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NONLOCAL SCHRÖDINGER–KIRCHHOFF EQUATIONS WITH

THE EXTERNAL MAGNETIC FIELD

YUN-HO KIM

Department of Mathematics Education, Sangmyung University, Seoul 03016,

Republic of Korea

Email: kyh1213@smu.ac.kr

ABSTRACT. We are concerned with the existence of a nontrivial weak solution to Schrödinger–

Kirchhoff type equations involving the fractional magnetic field without Ambrosetti and Rabinowitz

condition using mountain pass theorem under suitable assumptions of the external force. Also,

we present the existence of infinitely many large- or small- energy solutions to this problem. The

strategy of the proof for these results is to approach the problem by applying the variational methods,

namely, the fountain and the dual fountain theorem with Cerami condition.
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1. Introduction

The present paper is devoted to the existence of solutions for the following

Schrödinger–Kirchhoff type equation with the fractional magnetic field

(1.1) K
(
|z|2s,A

)
(−∆)sAz + P (x)z = λh(x, |z|)z in RN ,

where

|z|2s,A =

∫
RN

∫
RN

|z(x)− ei(x−y)·A(x+y
2

)z(y)|2

|x− y|N+2s
dxdy, s ∈ (0, 1),

and the fractional magnetic operator (−∆)sA is defined as

(−∆)sAϕ(x) = 2 lim
ε→0+

∫
RN\Bε(x)

ϕ(x)− ei(x−y)·A(x+y
2

)ϕ(y)

|x− y|N+2s
dy, x ∈ RN ,

for all ϕ ∈ C∞0 (RN ,C). Here, Bε(x) denotes a ball in RN centered at x ∈ RN

and radius ε > 0. The functions K : R+
0 → R+

0 is a continuous function and A :

RN → RN is the magnetic potential. Also, the nonlinearity function h : RN ×
R → R will be stated later (see Section 2). The operator (−∆)sA is a fractional
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Laplacian accompanied by the magnetic field, which is the nonlocal operator given

in [21] as a fractional extension of the magnetic pseudorelativistic operator. We refer

to [20] for more details for s = 1/2. In particular, in the viewpoint of quantum

mechanics, many people have studied on quantum phenomena from various angles

(see [1, 3, 9, 12, 18, 32, 33]). On the other hand, when A ≡ 0, the standard fractional

Laplacian (−∆)s has been become a classical topic for a long time and it is applied in

various research areas: the social sciences, quantum or phase transition phenomena,

continuum mechanics, game theory and Lévy processes [5, 6, 17, 22, 35] and the

references therein.

Kirchhoff in [25] first provided a model given by the equation

ρ
∂2z

∂t2
−
(ρ0

h
+
E

2L

∫ L

0

∣∣∣∣∂z∂x
∣∣∣∣2 dx)∂2z

∂x2
= 0,

which extends the classical D’Alembert’s wave equation by considering the changes

in the length of the strings during the vibrations. In this direction, the non-local

problem of Kirchhoff type equations have been investigated in [8, 10, 14, 15].

In the recent paper [36], the authors consider the following limiting problem,

which is a Bourgain-Brezis-Mironescu type result in the framework of magnetic Sobolev

spaces

lim
s→1

(1− s)
∫

Ω

∫
Ω

|z(x)− ei(x−y)·A(x+y
2

)z(y)|2

|x− y|N+2s
dxdy = CN

∫
Ω

|∇z − iA(x)z|2dx,

where CN = 1
2

∫
SN−1 |ω · e|2dHN−1(ω), and SN−1 is the unit sphere of RN and e is any

unit vector of RN . In fact, based on various methods, many researchers have estab-

lished the existence of a solution to the following limiting equation (or Schrödinger

equation with electromagnetic potential)(
− i∇+A(x)

)2
z + P (x)z = h(x, |z|)z, in RN

(see [2, 34, 41, 42]).

