem was previously studied in [1] for T1 quasi-metric spaces

and in [8] for the general case. In particular, it was given in [8] an easy example of

a Meir-Keeler map on a complete non-T1 quasi-metric space that has no fixed points

and also was obtained a fixed point theorem from which we immediately deduce

that every Meir-Keeler map on a complete T1 quasi-metric space has a unique fixed

point (see Corollary 1 below). Related to this result we shall show that both the

key example of [1] and a natural modification of it are not valid. We shall extend

to the quasi-metric framework a fixed point theorem obtained by Samet, Vetro and

Yazidi in [12], which involves a Meir-Keeler type contraction and, finally, connections

between our quasi-metric version of the Meir-Keeler theorem and discrete disperse

dynamical systems (D3-systems in short) will be discussed.

2. The Meir-Keeler fixed point theorem in quasi-metric spaces

Meir and Keeler obtained in [4] their renowned fixed point theorem which is

established in the next.

Theorem 1 ( [4]). Let T be a self map of a complete metric space (X, d). If for each

ε > 0 there exists δ > 0 such that for any x, y ∈ X,



QUASI-METRIC EXTENSION OF THE MEIR-KEELER FIXED POINT THEOREM. . . 197

ε ≤ d(x, y) < ε+ δ ⇒ d(Tx, Ty) < ε,

then T has a unique fixed point.

Theorem 1 suggests the following concept.

Definition 1. A self map T of a quasi-metric space (X, d) is called a Meir-Keeler

map on (X, d) if for each ε > 0 there exists δ > 0 such that for any x, y ∈ X,

ε ≤ d(x, y) < ε+ δ ⇒ d(Tx, Ty) < ε.

As we indicated above, it was given in [8, page 2] an easy example of a Meir-

Keeler map on a complete non-T1 quasi-metric space that has no fixed points. Here

we reproduce it for the sake of completeness.

Example 1 ( [8]). Let (X, d) be the complete quasi-metric space such that X =

{0, 1}, and d(0, 0) = d(1, 1) = d(0, 1) = 0, d(1, 0) = 1. Define T : X → X by T0 = 1

and T1 = 0. Now, given ε > 0 choose δ = ε and let x, y ∈ X such that ε ≤ d(x, y) <

2ε. Then x = 1, y = 0. Therefore d(Tx, Ty) = d(T1, T0) = d(0, 1) = 0 < ε, so T is a

Meir-Keeler map on (X, d).

It is well known that every quasi-metric d on a set X induces a partial order ≤d

on X (the so-called specialization order) defined by

x ≤d y ⇔ d(x, y) = 0.

The specialization order will play a central role in the last section of this paper.

Notice that a self map T of a quasi-metric space (X, d) is ≤d-increasing if and

only if d(Tx, Ty) = 0 whenever d(x, y) = 0 (see [8, page 2]).

Thus, the fact that the self map of Example 1 is not ≤d-increasing, suggests the

following notion.

Definition 2 ( [8]). A Meir-Keeler map on a quasi-metric space (X, d) is said to be

a d-Meir-Keeler map provided that it is ≤d-increasing.

Then, it was proved in [8, Theorem 1] the following result.

Theorem 2 ( [8]). Every d-Meir-Keeler map on a complete quasi-metric space (X, d)

has a unique fixed point.

Corollary 1. Every Meir-Keeler map on a complete T1 quasi-metric space has a

unique fixed point.
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Proof. Let T be a Meir-Keeler map on a complete T1 quasi-metric space (X, d). Let

x, y ∈ X such that d(x, y) = 0. Then x = y, and, hence, d(Tx, Ty) = d(Tx, Tx) = 0.

We deduce that T is a d-Meir Keeler map on (X, d). Theorem 2 concludes the proof.

