REMARKS ON THE QUASI-METRIC EXTENSION OF THE MEIR-KEELER FIXED POINT THEOREM WITH AN APPLICATION TO D³-SYSTEMS

SALVADOR ROMAGUERA AND PEDRO TIRADO

Instituto Universitario de Matemática Pura y Aplicada - IUMPA Universitat Politècnica de València, 46022 Valencia, Spain e-mail: sromague@mat.upv.es, pedtipe@mat.upv.es

ABSTRACT. In this paper we first observe that the classical Meir-Keeler fixed point theorem admits a full extension to complete T_1 quasi-metric spaces. Related to this fact we show that the key example of the paper "On the MeirKeeler theorem in quasi-metric spaces" (J. Fixed Theory Appl. 23:37 (2021)) is not correct. We present a quasi-metric version of a fixed point theorem due to B. Samet, C. Vetro and H. Yazidi, that involves a Meir-Keeler type contraction and, finally, connections between our quasi-metric version of the Meir-Keeler theorem and discrete disperse dynamical systems $(D^3-systems in short)$ are discussed.

AMS (MOS) Subject Classification. 47H10, 54H25, 54E50, 54H20.

Key Words and Phrases. Fixed point, complete quasi-metric space, Meir-Keeler theorem, Samet-Vetro-Yazidi theorem, D^3 -system.

1. Introduction and preliminaries

We start by reminding some notions and properties which will be essential throughout this paper. Our basic reference for quasi-metric spaces is [3].

Let us recall that a quasi-metric on a set X is a function d from $X \times X$ to \mathbb{R}^+ (the set of non-negative real numbers) such that for every $x, y, z \in X$ the following conditions are fulfilled:

$$(qm1) \ d(x,y) = d(y,x) = 0 \Leftrightarrow x = y;$$
$$(qm2) \ d(x,z) \le d(x,y) + d(y,z).$$

By a quasi-metric space we mean a pair (X, d) where X is a set and d is a quasi-metric on X.

Received March 12, 2022
 ISSN 1056-2176(Print); ISSN 2693-5295 (online)

 \$15.00 © Dynamic Publishers, Inc.
 https://doi.org/10.46719/dsa202231.03.04

 www.dynamicpublishers.org.
 https://doi.org/10.46719/dsa202231.03.04

Any quasi-metric d on a set X induces a T_0 topology τ_d on X which has as a base the family of open balls $\{B_d(x,\varepsilon) : x \in X, \varepsilon > 0\}$, where $B_d(x,\varepsilon) = \{y \in X : d(x,y) < \varepsilon\}$ for all $x \in X$ and $\varepsilon > 0$.

A quasi-metric space (X, d) is said to be a T_1 quasi-metric space provided that τ_d is a T_1 topology on X. Consequently, a quasi-metric space (X, d) is a T_1 quasi-metric space if and only if the following condition holds: $d(x, y) = 0 \Leftrightarrow x = y$.

According to [5] a sequence $\{x_n\}$ in a quasi-metric space (X, d) is called a Cauchy sequence if for each $\varepsilon > 0$ there is a natural number n_{ε} such that $d(x_n, x_m)$ whenever $n, m \ge n_{\varepsilon}$, and (X, d) is called complete (bicomplete in the classical terminology) if for each Cauchy sequence $\{x_n\}$ in (X, d) there is an $x \in X$ such that $d(x, x_n) \to 0$ and $d(x_n, x) \to 0$ as $n \to \infty$.

There are abundant examples of complete quasi-metric spaces in the literature (see e.g. [3,8]).

Remark 1. It is well known, and easy to see, that given a quasi-metric d on a set X, the function d^s defined on $X \times X$ by $d^s(x, y) = \max\{d(x, y), d(y, x)\}$, is a metric on X. Thus, a sequence in a quasi-metric space (X, d) is a Cauchy sequence if and only if it is a Cauchy sequence in (X, d^s) , and, hence, a quasi-metric space (X, d) is complete if and only if the metric space (X, d^s) is complete.