Now in order to ensure the existence of solutions to the nonlinear elliptic equa-

tions, we remind the Ambrosetti and Rabinowitz condition ((AR)-condition) [4], that

is,

(AR) There exist M > 0 and ζ > 2 such that

0 < ζH(x, τ) ≤ h(x, τ)τ 2, for x ∈ Ω, and τ ≥M,

where H(x, τ) =
∫ τ

0
h(x, s)sds and Ω is a bounded domain in RN .

It is commonly well known that (AR)-condition plays an important role in applying

the critical point theory. However, this condition is restrictive and eliminates many

nonlinearities. Thus many researchers have attempted to drop the (AR)-condition in

the elliptic problem of nonlocal type (see e.g. [16, 22, 23, 24, 28, 37, 39, 41]). In this
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regard, we are to show the existence of a nontrivial solution for problem (1.1) without

(AR)-condition using the mountain pass theorem with Cerami condition. Further-

more, we present the existence of infinitely many large- or small- energy solutions

weak solutions to our problem without (AR)-condition. Especially, following in [26,

Remark 1.8], there are many examples which are not fulfilled the (AR)-condition of

h in a elliptic problem. Thus, inspired by these examples, we investigate the exis-

tence and multiplicity of weak solutions to the fractional p-Laplacian equation (1.1)

with the external magnetic potential. The strategy of the proof for these results is

to approach the problem by applying the variational methods, namely, the fountain

theorem and the dual fountain theorem with Cerami condition. The key point in

the present paper is to provide the existence of multiple solutions to (1.1) under

suitable conditions on nonlinear growth h that does not satisfy (AR). However the

main difficulty for getting the multiplicity results under these assumptions on the

nonlinear term h is to make sure the Cerami compactness condition of the energy

functional corresponding to (1.1). It is worth pointing out that we overcome it from

the coercivity of the potential function P . Hence our proof of these compactness con-

dition of the Palais-Smale type slightly differs from those of previous related studies

[16, 22, 23, 24, 28, 37, 39, 41].

This paper is organized as follows. In Section 2, we state some basic results

to deal with this type equation with the fractional magnetic field and review well

known facts for the fractional Sobolev space. And under certain assumptions on h,

we establish the existence of a weak solution of problem (1.1) using the mountain

pass theorem. And finally, we provide the existence of infinitely many large- or small-

energy solutions weak solutions by employing the fountain theorem and the dual

fountain theorem with Cerami condition.

2. Preliminaries and main results

We assume that P : RN → R+ satisfies

(P) P ∈ L1
loc(RN), ess infx∈RN P (x) > 0 and lim|x|→∞ P (x) = +∞.

Let L2
P (RN) denote the Lebesgue space of real valued functions with P (x)|z|2 ∈

L1(RN), endowed with norm

||z||22,P =

∫
RN
P (x)|z|2 dx.

The fractional Sobolev space Hs
P (RN) is then defined as for s ∈ (0, 1)

Hs
P (RN) =

{
z ∈ L2

P (RN) :

∫
RN

∫
RN

|z(x)− z(y)|2

|x− y|N+2s
dxdy < +∞

}
.
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The space Hs
P (RN) is endowed with the norm

||z||2HsP (RN ) :=

(
||z||22,P + [z]2s

)
with [z]2s :=

∫
RN

∫
RN

|z(x)− z(y)|2

|x− y|N+2s
dxdy.

For further details on the fractional Sobolev spaces we refer the reader to [27]

and the references therein. We recall the embedding theorem; see e.g. [22, 30].

Lemma 2.1. Let (P) hold and let 2∗s be the fractional critical Sobolev exponent, that

is

2∗s :=

 2N
N−2s

, if 2s < N,

∞, if 2s ≥ N.

Then, the embedding Hs
P (RN)→ Lγ(RN) is continuous for any γ ∈ [2, 2∗s] and more-

over, the embedding Hs
P (RN) ↪→ Lγ(RN) is compact for any γ ∈ [2, 2∗s).

Let L2
P (RN ,C) be the Lebesgue space of functions z : RN → C with P (x)|z|2 ∈

L1(RN), endowed with the (real) scalar product

〈z, v〉L2
P

= R

(∫
RN
P (x)zv̄dx

)
, ∀ z, v ∈ L2(RN ,C),

where v̄ denotes complex conjugation of v ∈ C.