Rachid, Mitrović, Parvaneh and Bagheri asserted in [5] that the Meir-Keeler fixed

point theorem can not be extended to the setting of quasi-metric spaces (compare

Example 1 above). To this end, they make the following construction of a self map of

a complete T1 quasi-metric space, claiming that it is a Meir-Keeler map free of fixed

points (see [5, Proposition 2.1]).

Let X = [2, 3], let T be the self map of X given by Tθ = 2 + θ/3 for all θ ∈ X,

and let d: X ×X → R+ defined as d(θ, ϑ) = θ − ϑ if θ ≥ ϑ, and d(θ, ϑ) = (1/θ)nθ if

θ < ϑ, where:

nθ = E(ln 3 ln−1 (6Tθ/5θ)) + 1 for all θ ∈ [2, 3), and E(·) is the integer part of

function.

Then, the authors of [5] proved the next properties:

(p1) nθ ≤ nϑ whenever θ ≤ ϑ;

(p2) d is a quasi-metric on X (actually, it is a T1 quasi-metric on X);

(p3) the Cauchy sequences in (X, d) are those that are eventually constant, and,

thus, (X, d) is complete.

They also asserted that T is a Meir-Keeler map on (X, d).

Note that θ = 3 is a fixed point of T, so this example, as written, is not valid for

the goals of the authors.

For this reason we proceed to modify that example, in a natural way, as follows.

Let X0 = [2, 3), let T be the self map of X0 given by Tθ = 2+ θ/3 for all θ ∈ X0,

and denote also by d be the restriction of d to X0.

Then T has no fixed points inX0. Moreover, it is obvious that the properties (p1),

(p2) and (p3) remain true, so (X0, d) is a complete T1 quasi-metric space. However,

by Corollary 1, T is not a Meir-Keeler map on (X0, d).

Indeed, the authors claim (see [5, page 6]) that d(θ, ϑ) > 3d(Tθ, Tϑ) whenever

θ < ϑ. Since we also have that d(θ, ϑ) ≥ 3d(Tθ, Tϑ) whenever θ ≥ ϑ, we would

get ds(Tθ, Tϑ) ≤ ds(θ, ϑ)/3 for all θ, ϑ ∈ X0 (recall that by ds we denote the metric

defined in Remark 1). Consequently, by Remark 1, again, and the Banach contraction

principle, T should have a fixed point, which yields a contradiction.
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In fact, the error occurs on lines 11-12 of page 6 of [5] because the inequality

ln
(1/5θ)nθ

(1/6Tθ)nθ
< ln

(1/θ)nθ

(1/Tθ)nTθ
,

is not true in general. Indeed, routine calculations show that nθ = 6 for all θ ∈ [2.9, 3).

Since θ < Tθ < 3, we deduce that nθ = nTθ = 6 for all θ ∈ [2.9, 3). So we come to

the contradiction that 6 < 5.

3. A quasi-metric extension of a theorem by Samet, Vetro and Yazidi

Samet, Vetro and Yazidi proved in [12, Theorem 2.1] the following theorem for a

Meir-Keeler type contraction.

Theorem 3 ( [12]). Let T be a self map of a complete metric space (X, d). If for each

ε >0 there exists δ > 0 such that for any x, y ∈ X,

2ε ≤ d(y, Ty)
1 + d(x, Tx)

1 + d(x, y)
+ d(x, y) < 2ε+ δ ⇒ d(Tx, Ty) < ε,

then T has a unique fixed point.

Next, we apply Theorem 3 to deduce a quasi-metric version of it.

Theorem 4. Let T be a ≤d-increasing self map of a complete quasi-metric space

(X, d). If for each ε >0 there exists δ > 0 such that for any x, y ∈ X,

2ε ≤ d(y, Ty)
1 + d(x, Tx)

1 + ds(x, y)
+ d(x, y) < 2ε+ δ ⇒ d(Tx, Ty) < ε,

then T has a unique fixed point.

