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1. INTRODUCTION AND PRELIMINARIES

For a long time the study of several aspects of rational difference equations attracted the

attention of numerous researchers, producing a wide literature on this topic. The excellent book

[4] contains an extensive list of well-known and distinguished instances of this kind of difference

equations (see also the recent and interesting articles [11, 12] and the references there in).

The main objective of this paper is to show, in a straightforward manner, the existence and

uniqueness of solution for certain rational difference equations by means of fixed point techniques

in the frame of quasi-metric spaces. Several special cases of typical rational difference equations are

contained in our approach.

In the sequel, by R,R+,N and ω we will denote the sets of real numbers, the set of non-negative

real numbers, the set of positive integer numbers and the set of non-negative integer numbers,

respectively. Our basic reference for quasi-metric spaces will be [5]. A quasi-metric on a set X is a

function d : X ×X → R+ verifying the following conditions for all x, y, z ∈ X:

(qm1) d(x, y) = d(y, x) = 0 ⇔ x = y;

(qm2) d(x, z) ≤ d(x, y) + d(y, z).

A quasi-metric space is a pair (X, d) where X is a set and d is a quasi-metric on X.

If (X, d) is a quasi-metric space, the function ds : X×X → R+ given by ds(x, y) = max{d(x, y), d(y, x)}
for all x, y ∈ X, is a metric on X.

A quasi-metric space (X, d) is called bicomplete if the metric space (X, ds) is complete.
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A basic and important example of a bicomplete quasi-metric space is the pair (R, d) where

d(x, y) = max{x− y, 0} for all x, y ∈ R (note that ds is the Euclidean metric on R).

Given M > 0, we denote by [0,M ]ω the set of all functions (sequences) from ω to [0,M ].

In our context the so-called supremum quasi-metric on [0,M ]ω, defined below, will play a

central role because it allows calculations and estimates to be carried out in a simple and relatively

fast way.

Denote by dsup the function from [0,M ]ω × [0,M ]ω to [0,M ] given by

dsup(f, g) = sup
n∈ω

max{g(n)− f(n), 0},

for all f, g ∈ [0,M ]ω.

Then dsup is a quasi-metric on [0,M ]ω which will be called the supremum quasi-metric on

[0,M ]ω.

Since (dsup)
s is the well-known supremum metric on [0,M ]ω, ([0,M ]ω, (dsup)

s) is a complete

metric space, so we have the following.

Proposition 1. The quasi-metric space ([0,M ]ω, dsup) is bicomplete.

The use of the supremum quasi-metric instead of the supremum metric has the advantage

that we have dsup(f, g) = 0 whenever g(n) ≤ f(n) for all n ∈ ω. If, in addition, f ̸= g, the

equality dsup(f, g) = 0 can be interpreted, from a computational view, as g is more ‘efficient’ than f .

Of course, that relevant information remains hidden if one only computes (dsup)
s(f, g).

Besides, our start point will be the famous Browder fixed point theorem [3], which is established

as follows.

Theorem 1 (Browder). Let (X, d) be a complete metric space. If T is a self map of X for which

there exists a non-decreasing right continuous function φ : R+ → R+ satisfying φ(t) < t for

all t > 0, and d(Tx, Ty) ≤ φ(d(x, y)) for all x, y ∈ X, then T has a unique fixed point z ∈ X.

Furthermore limn→∞ d(z, Tnx) = 0 for all x ∈ X.

Although there exist several well-known improvements of Browder’s theorem due, among others,

to Boyd and Wong [2], Matkowski[7], and Meir and Keeler [8], it will be sufficient to our purposes

here to apply the following quasi-metric extension of Theorem 1 (compare [1, Theorem 2.4]).

Theorem 2. Let (X, d) be a bicomplete quasi-metric space. If T is a self map of X for which there

exists a non-decreasing right continuous function φ : R+ → R+ satisfying φ(t) < t for all t > 0,

and d(Tx, Ty) ≤ φ(d(x, y)) for all x, y ∈ X, then T has a unique fixed point z ∈ X. Furthermore

limn→∞ ds(z, Tnx) = 0 for all x ∈ X.