Also, due to [11], the magnetic Gagliardo seminorm is given by

|z|2s,A =

∫
RN

∫
RN

|z(x)− ei(x−y)·A(x+y
2

)z(y)|2

|x− y|N+2s
dxdy.

Define Hs
A,P (RN) as the closure of C∞c (RN ,C) with respect to the norm

||z||2s,A = (||z||22,P + |z|2s,A).

A scalar product on Hs
A,P (RN) is given by

〈z, v〉s,A = 〈z, v〉L2
P

+ R

(∫
RN

∫
RN

[z(x)− ei(x−y)·A(x+y
2

)z(y)] · [v(x)− ei(x−y)·A(x+y
2

)v(y)]

|x− y|N+2s
dxdy

)
.

In fact, arguing as in [11, Proposition 2.1], we see that (Hs
A,P (RN), 〈·, ·〉) is a real

Hilbert space. Moreover, we can easily show that it is a reflexive and separable

Banach space as the similar arguments in [29, 30, Appendix]. The following Lemmas

2.2 and 2.3 are given in [39, Lemmas 3.4 and 3.5].

Lemma 2.2. If (P) holds and r ∈ [2, 2∗s], then the embedding

Hs
A,P (RN ,C) ↪→ Lr(RN ,C)

is continuous. Furthermore, for any compact subset Γ ⊂ RN and r ∈ [1, 2∗s), then the

embedding

Hs
A,P (RN ,C) ↪→ Hs

P (Γ,C) ↪→ Lr(Γ,C)
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is continuous and the latter is compact, where Hs
P (Γ,C) is equipped with the following

norm:

||z||2s,P =
(∫

Γ

P (x)|z|2dx+

∫
Γ

∫
Γ

|z(x)− z(y)|2

|x− y|N+2s
dxdy

)
.

Lemma 2.3. Under the assumption (P), for all bounded sequence {zn} inHs
A,P (RN ,C)

the sequence {|zn|} has a subsequence converging strongly to some z in Lr(RN) for

all r ∈ [2, 2∗s).

For our problem, we suppose that K : R+
0 → R+

0 satisfies the following conditions:

(K1) K ∈ C(R+
0 ) satisfies infτ∈R+ K(τ) ≥ a > 0, where a > 0 is a constant.

(K2) There is a positive constant θ ∈ [1, N
N−2s

) such that θK(τ) = θ
∫ τ

0
K(η)dη ≥

K(τ)τ for any τ ≥ 0.

A typical example for K is given by K(τ) = b0 + b1τ
m with m > 0, b0 > 0 and b1 ≥ 0.

Now we assume that for 1 < 2θ < q < 2∗s,

(H1) h : RN × R+ → R satisfies the Carathéodory condition.

(H2) h ∈ C(RN × R+,R), and there exist constants c1, c2 > 0 such that

|h(x, τ)| ≤ c1 + c2τ
q−2, for all (x, τ) ∈ RN × R+, q ∈ (2θ, 2∗s).

(H3) h(x, τ) = o(τ) as τ → 0 for x ∈ RN uniformly.

(H4) limτ→∞
H(x,τ)
τ2θ

= ∞ uniformly for almost all x ∈ RN , where the number θ was

given in (K2), and H(x, τ) =
∫ τ

0
h(x, η)η dη for all x ∈ RN .

(H5) There are ν > 2θ and C > 0 such that

h(x, τ)τ 2 − νH(x, τ) ≥ −β(x) for all x ∈ RN and τ ≥ C,

where β ∈ L1(RN) ∩ L∞(RN) with β(x) ≥ 0.

(H6) There exist c0 ≥ 0, r0 ≥ 0, and κ > N
2s

such that

|H(x, τ)|κ ≤ c0τ
2κH(x, τ)

for all (x, τ) ∈ RN×R+ and τ ≥ r0, whereH(x, τ) = ( 1
2θ

)h(x, τ)τ 2−H(x, τ) ≥ 0.