Proof. For each x, y ∈ X, put

Md(x, y) =
1

2

(
d(y, Ty)

1 + d(x, Tx)

1 + ds(x, y)
+ d(x, y))

)
,

and

Mds(x, y) =
1

2

(
ds(y, Ty)

1 + ds(x, Tx)

1 + ds(x, y)
+ ds(x, y)

)
.

Since d(x, y) ≤ ds(x, y) for all x, y ∈ X, we deduce that Md(x, y) ≤ Mds(x, y) for

all x, y ∈ X.

Fix ε > 0. By hypothesis, there exists δ := δ(ε, d) such that for any x, y ∈ X,

ε ≤ Md(x, y) < ε+
δ

2
⇒ d(Tx, Ty) < ε.
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We now show that for any x, y ∈ X,

ε ≤ Mds(x, y) < ε+
δ

2
⇒ ds(Tx, Ty) < ε.

Indeed, let x, y ∈ X such that ε ≤ Mds(x, y) < ε+ δ/2.

Suppose, without loss of generality, that ds(Tx, Ty) = d(Tx, Ty).

• If ε ≤ Md(x, y) < ε+ δ/2, then d(Tx, Ty) < ε, i.e., ds(Tx, Ty) < ε.

• If Md(x, y) < ε we distinguish two cases.

Case 1. d(x, y) = 0. Then d(Tx, Ty) = 0 because T is ≤d-increasing, so

ds(Tx, Ty) = 0 < ε.

Case 2. d(x, y) > 0. ThenMd(x, y) > 0, so d(Tx, Ty) < Md(x, y), i.e., d
s(Tx, Ty) <

Md(x, y) < ε.

• If Md(x, y) ≥ ε + δ/2, we deduce that Md(x, y) > Mds(x, y) which contradicts

the fact that Md(x, y) ≤ Mds(x, y) for all x, y ∈ X.

Since, by Remark 1, the metric space (X, ds) is complete we can apply Theorem

3 to deduce that T has a unique fixed point. This finishes the proof.

The following is an example where we can apply Theorem 4 but not Theorem 2.

Example 2. Let X = {0} ∪ [1, 3] and let d be the quasi-metric on X given by

d(x, y) = max{x− y, 0} for all x, y ∈ X.

Since ds(x, y) = |x− y| for all x, y ∈ X, we have that (X, ds) is a compact metric

space and, thus, a complete metric space. Hence (X, d) is a complete quasi-metric

space by Remark 1.

Let T : X → X defined as T3 = 1 and Tx = 0 for all x ∈ X\{3}.

It is clear that T is ≤d-increasing because if d(x, y) = 0, then x ≤ y, so Tx ≤ Ty,

and thus d(Tx, Ty) = 0.

Observe that T is not a d -Meir-Keeler map because d(3, 2) = d(T3, T2). Hence

we can not apply Theorem 2.

Now fix ε > 0 and put δ = ε. We shall show that for any x, y ∈ X, the contraction

condition in the statement of Theorem 4 is fulfilled.

To this end, define Md(x, y) as in the proof of Theorem 4 and suppose that

ε ≤ Md(x, y) < ε+ δ/2.

• If x, y ∈ X\{3} or y = 3, we get d(Tx, Ty) = 0 < ε.
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• If x = 3 and y = 0 we get Md(x, y) = Md(3, 0) = 3/2. Thus, we have ε ≤ 3/2 <

3ε/2. So ε > 1, and, consequently, d(Tx, Ty) = d(T3, T0) = d(1, 0) = 1 < ε.

• If x = 3 and y ∈ X\{0, 3} we get

Md(x, y) = Md(3, y) =
1

2

(
y

1 + 2

1 + 3− y
+ 3− y

)
=

1

2

(
y2 − 4y + 12

4− y

)
.

Therefore

ε ≤ 1

2

(
y2 − 4y + 12

4− y

)
<

3ε

2
.

Since y ≥ 1, we deduce that 3 ≤ (y2 − 4y + 12)/(4− y), and hence 3/2 < 3ε/2,

which implies that ε > 1. Consequently, we have d(Tx, Ty) = d(T3, T y) =

d(1, 0) = 1 < ε.