Proof. Let T be a self map of X and φ : R+ → R+ be a non-decreasing right continuous function

such that φ(t) < t for all t > 0, and d(Tx, Ty) ≤ φ(d(x, y)) for all x, y ∈ X. Given x, y ∈ X, suppose,

without loss of generality, that ds(Tx, Ty) = d(Tx, Ty). Then ds(Tx, Ty) ≤ φ(d(x, y)) ≤ φ(ds(x, y)).

By Theorem 1, T has a unique fixed point z ∈ X and limn→∞ ds(z, Tnx) = 0 for all x ∈ X.

A self map T on a quasi-metric space (X, d) for which there is a function φ satisfying the

conditions of Theorem 2 will be called a Browder contraction on (X, d).

As an immediate consequence of Theorem 2 we obtain the following well-known quasi-metric

version of the Banach contraction principle (see e.g [1, 9]).
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Corollary 1. Let (X, d) be a bicomplete quasi-metric space. If T is a self map of X for which there

exists a constant α ∈ (0, 1) such that d(Tx, Ty) ≤ αd(x, y) for all x, y ∈ X, then T has a unique

fixed point z ∈ X. Furthermore limn→∞ ds(z, Tnx) = 0 for all x ∈ X.

A self map T on a quasi-metric space (X, d) for which there exists a constant α ∈ (0, 1) satisfying

the conditions of Corollary 1 is said to be a Banach contraction on (X, d).

Remark 1. Recall that condition ‘non-decreasing’ can be omitted in the statement of Theorem 1

and, hence, in the statement of Theorem 2 (see e.g. [2, Theorem 1] or [6, Remark 1]).

2. EXISTENCE AND UNIQUENESS OF SOLUTION FOR TWO TYPES OF

RATIONAL DIFFERENCE EQUATIONS

2.1. Difference equations of type I

We say that a difference equation with initial values x0, ..., xj , (xi > 0 for all i ∈ {0, ..., j}), is
of type I if for every n > j,

xn =

n∑
k=1

an,k
qxn−k

r + sxn−k
,

where:

(i) an,k ≥ 0, and 0 <
n∑

k=1

an,k ≤ 1 for all n > j;

(ii) 0 < q ≤ r and s > 0.

If we replace condition (ii) with

(ii’) 0 < q < r and s ≥ 0,

we will say that the difference equation is of type I’.

Remark 2. Notice that the difference equation considered in [9, 10] is of type I with an,1 = 1,

an,k = 0 for all n ∈ N and k > 1, and q = r = s = 1.

The following is an easy but representative example of a difference equation of type I:

xn = an,1
qxn−1

r + sxn−1
+ an,2

qxn−2

r + sxn−2
,

for n ≥ 2, with initial (positive) values x0, x1, and 0 < an,1 + an,2 ≤ 1, 0 < q ≤ r, s > 0.

In particular, for an,1 = an,2 = 1/2, and q = r = s = 1, we get the difference equation

xn =
xn−1 + xn−2 + 2xn−1xn−2

2(1 + xn−1 + xn−2 + xn−1xn−2)
,

for n ≥ 2.

Next we establish and prove the two main results of this subsection:

(R1) Every difference equation of type I has a unique solution, which will be obtained by applying

Theorem 2 to the bicomplete quasi-metric space ([0,M ]ω, dsup), where M is any positive constant

such that M ≥ max{x0, ..., xj}.

(R2) Every difference equation of type I’ has a unique solution which will be obtained by applying

Corollary 1 to the bicomplete quasi-metric space ([0,M ]ω, dsup).
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(We shall also give an example of a difference equation of type I for which Corollary 1 does not

work.)

Proof of (R1) and (R2). Given a difference equation of type I (resp. of type I’) we define,

in a natural way, the map Φ on [0,M ]ω such that, for any f ∈ [0,M ]ω, Φf(n) = xn for all n ∈
{0, ...j}, and

Φf(n) =
n∑

k=1

an,k
qf(n− k)

r + sf(n− k)
,

for all n > j.