The problem of extending the celebrated Meir-Keeler fixed point theorem to quasi-metric spaces has been recently discussed by Rachid, Mitrović, Parvaneh and Bagheri [5]. This problem was previously studied in [1] for T_1 quasi-metric spaces and in [8] for the general case. In particular, it was given in [8] an easy example of a Meir-Keeler map on a complete non- T_1 quasi-metric space that has no fixed points and also was obtained a fixed point theorem from which we immediately deduce that every Meir-Keeler map on a complete T_1 quasi-metric space has a unique fixed point (see Corollary 1 below). Related to this result we shall show that both the key example of [1] and a natural modification of it are not valid. We shall extend to the quasi-metric framework a fixed point theorem obtained by Samet, Vetro and Yazidi in [12], which involves a Meir-Keeler type contraction and, finally, connections between our quasi-metric version of the Meir-Keeler theorem and discrete disperse dynamical systems (D^3 -systems in short) will be discussed.

2. The Meir-Keeler fixed point theorem in quasi-metric spaces

Meir and Keeler obtained in [4] their renowned fixed point theorem which is established in the next.

Theorem 1 ([4]). Let T be a self map of a complete metric space (X, d). If for each $\varepsilon > 0$ there exists $\delta > 0$ such that for any $x, y \in X$,

$$\varepsilon \le d(x, y) < \varepsilon + \delta \Rightarrow d(Tx, Ty) < \varepsilon,$$

then T has a unique fixed point.

Theorem 1 suggests the following concept.

Definition 1. A self map T of a quasi-metric space (X, d) is called a Meir-Keeler map on (X, d) if for each $\varepsilon > 0$ there exists $\delta > 0$ such that for any $x, y \in X$,

$$\varepsilon \le d(x, y) < \varepsilon + \delta \Rightarrow d(Tx, Ty) < \varepsilon.$$

As we indicated above, it was given in [8, page 2] an easy example of a Meir-Keeler map on a complete non- T_1 quasi-metric space that has no fixed points. Here we reproduce it for the sake of completeness.

Example 1 ([8]). Let (X, d) be the complete quasi-metric space such that $X = \{0, 1\}$, and d(0, 0) = d(1, 1) = d(0, 1) = 0, d(1, 0) = 1. Define $T : X \to X$ by T0 = 1 and T1 = 0. Now, given $\varepsilon > 0$ choose $\delta = \varepsilon$ and let $x, y \in X$ such that $\varepsilon \leq d(x, y) < 2\varepsilon$. Then x = 1, y = 0. Therefore $d(Tx, Ty) = d(T1, T0) = d(0, 1) = 0 < \varepsilon$, so T is a Meir-Keeler map on (X, d).

It is well known that every quasi-metric d on a set X induces a partial order \leq_d on X (the so-called specialization order) defined by

$$x \leq_d y \Leftrightarrow d(x, y) = 0.$$

The specialization order will play a central role in the last section of this paper.

Notice that a self map T of a quasi-metric space (X, d) is \leq_d -increasing if and only if d(Tx, Ty) = 0 whenever d(x, y) = 0 (see [8, page 2]).

Thus, the fact that the self map of Example 1 is not \leq_d -increasing, suggests the following notion.

Definition 2 ([8]). A Meir-Keeler map on a quasi-metric space (X, d) is said to be a *d*-Meir-Keeler map provided that it is \leq_d -increasing.

Then, it was proved in [8, Theorem 1] the following result.

Theorem 2 ([8]). Every d-Meir-Keeler map on a complete quasi-metric space (X, d) has a unique fixed point.

Corollary 1. Every Meir-Keeler map on a complete T_1 quasi-metric space has a unique fixed point.

Proof. Let T be a Meir-Keeler map on a complete T_1 quasi-metric space (X, d). Let $x, y \in X$ such that d(x, y) = 0. Then x = y, and, hence, d(Tx, Ty) = d(Tx, Tx) = 0. We deduce that T is a d-Meir Keeler map on (X, d). Theorem 2 concludes the proof.

Rachid, Mitrović, Parvaneh and Bagheri asserted in [5] that the Meir-Keeler fixed point theorem can not be extended to the setting of quasi-metric spaces (compare Example 1 above). To this end, they make the following construction of a self map of a complete T_1 quasi-metric space, claiming that it is a Meir-Keeler map free of fixed points (see [5, Proposition 2.1]).