We have shown that the contraction condition in Theorem 4 is satisfied. Hence

T has a unique fixed point (in fact x = 0 is the unique fixed point of T ).

We conclude this section with the following open question: Can be replaced

“ds(x, y)” with “d(x, y)” in the statement of Theorem 4 ?

4. D3-systems on quasi-metric spaces and an application

Rubinov introduced in [10] the so-called discrete disperse dynamical systems (D3-

systems in short) defined on compact metric spaces, which provides abstract models

of economic dynamics [11]. Since then some authors have investigated this kind of

dynamical systems (see e.g. [17] and the references therein).

We generalize the notion of a D3-system to the quasi-metric framework (note

that our approach is more general to the one proposed in [6, Definition 1]).

Definition 1. Let (X, d) be a quasi-metric space. A set-valued map D : X ⇒ P0(X)

(the family of non-empty subsets of X) is called a D3-system on (X, d) if for any

x ∈ X, D(x) is a compact subset of the topological space (X, τd).

The following result shows that it is easy to obtain suitable D3-systems for non-T1

quasi-metric spaces with the help of the specialization order.

Proposition 1. Let (X, d) be a quasi-metric space and let D≤d
: X ⇒ P0(X) be the

set-valued map defined as D≤d
(x) = {y ∈ X : x ≤d y} for all x ∈ X. Then, every

set-valued map D : X ⇒ P0(X) such that x ∈ D(x) ⊆ D≤d
(x) for all x ∈ X, is a

D3-system on (X, d).

Proof. Fix x ∈ X and let V be a τd-open cover of D(x). There are V ∈ V and

ε > 0 such that Bd(x, ε) ⊆ V . Since D≤d
(x) ⊆ Bd(x, ε) we conclude that D(x) ⊆ V .
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Schellekens introduced in [13, Definition 2.6] the notion of an improver in the

study of the complexity analysis of programs and algorithms. We adapt this concept

to a more general context as follows.

Definition 2. Let (X, d) be a quasi-metric space. We say that a self map T of X is

an improver of a point x0 ∈ X if x0 ≤d Tx0.

Intuitively, if T is an improver of x0, with x0 ̸= Tx0, the element Tx0 contains

more information than x0 in the computational process represented by T. In other

words, Tx0 is ‘more efficient’ than x0.

By IT (X, d) we shall denote the set of all points of X for which T is an improver.

Notice that IT (X, d) could be the empty set.

Definition 3. Let T be a self map of a quasi-metric space such that IT (X, d) ̸= ∅.

We say that z ∈ X is an optimal point of T with respect to the D3-system D≤d
if it

satisfies the following two conditions:

(op1) z ∈
∩

x≤dTx

D≤d
(x);

(op2) z ≤d y for every y ∈
∩

x≤dTx

D≤d
(x).

Note that, by (op2), if T has an optimal point z ∈ X then z is its unique optimal

point.

Remark 2. Intuitively, if z is the optimal point of T then, by (op1), z is more efficient

than any element in IT (X, d), and by (op2), z contains all amount of information

provided by IT (X, d) but not more of the necessary. Thus, condition (op2) provides a

suitable caution which is especially interesting in the case of those quasi-metric spaces

(X, d) for which there is a top element ⊤ for ≤d (this situation occurs, for instance,

in the case of the complexity quasi-metric space [7, 13]).