Note that actually Φ is a self map of [0,M ]ω because for any f ∈ [0,M ]ω we have Φf(n) =

xn ≤ M if n ∈ {0, ...j}, and also qf(n−k) ≤ qM ≤ rM ≤ (r+ sf(n−k))M, by condition (ii) (resp.

by condition (ii’)). Hence

Φf(n) ≤
n∑

k=1

an,kM ≤ M ,

for all n > j, by condition (i).

Let f, g ∈ [0,M ]ω.

If Φg(n) ≤ Φf(n) for all n ∈ ω, we get dsup(Φf,Φg) = 0.

Otherwise, for each n ∈ N such that 0 < Φg(n)− Φf(n), we get

0 < Φg(n)− Φf(n) =
n∑

k=1

an,k
qr(g(n− k)− f(n− k))

(r + sg(n− k))(r + sf(n− k))
.

Put An := {k ∈ {1, . . . , n} : g(n− k) > f(n− k)}.

Since (r + sg(n− k))(r + sf(n− k)) ≥ r2 + rsg(n− k), we deduce that

0 < Φg(n)− Φf(n) ≤
∑
k∈An

an,k
qr(g(n− k)− f(n− k))

(r + sg(n− k))(r + sf(n− k))

≤
∑
k∈An

an,k
q(g(n− k)− f(n− k))

r + sg(n− k)
.

For each k ∈ An we have

q(g(n− k)− f(n− k))(r + sdsup(f, g)) ≤ qrdsup(f, g) + qsg(n− k)dsup(f, g)

= q(r + sg(n− k))dsup(f, g),

so

0 < Φg(n)− Φf(n) ≤
∑
k∈An

an,k
qdsup(f, g)

r + sdsup(f, g)
.

Since
∑
k∈An

an,k ≤ 1, we get

0 < Φg(n)− Φf(n) ≤ qdsup(f, g)

r + sdsup(f, g)
.
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• If the difference equation is of type I, we define a function φ : R+ → R+ as φ(t) = qt/(r+ st)

for all t ∈ R+. Obviously φ is non-decreasing and continuous on R+. Furthermore φ(t) < t

for all t > 0 because q ≤ r and s > 0.

Consequently

dsup(Φf,Φg) = sup
nεω

max{Φg(n)− Φf(n), 0} ≤ qdsup(f, g)

r + sdsup(f, g)
= φ(dsup(f, g)).

Therefore Φ is a Browder contraction on ([0,M ]ω, dsup). By Proposition 1 and Theorem 2 we

conclude that Φ has a unique fixed point in [0,M ]ω which is obviously the unique solution of

the given difference equation. This completes the proof of the result (R1).

• If the difference equation is of type I’, we get

dsup(Φf,Φg) ≤
qdsup(f, g)

r + sdsup(f, g)
≤ αdsup(f, g),

where α = q/r < 1.

Therefore Φ is a Banach contraction on ([0,M ]ω, dsup). By Proposition 1 and Corollary 1 we

conclude that Φ has a unique fixed point in [0,M ]ω which is obviously the unique solution of

the given difference equation. This completes the proof of the result (R2).

Finally, we show that Φ is not a Banach contraction on ([0,M ]ω, dsup), in general; i.e., there

are difference equations of type I for which Corollary 1 does not work.

To this end, suppose the case where we have a unique initial value x0 ≤ 1, with

n0∑
k=1

an0,k = 1

for some n0 ∈ N and q = r. Fix α ∈ (0, 1). Put ε = min{q(1− α)/2sα, 1} and let f, g ∈ [0, 1]ω given

by f(n) = 0 for all n ∈ ω, and g(n) = ε whenever 0 ≤ n < n0 and g(n) = 0 whenever n ≥ n0.

Then Φf(0) = x0 and Φf(n) = 0 for all n ∈ N, so

dsup(Φf,Φg) ≥ Φg(n0) =

n0∑
k=1

an0,k
qε

q + sε
=

qε

q + sε
> αε = αdsup(f, g).

We finish this part by illustrating Theorem 2 with a simple but methodological instance.