The Euler functional corresponding to the problem (1.1) is Jλ : Hs
A,P (RN ,C)→ R

defined as

Jλ(z) =
1

2
(K(|z|2s,A) + ||z||22,P )− λ

∫
RN
H(x, |z|) dx.

The functional Jλ is Fréchet differentiable on Hs
A,P (RN ,C), and its derivative is

〈J ′λ(z), v〉

= R

(
K(|z|2s,A)

∫
RN

∫
RN

[z(x)− ei(x−y)·A(x+y
2

)z(y)] · [v(x)− ei(x−y)·A(x+y
2

)v(y)]

|x− y|N+2s
dxdy

+

∫
RN
P (x)zv̄ dx− λ

∫
RN
h(x, |z|)zv̄ dx

)
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for any z, v ∈ Hs
A,P (RN ,C). Hereafter, 〈·, ·〉 denotes the duality pairing between

(Hs
A,P (RN ,C))′ and Hs

A,P (RN ,C). Following in [39], we observe that the critical

points of Jλ are exactly the weak solutions of (1.1) and the functional Jλ is weakly

lower semi-continuous in Hs
A,P (RN ,C).

The following result is to show that the energy functional Jλ satisfies the geo-

metric conditions.

Lemma 2.4. Let s ∈ (0, 1) and N > 2s. Assume that (P), (K1), (K2) and (H1)–

(H4) hold. Then the geometric conditions in the mountain pass theorem hold, i.e.,

(1) z = 0 is a strict local minimum for Jλ.

(2) Jλ is unbounded from below on Hs
A,P (RN ,C).

Proof. Due to (H2) and (H3), for any ε > 0, we can choose a positive constant denoted

C(ε) such that

(2.1) |h(x, τ)τ | ≤ ετ + C(ε)τ q−1, for all (x, τ) ∈ RN × R+.

Assume that ||z||s,A < 1. Owing to (K1), (K2) and (2.1), one has

Jλ(z) =
1

2
(K(|z|2s,A) + ||z||22,P )− λ

∫
RN
H(x, |z|)dx

≥ min{1, aθ−1}
2

||z||2s,A −
λε

2
||z||2L2(RN ) −

λC(ε)

q
||z||q

Lq(RN )

≥ min{1, aθ−1}
2

||z||2s,A −
λεC

2
||z||2s,A −

λCC(ε)

q
||z||qs,A

for some constant C. Choose ε > 0 so small that 0 < λεC < min{1,aθ−1}
4

. Then

Jλ(z) ≥ min{1, aθ−1}
4

||z||2s,A − C(λ, ε)C||z||qs,A.

Since q > 2, there are R > 0 small sufficiently and δ > 0 such that Jλ(z) ≥ δ > 0

when ||z||s,A = R. Therefore z = 0 is a strict local minimum for Jλ.

Next we prove the condition (2). By the condition (H4), for any C̃ > 0, we can

choose a constant δ > 0 such that

(2.2) H(x, τ) ≥ C̃τ 2θ

for τ > δ and for almost all x ∈ RN . Under the assumption (K2), we note that for

all ξ ≥ 0,

(2.3) K(ξ) ≤ K(1)(1 + ξθ).
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Relations (2.2) and (2.3) with Lemma 2.3 imply that for v ∈ Hs
A,P (RN ,C)

Jλ(tv) =
1

2
(K(|tv|2s,A) + ||tv||22,P )−

∫
RN
H(x, |tv|)dx

≤ 1

2

(
K(1)(1 + |tv|2θs,A) + ||tv||22,P

)
− λt2θC̃

∫
{|tv|>δ}

|v|2θ dx

≤ 1

2

(
2K(1)t2θ|v|2θs,A) + t2θ||v||22,P

)
− λt2θC̃

∫
{|tv|>δ}

|v|2θ dx

= t2θ
(1

2

(
2K(1)||v||2θs,A + ||v||22,P

)
− λC̃

∫
{|tv|>δ}

|v|2θ dx
)

for t > 0. If C̃ is large sufficiently, then we deduce that Jλ(tv) → −∞ as t → ∞.

Hence the functional Jλ is unbounded from below. The proof is completed.