Let X = [2,3], let T be the self map of X given by $T\theta = 2 + \theta/3$ for all $\theta \in X$, and let $d: X \times X \to \mathbb{R}^+$ defined as $d(\theta, \vartheta) = \theta - \vartheta$ if $\theta \ge \vartheta$, and $d(\theta, \vartheta) = (1/\theta)^{n_\theta}$ if $\theta < \vartheta$, where:

 $n_{\theta} = E(\ln 3 \ln^{-1} (6T\theta/5\theta)) + 1$ for all $\theta \in [2,3)$, and $E(\cdot)$ is the integer part of function.

Then, the authors of [5] proved the next properties:

(p1) $n_{\theta} \leq n_{\vartheta}$ whenever $\theta \leq \vartheta$;

(p2) d is a quasi-metric on X (actually, it is a T_1 quasi-metric on X);

(p3) the Cauchy sequences in (X, d) are those that are eventually constant, and, thus, (X, d) is complete.

They also asserted that T is a Meir-Keeler map on (X, d).

Note that $\theta = 3$ is a fixed point of T, so this example, as written, is not valid for the goals of the authors.

For this reason we proceed to modify that example, in a natural way, as follows.

Let $X_0 = [2, 3)$, let T be the self map of X_0 given by $T\theta = 2 + \theta/3$ for all $\theta \in X_0$, and denote also by d be the restriction of d to X_0 .

Then T has no fixed points in X_0 . Moreover, it is obvious that the properties (p1), (p2) and (p3) remain true, so (X_0, d) is a complete T_1 quasi-metric space. However, by Corollary 1, T is not a Meir-Keeler map on (X_0, d) .

Indeed, the authors claim (see [5, page 6]) that $d(\theta, \vartheta) > 3d(T\theta, T\vartheta)$ whenever $\theta < \vartheta$. Since we also have that $d(\theta, \vartheta) \ge 3d(T\theta, T\vartheta)$ whenever $\theta \ge \vartheta$, we would get $d^s(T\theta, T\vartheta) \le d^s(\theta, \vartheta)/3$ for all $\theta, \vartheta \in X_0$ (recall that by d^s we denote the metric defined in Remark 1). Consequently, by Remark 1, again, and the Banach contraction principle, T should have a fixed point, which yields a contradiction.

In fact, the error occurs on lines 11-12 of page 6 of [5] because the inequality

$$\ln \frac{(1/5\theta)^{n_{\theta}}}{(1/6T\theta)^{n_{\theta}}} < \ln \frac{(1/\theta)^{n_{\theta}}}{(1/T\theta)^{n_{T\theta}}},$$

is not true in general. Indeed, routine calculations show that $n_{\theta} = 6$ for all $\theta \in [2.9, 3)$. Since $\theta < T\theta < 3$, we deduce that $n_{\theta} = n_{T\theta} = 6$ for all $\theta \in [2.9, 3)$. So we come to the contradiction that 6 < 5.

3. A quasi-metric extension of a theorem by Samet, Vetro and Yazidi

Samet, Vetro and Yazidi proved in [12, Theorem 2.1] the following theorem for a Meir-Keeler type contraction.

Theorem 3 ([12]). Let T be a self map of a complete metric space (X, d). If for each $\varepsilon > 0$ there exists $\delta > 0$ such that for any $x, y \in X$,

$$2\varepsilon \leq d(y,Ty)\frac{1+d(x,Tx)}{1+d(x,y)} + d(x,y) < 2\varepsilon + \delta \Rightarrow d(Tx,Ty) < \varepsilon,$$

then T has a unique fixed point.

Next, we apply Theorem 3 to deduce a quasi-metric version of it.

Theorem 4. Let T be a \leq_d -increasing self map of a complete quasi-metric space (X, d). If for each $\varepsilon > 0$ there exists $\delta > 0$ such that for any $x, y \in X$,

$$2\varepsilon \le d(y,Ty)\frac{1+d(x,Tx)}{1+d^s(x,y)} + d(x,y) < 2\varepsilon + \delta \Rightarrow d(Tx,Ty) < \varepsilon,$$

then T has a unique fixed point.

Proof. For each $x, y \in X$, put

$$M_d(x,y) = \frac{1}{2} \left(d(y,Ty) \frac{1+d(x,Tx)}{1+d^s(x,y)} + d(x,y) \right),$$

and

$$M_{d^s}(x,y) = \frac{1}{2} \left(d^s(y,Ty) \frac{1 + d^s(x,Tx)}{1 + d^s(x,y)} + d^s(x,y) \right).$$

Since $d(x, y) \leq d^s(x, y)$ for all $x, y \in X$, we deduce that $M_d(x, y) \leq M_{d^s}(x, y)$ for all $x, y \in X$.