Indeed, consider a difference equation of type I with initial values x0, ..., xj , and such that

an,1 = 1 for all n > j. Thus an,k = 0 for 1 < k ≤ n. By the result (R1), we know that the self map

Φ of [0,M ]ω given, for any f ∈ [0,M ]ω, by Φf(n) = xn if n ∈ {0, ..., j} and

Φf(n) =
qf(n− 1)

r + sf(n− 1)
,

if n > j, has a unique solution h ∈ [0,M ]ω which is also the unique solution of the recurrence

equation.

Denote by f0 the function defined on ω by f0(n) = 0 for all n ∈ ω. From Theorem 2 it follows

that limk→∞(dsup)
s(h,Φkf0) = 0, so, in particular, limk→∞ dsup(Φ

kf0, h) = 0.

An easy computation shows that Φkf0(n) = 0 whenever n ≥ j + k.

Since for each ε > 0 there is as kε ∈ N such that dsup(Φ
kf0, h) < ε for all k ≥ kε, we deduce

that, in particular,

h(n)− Φkf(n) < ε,

for all n ∈ ω and k ≥ kε. Thus h(n) < ε for all n ≥ j + kε. Therefore limn→∞ h(n) = 0.
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2.2. Difference equations of type II

We say that a difference equation with initial values x0, ..., xj , (xi > 0 for all i ∈ {0, ..., j}), is
of type II if for every n > j,

xn =

n∑
k=1

an,kxn−k

c+

n∑
k=1

an,kxn−k

,

where:

(iii) an,k ≥ 0, and 0 <

n∑
k=1

an,k ≤ 1 for all n > j.

(iv) c = 1.

If we replace condition (iv) with

(iv’) c > 1,

we will say that the difference equation is of type II’.

Note that condition (iii) coincides with condition (i) for the difference equations of type I.

Notice also (compare Remark 2) that the difference equation considered in [9, 10] is of type II

with an,1 = 1 and an,k = 0 for all n ∈ N and k > 1.

Next we establish and prove the two main results of this subsection:

(R3) Every difference equation of type II has a unique solution, which will be obtained by applying

Theorem 2 to the bicomplete quasi-metric space ([0,M ]ω, dsup), where M is any positive constant

such that M ≥ max{x0, ..., xj}.

(R4) Every difference equation of type II’ has a unique solution which will be obtained by applying

Corollary 1 to the bicomplete quasi-metric space ([0,M ]ω, dsup).

(We shall also give an example of a difference equation of type II for which Corollary 1 does not

work.)

Proof of (R3) and (R4). As in the case of difference equations of type I or I’, given a difference

equation of type II (resp. of type II’) we define, in a natural way, the map Ψ on [0,M ]ω such that,

for any f ∈ [0,M ]ω, Ψf(n) = xn for all n ∈ {0, ...j}, and

Ψf(n) =

n∑
k=1

an,kf(n− k)

c+
n∑

k=1

an,kf(n− k)

,

for all n > j.

Note that actually Ψ is a self map of [0,M ]ω because for any f ∈ [0,M ]ω we have Ψf(n) =

xn ≤ M if n ∈ {0, ...j}, and, for n > j, we get

Ψf(n) ≤ M/c ≤ M,

by conditions (iii) and (iv) (resp. by conditions (iii) and (iv’)).

Let f, g ∈ [0, 1]ω.
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If Ψg(n) ≤ Ψf(n) for all n ∈ ω, we get dsup(Ψf,Ψg) = 0.

Otherwise, for each n ∈ N such that 0 < Ψg(n)−Ψf(n), we get

0 < Ψg(n)−Ψf(n) =

n∑
k=1

an,kg(n− k)

c+
n∑

k=1

an,kg(n− k)

−

n∑
k=1

an,kf(n− k)

c+
n∑

k=1

an,kf(n− k)

.

Put An := {k ∈ {1, . . . , n} : g(n− k) > f(n− k)}.

Then

0 < Ψg(n)−Ψf(n) ≤

c
∑
k∈An

(g(n− k)− f(n− k))

c2 + c
∑
k∈An

an,kg(n− k)
≤ dsup(f, g)

c+ dsup(f, g)
.