First of all, we introduce the Cerami condition, which was initially provided by

Cerami [7].

Definition 2.5. Let the functional Φ be C1 and c ∈ R. If any sequence {zn} satisfying

Φ(zn)→ c and (1 + ||zn||)||Φ′(zn)|| → 0

possesses a convergent subsequence, then we say that Φ fulfils Cerami condition ((C)c-

condition in short) at the level c.

Definition 2.6. A function z ∈ Hs
A,P (RN ,C) is called a weak solution of (1.1) if z

satisfies

R
(
K(|z|2s,A)

∫
RN

∫
RN

[z(x)− ei(x−y)·A(x+y
2

)z(y)] · [ϕ(x)− ei(x−y)·A(x+y
2

)ϕ(y)]

|x− y|N+2s
dxdy

+

∫
RN
P (x)zϕ̄ dx

)
= R

(
λ

∫
Ω

h(x, |z|)zϕ̄ dx
)

for all ϕ ∈ Hs
A,P (RN ,C).

The following lemmas are essential in establishing the existence of a nontrivial

weak solution for the given problem.

Lemma 2.7. Let s ∈ (0, 1) and N > 2s. Assume that (P), (K1), (K2), (H1)–(H3)

and (H5) hold. Then the functional Jλ satisfies the (C)c-condition for any λ > 0.

Proof. For c ∈ R, let {zn} be a (C)c-sequence in Hs
A,P (RN ,C), that is,

(2.4) Jλ(zn)→ c and ||J ′λ(zn)||s,A′ (1 + ||zn||s,A)→ 0 as n→∞,

which means

(2.5) c = Jλ(zn) + o(1) and 〈J ′λ(zn), zn〉 = o(1),

where o(1)→ 0 as n→∞. If {zn} is bounded in Hs
A,P (RN ,C), it follows from the

analogous argument as in the proof of Lemma 4.2 in [39] that sequence {zn} converges
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strongly to z in Hs
A,P (RN ,C). Hence, it suffices to ensure that the sequence {zn} is

bounded in Hs
A,P (RN ,C). Notice that P (x)→ +∞ as |x| → ∞, then

( 1

2θ
− 1

ν

)∫
RN
P (x) |zn|2 dx− C1

∫
|zn|≤C

(c1 |zn|2 + c2 |zn|q) dx

≥ 1

2

( 1

2θ
− 1

ν

)
||zn||22,P − C0,

where C1, C0 are positive constants and c1, c2 are given in (H2). Indeed we know that( 1

2θ
− 1

ν

)∫
RN
P (x) |zn|2 dx− C1

∫
|zn|≤C

(c1 |zn|2 + c2 |zn|q) dx

≥ 1

2

( 1

2θ
− 1

ν

)∫
RN
P (x) |zn|2 dx+

1

2

( 1

2θ
− 1

ν

)∫
|zn|≤1

P (x) |zn|2 dx

− C1

∫
|zn|≤1

(c1 |zn|2 + c2 |zn|q) dx− C1

∫
1<|zn|≤C

(c1 |zn|2 + c2 |zn|q) dx

≥ 1

2

( 1

2θ
− 1

ν

)∫
RN
P (x) |zn|2 dx+

1

2

( 1

2θ
− 1

ν

)∫
|zn|≤1

P (x) |zn|2 dx

− C1(c1 + c2)

∫
|zn|≤1

|zn|2 dx− C̃1,

where C̃1 > 0 is a constant. Since |{x ∈ RN : |zn| > 1}| <∞, we know that there are

a bounded set B and a set M of measure zero such that {x ∈ RN : |zn| > 1} = B∪M
where | · | is the Lebesgue measure in RN . Without loss of generality, suppose that

there exists Bτ ⊆ RN such that {x ∈ RN : |zn| > 1} ⊂ Bτ . Since P (x) → +∞ as

|x| → ∞, there is τ0 > 0 such that |x| ≥ τ0 > τ implies P (x) ≥ 2C2(c1 + c2) 2θν
ν−2θ

.