Fix $\varepsilon > 0$. By hypothesis, there exists $\delta := \delta(\varepsilon, d)$ such that for any $x, y \in X$,

$$\varepsilon \leq M_d(x,y) < \varepsilon + \frac{\delta}{2} \Rightarrow d(Tx,Ty) < \varepsilon.$$

We now show that for any $x, y \in X$,

$$\varepsilon \leq M_{d^s}(x,y) < \varepsilon + \frac{\delta}{2} \Rightarrow d^s(Tx,Ty) < \varepsilon.$$

Indeed, let $x, y \in X$ such that $\varepsilon \leq M_{d^s}(x, y) < \varepsilon + \delta/2$.

Suppose, without loss of generality, that $d^{s}(Tx, Ty) = d(Tx, Ty)$.

- If $\varepsilon \leq M_d(x,y) < \varepsilon + \delta/2$, then $d(Tx,Ty) < \varepsilon$, i.e., $d^s(Tx,Ty) < \varepsilon$.
- If $M_d(x, y) < \varepsilon$ we distinguish two cases.

Case 1. d(x,y) = 0. Then d(Tx,Ty) = 0 because T is \leq_d -increasing, so $d^s(Tx,Ty) = 0 < \varepsilon$.

Case 2. d(x, y) > 0. Then $M_d(x, y) > 0$, so $d(Tx, Ty) < M_d(x, y)$, i.e., $d^s(Tx, Ty) < M_d(x, y) < \varepsilon$.

• If $M_d(x,y) \ge \varepsilon + \delta/2$, we deduce that $M_d(x,y) > M_{d^s}(x,y)$ which contradicts the fact that $M_d(x,y) \le M_{d^s}(x,y)$ for all $x, y \in X$.

Since, by Remark 1, the metric space (X, d^s) is complete we can apply Theorem 3 to deduce that T has a unique fixed point. This finishes the proof.

The following is an example where we can apply Theorem 4 but not Theorem 2.

Example 2. Let $X = \{0\} \cup [1,3]$ and let d be the quasi-metric on X given by $d(x,y) = \max\{x-y,0\}$ for all $x, y \in X$.

Since $d^s(x, y) = |x - y|$ for all $x, y \in X$, we have that (X, d^s) is a compact metric space and, thus, a complete metric space. Hence (X, d) is a complete quasi-metric space by Remark 1.

Let $T: X \to X$ defined as T3 = 1 and Tx = 0 for all $x \in X \setminus \{3\}$.

It is clear that T is \leq_d -increasing because if d(x, y) = 0, then $x \leq y$, so $Tx \leq Ty$, and thus d(Tx, Ty) = 0.

Observe that T is not a d-Meir-Keeler map because d(3,2) = d(T3,T2). Hence we can not apply Theorem 2.

Now fix $\varepsilon > 0$ and put $\delta = \varepsilon$. We shall show that for any $x, y \in X$, the contraction condition in the statement of Theorem 4 is fulfilled.

To this end, define $M_d(x, y)$ as in the proof of Theorem 4 and suppose that $\varepsilon \leq M_d(x, y) < \varepsilon + \delta/2$.

• If $x, y \in X \setminus \{3\}$ or y = 3, we get $d(Tx, Ty) = 0 < \varepsilon$.

- If x = 3 and y = 0 we get $M_d(x, y) = M_d(3, 0) = 3/2$. Thus, we have $\varepsilon \le 3/2 < 3\varepsilon/2$. So $\varepsilon > 1$, and, consequently, $d(Tx, Ty) = d(T3, T0) = d(1, 0) = 1 < \varepsilon$.
- If x = 3 and $y \in X \setminus \{0, 3\}$ we get

$$M_d(x,y) = M_d(3,y) = \frac{1}{2} \left(y \frac{1+2}{1+3-y} + 3 - y \right) = \frac{1}{2} \left(\frac{y^2 - 4y + 12}{4-y} \right).$$

Therefore

$$\varepsilon \leq \frac{1}{2} \left(\frac{y^2 - 4y + 12}{4 - y} \right) < \frac{3\varepsilon}{2}.$$

Since $y \ge 1$, we deduce that $3 \le (y^2 - 4y + 12)/(4 - y)$, and hence $3/2 < 3\varepsilon/2$, which implies that $\varepsilon > 1$. Consequently, we have $d(Tx, Ty) = d(T3, Ty) = d(1, 0) = 1 < \varepsilon$.