• If the difference equation is of type II, we define a function φ : R+ → R+ as φ(t) = t/(1 + t)

for all t ∈ R+ (recall that, in this case, we have c = 1). Obviously φ is non-decreasing and

continuous on R+. Furthermore φ(t) < t for all t > 0.

Consequently

dsup(Ψf,Ψg) = sup
nεω

max(Ψg(n)−Ψf(n), 0) ≤ φ(dsup(f, g)).

Therefore Ψ is a Browder contraction on ([0,M ]ω, dsup). By Proposition 1 and Theorem 2 we

conclude that Ψ has a unique fixed point in [0,M ]ω which is obviously the unique solution of

the given difference equation. This completes the proof of the result (R3).

• If the difference equation is of type II’, we get

dsup(Ψf,Ψg) ≤ dsup(f, g)

c+ dsup(f, g)
≤ αdsup(f, g),

where α = 1/c < 1.

Therefore Ψ is a Banach contraction on ([0,M ]ω, dsup). By Proposition 1 and Corollary 1 we

conclude that Ψ has a unique fixed point in [0,M ]ω which is obviously the unique solution of

the given difference equation. This completes the proof of the result (R4).

Finally, we show that Ψ is not a Banach contraction on ([0,M ]ω, dsup), in general; i.e., there

are difference equations of type II for which Corollary 1 does not work.

To this end, suppose, similarly to the equations of type I, the case where we have a unique

initial value x0 ≤ 1, with

n0∑
k=1

an0,k = 1 for some n0 ∈ N and c = 1. Fix α ∈ (0, 1). Choose ε ∈ (0, 1)

such that 1/(1 + ε) > α. Let f, g ∈ [0, 1]ω given by f(n) = 0 for all n ∈ ω, and g(n) = ε whenever

0 ≤ n < n0 and g(n) = 0 whenever n ≥ n0.

Then Ψf(0) = x0 and Ψf(n) = 0 for all n ∈ N, so

dsup(Ψf,Ψg) ≥ Ψg(n0) =
ε

1 + ε
> αε = αdsup(f, g).

2.3. Particular cases

The following particular cases of difference equations of type I and I’ are also special cases of

equations of type #23, #30, #37, #53, #61 and #129, respectively, in [4].
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a)

xn+1 =
βxn

A+Bxn
,

equation of type I for 0 < β ≤ A and B > 0.

b)

xn+1 =
γxn−1

A+ Cxn−1
,

equation of type I for 0 < γ ≤ A and C > 0.

c)

xn+1 =
δxn−2

A+Dxn−2
,

equation of type I for 0 < δ ≤ A and D > 0.

d)

xn+1 =
βxn + γxn−1

A
,

equation of type I’ for 0 < β + γ ≤ A.

e)

xn+1 =
γxn−1 + δxn−2

A
,

equation of type I’ for 0 < γ + δ ≤ A.

f)

xn+1 =
βxn + γxn−1 + δxn−2

A
,

equation of type I’ for 0 < β + γ + δ ≤ A.

Finally we present a handful of particular cases of difference equations of type II and II’ that

are also special cases of equations of type #153, #158, #163 and #220, respectively, in [4].

g)

xn+1 =
βxn + γxn−1

A+Bxn + Cxn−1
,

equation of type II for 0 < β + γ ≤ 1, β = B, γ = C and A = 1, and of type II’ if we replace A = 1

with A > 1.

h)

xn+1 =
βxn + δxn−2

A+Bxn +Dxn−2
,

equation of type II for 0 < β + δ ≤ 1, β = B, δ = D and A = 1, and of type II’ if we replace A = 1

with A > 1.

i)

xn+1 =
γxn−1 + δxn−2

A+ Cxn−1 +Dxn−2
,

equation of type II for 0 < γ + δ ≤ 1, γ = C, δ = D and A = 1, and of type II’ if we replace A = 1

with A > 1.
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j)

xn+1 =
βxn + γxn−1 + δxn−2

A+Bxn + Cxn−1 +Dxn−2
,

equation of type II for 0 < β + γ + δ ≤ 1, β = B, γ = C, δ = D and A = 1, and of type II’ if we

replace A = 1 with A > 1.
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