Hence one has( 1

2θ
− 1

ν

)∫
RN
P (x) |zn|2 dx− C2

∫
|zn|≤C

(c1 |zn|2 + c2 |zn|q) dx

≥ 1

2

( 1

2θ
− 1

ν

)∫
RN
P (x) |zn|2 dx+

1

2

( 1

2θ
− 1

ν

)∫
{|zn|≤1}∩Bcτ0

P (x) |zn|2 dx

+
1

2

( 1

2θ
− 1

ν

)∫
{|zn|≤1}∩Bτ0

P (x) |zn|2 dx− C2(c1 + c2)

∫
{|zn|≤1}∩Bcτ0

|zn|2 dx

− C2(c1 + c2)

∫
{|zn|≤1}∩Bτ0

|zn|2 dx− C̃2

≥ 1

2

( 1

2θ
− 1

ν

)∫
RN
P (x) |zn|2 dx+

1

2

( 1

2θ
− 1

ν

)∫
{|zn|≤1}∩Bcτ0

P (x) |zn|2 dx

− C2(c1 + c2)

∫
{|zn|≤1}∩Bcτ0

|zn|2 dx− C0

≥ 1

2

( 1

2θ
− 1

ν

)∫
RN
P (x) |zn|2 dx− C0,
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as claimed. This together with (K1)–(K2), (H2)–(H3) and (H5) yields

c+ 1 ≥ Jλ(zn)− 1

ν
〈J ′λ(zn), zn〉

≥ 1

p
K(|zn|2s,A)− 1

ν
K(|zn|2s,A)|zn|2s,A +

(1

p
− 1

ν

)∫
RN
P (x) |zn|2 dx

+ λ

∫
RN

(
1

ν
h(x, |zn|)|zn|2 −H(x, |zn|)

)
dx

≥
(

1

2θ
− 1

ν

)
K(|zn|2s,A)|zn|2s,A +

( 1

2θ
− 1

ν

)∫
RN
P (x) |zn|2 dx

+ λ

∫
|zn|>C

(
1

ν
h(x, |zn|)|zn|2 −H(x, |zn|)

)
dx− C2

∫
|zn|≤C

(c1 |zn|2 + c2 |zn|q) dx

≥ 1

2

( 1

2θ
− 1

ν

)
min{1, a}||zn||2s,A −

λ

ν

∫
RN
β(x) dx− C0

≥ 1

2

( 1

2θ
− 1

ν

)
min{1, a}||zn||2s,A −

λ

ν
||β||L1(RN ) − C0.

Therefore, the sequence {zn} is bounded in Hs
A,P (RN ,C). This completes the proof.

Lemma 2.8. Let s ∈ (0, 1) and N > 2s. Assume that (P), (K1), (K2), (H1)–(H4)

and (H6) hold. Then the functional Jλ satisfies the (C)c-condition for any λ > 0.

Proof. For c ∈ R, let {zn} be a (C)c-sequence in Hs
A,P (RN ,C) satisfying (2.4) and

(2.5). As in Lemma 2.7, it suffices to ensure that the sequence {zn} is bounded

in Hs
A,P (RN ,C). We argue by contradiction. Assume that the sequence {zn} is

unbounded in Hs
A,P (RN ,C). So then we may assume that

||zn||s,A →∞, as n→∞.

Due to the condition (2.5), we have that

(2.6) c = Jλ(zn) + o(1) =
1

2
(K(|zn|2s,A) + ||zn||22,P )− λ

∫
RN
H(x, |zn|) dx+ o(1).

Since ||zn||s,A →∞ as n→∞, we assert by (2.6) that∫
RN
H(x, |zn|) dx ≥

1

2λ
(K(|zn|2s,A) + ||zn||22,P )− c

λ
+
o(1)

λ

≥ 1

2λ
min{1, aθ−1}||zn||2s,A −

c

λ
+
o(1)

λ
→∞ as n→∞.(2.7)