We have shown that the contraction condition in Theorem 4 is satisfied. Hence T has a unique fixed point (in fact x = 0 is the unique fixed point of T).

We conclude this section with the following open question: Can be replaced " $d^s(x, y)$ " with "d(x, y)" in the statement of Theorem 4 ?

4. D^3 -systems on quasi-metric spaces and an application

Rubinov introduced in [10] the so-called discrete disperse dynamical systems $(D^3$ -systems in short) defined on compact metric spaces, which provides abstract models of economic dynamics [11]. Since then some authors have investigated this kind of dynamical systems (see e.g. [17] and the references therein).

We generalize the notion of a D^3 -system to the quasi-metric framework (note that our approach is more general to the one proposed in [6, Definition 1]).

Definition 1. Let (X, d) be a quasi-metric space. A set-valued map $D : X \rightrightarrows \mathcal{P}_0(X)$ (the family of non-empty subsets of X) is called a D^3 -system on (X, d) if for any $x \in X$, D(x) is a compact subset of the topological space (X, τ_d) .

The following result shows that it is easy to obtain suitable D^3 -systems for non- T_1 quasi-metric spaces with the help of the specialization order.

Proposition 1. Let (X, d) be a quasi-metric space and let $D_{\leq_d} : X \rightrightarrows \mathcal{P}_0(X)$ be the set-valued map defined as $D_{\leq_d}(x) = \{y \in X : x \leq_d y\}$ for all $x \in X$. Then, every set-valued map $D : X \rightrightarrows \mathcal{P}_0(X)$ such that $x \in D(x) \subseteq D_{\leq_d}(x)$ for all $x \in X$, is a D^3 -system on (X, d).

Proof. Fix $x \in X$ and let \mathcal{V} be a τ_d -open cover of D(x). There are $V \in \mathcal{V}$ and $\varepsilon > 0$ such that $B_d(x, \varepsilon) \subseteq V$. Since $D_{\leq d}(x) \subseteq B_d(x, \varepsilon)$ we conclude that $D(x) \subseteq V$.

Schellekens introduced in [13, Definition 2.6] the notion of an improver in the study of the complexity analysis of programs and algorithms. We adapt this concept to a more general context as follows.

Definition 2. Let (X, d) be a quasi-metric space. We say that a self map T of X is an improver of a point $x_0 \in X$ if $x_0 \leq_d Tx_0$.

Intuitively, if T is an improver of x_0 , with $x_0 \neq Tx_0$, the element Tx_0 contains more information than x_0 in the computational process represented by T. In other words, Tx_0 is 'more efficient' than x_0 .

By $\mathcal{I}_T(X, d)$ we shall denote the set of all points of X for which T is an improver. Notice that $\mathcal{I}_T(X, d)$ could be the empty set.

Definition 3. Let T be a self map of a quasi-metric space such that $\mathcal{I}_T(X, d) \neq \emptyset$. We say that $z \in X$ is an optimal point of T with respect to the D^3 -system $D_{\leq d}$ if it satisfies the following two conditions:

(op1)
$$z \in \bigcap_{x \leq_d Tx} D_{\leq_d}(x);$$

(op2) $z \leq_d y$ for every $y \in \bigcap_{x \leq_d Tx} D_{\leq_d}(x)$

Note that, by (op2), if T has an optimal point $z \in X$ then z is its unique optimal point.

Remark 2. Intuitively, if z is the optimal point of T then, by (op1), z is more efficient than any element in $\mathcal{I}_T(X, d)$, and by (op2), z contains all amount of information provided by $\mathcal{I}_T(X, d)$ but not more of the necessary. Thus, condition (op2) provides a suitable caution which is especially interesting in the case of those quasi-metric spaces (X, d) for which there is a top element \top for \leq_d (this situation occurs, for instance, in the case of the complexity quasi-metric space [7, 13]).