Now denote by ω the set of non-negative integer numbers and suppose that R :

ω → R+ is a recurrence equation for which it is possible to associate a suitable self

map (functional) Φ of (R+)ω. If (R+)ω is endowed with a complete quasi-metric d

and S is a closed subset of the metric space ((R+)ω, ds) such that the restriction of

Φ to S is a self map of S, it is natural to ask if there exists an f0 ∈ S for which Φ is

an improver. In that case, we would obtain that Φf0 is at least as efficient as f0 on

all inputs. In many cases it suffices to apply the quasi-metric version of the Banach

contraction principle ( [8, Corollary 1], [13, Theorem 3.4]), to obtain an affirmative

answer to this requirement (see e.g. [2, 7, 9, 13]).
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In the sequel we present an instance where Banach’s contraction principle does

not work and yet we can apply Theorem 2 to show that the self map Φ has a unique

fixed point f0 ∈ S and thus Φf0 ∈ D≤d
(f0) obviously. Moreover, we shall see that f0

is the (unique) optimal point of Φ with respect to the D3 -system D≤d
.

Motivated by the study of certain nonlinear difference equations [14–16], it was

analyzed in [8, Section 3] the recurrence equation R : ω → [0, 1] defined by R(0) =

c (0 < c ≤ 1), and

R(n) =
R(n− 1)

1 +R(n− 1)
,

for all n ∈ ω\{0}.

Denote by S the set of all functions from ω to [0, 1], and in the light of the

recurrence equation R defined above construct a map Φ : S → S as follows:

For each f ∈ S, Φf(0) = c, and

Φ(f)(n) =
f(n− 1)

1 + f(n− 1)
,

whenever n ∈ ω\{0}.

Let d be the quasi-metric on S given by

d(f, g) = sup
n∈ω

max(g(n)− f(n), 0),

for all f, g ∈ S.

Since ds is the supremum metric on S, (S, ds) is a complete metric space, so (S, d)
is a complete quasi-metric space.

Next we show that Φ is not a Banach contraction on (S, d).

Fix an r ∈ (0, 1). Choose ε ∈ (0, 1) such that 1/(1 + ε) > r. Let f, g ∈ S such

that f(n) = 0 for all n ∈ ω, g(1) = ε, and g(n) = 0 for all n ∈ ω\{1}.

Then we have

d(Φf,Φg) = Φg(2) =
g(1)

1 + g(1)
=

ε

1 + ε
=

g(1)

1 + ε
=

d(f, g)

1 + ε
> rd(f, g).

We are going to prove that, however, Φ is a d-Meir Keeler map on (S, d).

• Φ is ≤d-increasing.

Indeed, if d(f, g) = 0, we get g(n) ≤ f(n) for all n ∈ ω, so Φg(n) ≤ Φf(n) for

all n ∈ ω, which implies that d(Φf,Φg) = 0.
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• Fix ε > 0. Put δ = min{1, ε2}, and let f, g ∈ S such that ε ≤ d(f, g) < ε+ δ.

Analogously to [8, Section 3], we get

max{Φg(n)− Φf(n), 0} ≤ d(f, g)

1 + d(f, g)
,

for all n ∈ ω, so

d(Φf,Φg) ≤ d(f, g)

1 + d(f, g)
<

ε+ δ

1 + ε
≤ ε+ ε2

1 + ε
= ε.

Therefore, we can apply Theorem 2 to conclude that there is a unique f0 ∈ S
such that Φf0 = f0. So f0 is the unique solution of the recurrence equation R.

It remains to check that f0 is the (unique) optimal point of Φ with respect to the

D3-system D≤d
.

We first observe that f0 ∈ IΦ(S, d).

Now let g ∈ S such that g ≤d Φg. Then

d(g, f0) ≤ d(g,Φg) + d(Φg,Φf0) + d(Φf0, f0) = d(Φg,Φf0) ≤
d(g, f0)

1 + d(g, f0)
,

which implies that d(g, f0) = 0. Hence f0 satisfies condition (op1).

Finally, if f ∈
∩

g≤dΦg

D≤d
(g), we get, in particular, that f ∈ D≤d

(f0), so d(f0, f) =

0, i.e., f0 ≤d f. Thus, condition (op2) is also fulfilled. Consequently f0 is the (unique)

optimal point of Φ with respect to the D3-system D≤d
.
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