Define a sequence {ωn} by ωn = zn/||zn||s,A. Then it is immediate that {ωn} ⊂
Hs
A,P (RN ,C) and ||ωn||s,A = 1. Hence, up to a subsequence, still denoted by {ωn}, we

obtain ωn ⇀ ω in Hs
A,P (RN ,C) as n→∞, we have

(2.8) ωn(x)→ ω(x) for a.e. x ∈ RN and |ωn| → |ω| in Lr(RN)
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as n → ∞ for 2 ≤ r < 2∗s. Set Σ =
{
x ∈ RN : ω(x) 6= 0

}
. By the convergence (2.8),

we know that

|zn(x)| = |wn(x)| ||zn||s,A →∞ as n→∞

for all x ∈ Σ. Then it follows from (K2) and (H4) that for all x ∈ Σ,

lim
n→∞

H(x, |zn|)
K(|zn|2s,A) + ||zn||22,P

≥ lim
n→∞

H(x, |zn|)
K(1)(1 + |zn|2θs,A) + ||zn||22,P

≥ lim
n→∞

H(x, |zn|)
2K(1)||zn||2θs,A + ||zn||2θ2,P

≥ lim
n→∞

H(x, |zn|)
(2K(1) + 1) ||zn||2θs,A

≥ lim
n→∞

H(x, |zn|)
(2K(1) + 1) |zn|2θ

|wn|2θ

=∞,(2.9)

where the inequality K(η) ≤ K(1)(1 + ηθ) is used for all η ∈ R+
0 (see (K1)) because

if 0 ≤ η < 1, then K(η) =
∫ η

0
K(s) ds ≤ K(1), and if η > 1, then K(η) ≤ K(1)ηθ.

Thus we obtain that |Σ| = 0. Indeed, assume that |Σ| 6= 0. Taking account into

(H4) we can choose τ0 > 1 such that H(x, τ) > τ 2θ for all x ∈ RN and τ0 < τ . By

means of (H1) and (H2), we derive that there is K > 0 such that |H(x, τ)| ≤ K for

all (x, τ) ∈ RN × (0, τ0]. Hence there is a K0 ∈ R such that H(x, τ) ≥ K0 for all

(x, τ) ∈ RN × R+, and thus

(2.10)
H(x, |zn|)−K0

K(|zn|2s,A) + ||zn||22,P
≥ 0,

for all x ∈ RN and for all n ∈ N. In accordance with relations (2.7), (2.9), (2.10) and

the Fatou lemma, we infer that

1

λ
= lim inf

n→∞

∫
RN H(x, |zn|) dx

λ
∫
RN H(x, |zn|) dx+ c− o(1)

≥ lim inf
n→∞

∫
RN

2H(x, |zn|)
K(|zn|2s,A) + ||zn||22,P

dx

≥ lim inf
n→∞

∫
RN

2H(x, |zn|)
K(|zn|2s,A) + ||zn||22,P

dx− lim sup
n→∞

∫
RN

2K0

K(|zn|2s,A) + ||zn||22,P
dx

≥ lim inf
n→∞

∫
Σ

2(H(x, |zn|)−K0)

K(|zn|2s,A) + ||zn||22,P
dx

≥
∫

Σ

lim inf
n→∞

2(H(x, |zn|)−K0)

K(|zn|2s,A) + ||zn||22,P
dx

=

∫
Σ

lim inf
n→∞

2H(x, |zn|)
K(|zn|2s,A) + ||zn||22,P

dx−
∫

Σ

lim sup
n→∞

2K0

K(|zn|2s,A) + ||zn||22,P
dx

=∞,
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which is a contradiction. This means ω(x) = 0 for almost all x ∈ RN .

Note that for a sufficiently large n,

c+ 1 ≥ Jλ(zn)− 1

2θ
〈J ′λ(zn), zn〉

=
1

2
(K(|zn|2s,A) + ||zn||22,P )− λ

∫
RN
H(x, |zn|) dx

− 1

2θ
(K(|zn|2s,A)|zn|2s,A + ||zn||22,P ) +

λ

2θ

∫
RN
h(x, |zn|) |zn|2 dx

≥ λ

∫
RN
H(x, zn) dx.(2.11)

Let us define Σn(ã, b) := {x ∈ RN : ã ≤ |zn| < b} for 0 ≤ ã < b. By the convergence

(2.8), we know that

(2.12) |ωn| → 0 in Lr(RN) and ωn(x)→ 0 for a.e. x ∈ RN

for 2 ≤ r < 2∗s. Hence from the relation (2.6) we get

(2.13) 0 <
1

2λ
≤ lim sup

n→∞

∫
RN

|H(x, |zn|)|
K(|z|2s,A) + ||zn||22,P

dx.