Now denote by ω the set of non-negative integer numbers and suppose that R: $\omega \to \mathbb{R}^+$ is a recurrence equation for which it is possible to associate a suitable self map (functional) Φ of $(\mathbb{R}^+)^{\omega}$. If $(\mathbb{R}^+)^{\omega}$ is endowed with a complete quasi-metric dand S is a closed subset of the metric space $((\mathbb{R}^+)^{\omega}, d^s)$ such that the restriction of Φ to S is a self map of S, it is natural to ask if there exists an $f_0 \in S$ for which Φ is an improver. In that case, we would obtain that Φf_0 is at least as efficient as f_0 on all inputs. In many cases it suffices to apply the quasi-metric version of the Banach contraction principle ([8, Corollary 1], [13, Theorem 3.4]), to obtain an affirmative answer to this requirement (see e.g. [2,7,9,13]). In the sequel we present an instance where Banach's contraction principle does not work and yet we can apply Theorem 2 to show that the self map Φ has a unique fixed point $f_0 \in S$ and thus $\Phi f_0 \in D_{\leq d}(f_0)$ obviously. Moreover, we shall see that f_0 is the (unique) optimal point of Φ with respect to the D^3 -system $D_{\leq d}$.

Motivated by the study of certain nonlinear difference equations [14–16], it was analyzed in [8, Section 3] the recurrence equation $R : \omega \to [0, 1]$ defined by $R(0) = c \ (0 < c \le 1)$, and

$$R(n) = \frac{R(n-1)}{1 + R(n-1)},$$

for all $n \in \omega \setminus \{0\}$.

Denote by \mathcal{S} the set of all functions from ω to [0,1], and in the light of the recurrence equation R defined above construct a map $\Phi : \mathcal{S} \to \mathcal{S}$ as follows:

For each $f \in \mathcal{S}$, $\Phi f(0) = c$, and

$$\Phi(f)(n) = \frac{f(n-1)}{1+f(n-1)},$$

whenever $n \in \omega \setminus \{0\}$.

Let d be the quasi-metric on S given by

$$d(f,g) = \sup_{n \in \omega} \max(g(n) - f(n), 0),$$

for all $f, g \in \mathcal{S}$.

Since d^s is the supremum metric on \mathcal{S} , (\mathcal{S}, d^s) is a complete metric space, so (\mathcal{S}, d) is a complete quasi-metric space.

Next we show that Φ is not a Banach contraction on (\mathcal{S}, d) .

Fix an $r \in (0, 1)$. Choose $\varepsilon \in (0, 1)$ such that $1/(1 + \varepsilon) > r$. Let $f, g \in S$ such that f(n) = 0 for all $n \in \omega$, $g(1) = \varepsilon$, and g(n) = 0 for all $n \in \omega \setminus \{1\}$.

Then we have

$$d(\Phi f, \Phi g) = \Phi g(2) = \frac{g(1)}{1+g(1)} = \frac{\varepsilon}{1+\varepsilon} = \frac{g(1)}{1+\varepsilon} = \frac{d(f,g)}{1+\varepsilon} > rd(f,g).$$

We are going to prove that, however, Φ is a *d*-Meir Keeler map on (\mathcal{S}, d) .

• Φ is \leq_d -increasing.

Indeed, if d(f,g) = 0, we get $g(n) \le f(n)$ for all $n \in \omega$, so $\Phi g(n) \le \Phi f(n)$ for all $n \in \omega$, which implies that $d(\Phi f, \Phi g) = 0$.

• Fix $\varepsilon > 0$. Put $\delta = \min\{1, \varepsilon^2\}$, and let $f, g \in S$ such that $\varepsilon \leq d(f, g) < \varepsilon + \delta$. Analogously to [8, Section 3], we get

$$\max\{\Phi g(n) - \Phi f(n), 0\} \le \frac{d(f, g)}{1 + d(f, g)},$$

for all $n \in \omega$, so

$$d(\Phi f, \Phi g) \le \frac{d(f, g)}{1 + d(f, g)} < \frac{\varepsilon + \delta}{1 + \varepsilon} \le \frac{\varepsilon + \varepsilon^2}{1 + \varepsilon} = \varepsilon.$$

Therefore, we can apply Theorem 2 to conclude that there is a unique $f_0 \in S$ such that $\Phi f_0 = f_0$. So f_0 is the unique solution of the recurrence equation R.

It remains to check that f_0 is the (unique) optimal point of Φ with respect to the D^3 -system $D_{\leq d}$.

We first observe that $f_0 \in \mathcal{I}_{\Phi}(\mathcal{S}, d)$.

Now let $g \in \mathcal{S}$ such that $g \leq_d \Phi g$. Then

$$d(g, f_0) \le d(g, \Phi g) + d(\Phi g, \Phi f_0) + d(\Phi f_0, f_0) = d(\Phi g, \Phi f_0) \le \frac{d(g, f_0)}{1 + d(g, f_0)}$$

which implies that $d(g, f_0) = 0$. Hence f_0 satisfies condition (op1).

Finally, if $f \in \bigcap_{g \leq d} D_{\leq d}(g)$, we get, in particular, that $f \in D_{\leq d}(f_0)$, so $d(f_0, f) = 0$, i.e., $f_0 \leq_d f$. Thus, condition (op2) is also fulfilled. Consequently f_0 is the (unique) optimal point of Φ with respect to the D^3 -system $D_{\leq d}$.

REFERENCES

- H.H. Alsulami, S. Glyaz, I.M. Erhan, Fixed points of α-admissible Meir-Keeler contraction mappings on quasi-metric spaces, J. Inequal. Appl. 2015:84 (2015).
- [2] F. Castro-Company, S. Romaguera, P. Tirado, The Banach contraction principle in fuzzy quasi-metric spaces and in product complexity spaces: Two approaches to study the cost of algorithms with a finite system of recurrence equations, Computational Intelligence (Series "Studies in Computational Intelligence") 399, pp. 261-274. Springer-Verlag Berlin Heidelberg, 2012.
- [3] S. Cobzaş, Functional Analysis in Asymmetric Normed Spaces. Frontiers in Mathematics, Birkhäuser/Springer Basel AG, Basel, Switzerland, 2013.
- [4] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329.
- [5] M. Rachid, Z.D. Mitrović, V. Parvaneh, Z. Bagheri, On the MeirKeeler theorem in quasi-metric spaces, J. Fixed Theory Appl. 23:37 (2021).
- S. Romaguera, M. Sanchis, Applications of utility functions defined on quasi-metric spaces, J. Math. Anal. Appl. 283 (2003), 219-235.
- [7] S. Romaguera, M. Schellekens, Quasi-metric properties of complexity spaces, Topol. Appl. 98 (1999), 311322.
- [8] S. Romaguera, P. Tirado, The MeirKeeler fixed point theorem for quasi-metric spaces and some consequences, Symmetry 11, 741 (2019).

- [9] S. Romaguera, O. Valero, Asymptotic complexity analysis and denotational semantics for recursive programs based on complexity spaces, Semantics - Advances in Theories and Mathematical Models, M.T. Azfal Ed., pp. 99-120. InTech, Rijeka, Croatia, 2012).
- [10] A.M. Rubinov, Turnpike sets in discrete disperse dynamical systems, Sib. Math. J. 21 (1980), 136146.
- [11] A.M. Rubinov, Multivalued Mappings and Their Applications in Economic Mathematical Problems, Nauka: Leningrad, Russia, 1980.
- [12] B. Samet, C. Vetro, H. Yazidi, A fixed point theorem for a MeirKeeler type contraction through rational expression, J. Nonlinear Sci. Appl. 6 (2013), 162169.
- [13] M. Schellekens, The Smyth completion: A common foundation for denotational semantics and complexity analysis, Electron. Notes Theor. Comput. Sci. 1 (1995), 535556.
- [14] S. Stević, On the recursive sequence $x_{n+1} = g(x_n, x_{n+1})/(A + x_n)$, Appl. Math. Lett. 15 (2002), 305-308.
- [15] S. Stević, On the recursive sequence $x_{n+1} = x_{n-1}/g(x_n)$, Taiwan. J. Math. 6 (2002), 405-414.
- [16] S. Stević, More on a rational recurrence relation, Appl. Math. E-Notes 4 (2004), 8084.
- [17] A.J. Zaslavski, Turnpike properties for dynamical systems determined by differential inclusions, Symmetry 13, 2326 (2021).