On the other hand, from (H2), we know that

(2.14) |H(x, |z|)| ≤ c1

2
|z|2 +

c2

q
|z|q.

Then, from the conditions (K1)–(K2), (2.12) and (2.14), we have∫
Σn(0,r0)

H(x, |zn|)
K(|zn|2s,A) + ||zn||22,P

dx

≤
∫

Σn(0,r0)

|zn|2 + 1
q
|zn|q

K(|zn|2s,A) + ||zn||22,P
dx

≤
||zn||2L2(RN )

min{1, aθ−1}||zn||2s,A
+

1

min{1, aθ−1}q

∫
Σn(0,r0)

|zn|q−2 |ωn|2 dx

≤
||zn||2L2(RN )

min{1, aθ−1}||zn||2s,A
+

1

min{1, aθ−1}q
rq−2

0

∫
RN
|ωn|2 dx

≤
||ωn||2L2(RN )

min{1, aθ−1}
+

1

min{1, aθ−1}q
rq−2

0

∫
RN
|ωn|2 dx→ 0,(2.15)

as n→∞, where we use the inequality

K(|zn|2s,A) + ||zn||22,P ≥ min{1, aθ−1}||zn||2s,A

by the definition of the Kirchhoff function K and norm || · ||s,A. Set κ′ = κ/(κ − 1).

Since κ > N
2

, we see that 2 < 2κ′ < 2∗s. Hence, it follows from (H5), (2.11) and (2.12)
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that ∫
Σn(r0,∞)

|H(x, |zn|)|
K(|zn|2s,A) + ||zn||22,P

dx ≤
∫

Σn(r0,∞)

|H(x, |zn|)|
min{1, aθ−1} |zn|2

|ωn|2 dx

≤ 1

min{1, aθ−1}

{∫
Σn(r0,∞)

(
|H(x, |zn|)|
|zn|2

)κ
dx

} 1
κ
{∫

Σn(r0,∞)

|ωn|2κ
′
dx

} 1
κ′

≤ c
1
κ
0

min{1, aθ−1}

{∫
Σn(r0,∞)

H(x, |zn|) dx

} 1
κ
{∫

RN
|ωn|2κ

′
dx

} 1
κ′

≤ c
1
κ
0

min{1, aθ−1}

(
c+ 1

λ

) 1
κ

{∫
RN
|wn|2κ

′
dx

} 1
κ′

→ 0, as n→∞.(2.16)

In combination with (2.15) and (2.16), we get∫
RN

|H(x, |zn|)|
K(|zn|2s,A) + ||zn||22,P

dx

=

∫
Σn(0,r0)

|H(x, |zn|)|
K(|zn|2s,A) + ||zn||22,P

dx+

∫
Σn(r0,∞)

|H(x, |zn|)|
K(|zn|2s,A) + ||zn||22,P

dx→ 0,

as n→∞, which contradicts (2.13). The proof is completed.

Using Lemma 2.7, we prove the existence of a nontrivial weak solution to our

problem.

Theorem 2.9. Under the same assumptions of Lemma 2.7, then the problem (1.1)

has a nontrivial weak solution for all λ > 0.

Proof. Note that Jλ(0) = 0. By Lemma 2.4, the mountain pass geometric condi-

tions are satisfied. From Lemma 2.7, Jλ fulfils the (C)c-condition for any λ > 0.

Subsequently, problem (1.1) admits a nontrivial weak solution for all λ > 0.

With the help of Lemma 2.8, we obtain the following assertion.

Theorem 2.10. Under the same assumptions of Lemma 2.8, then the problem (1.1)

has a nontrivial weak solution for all λ > 0.

Proof. The proof is completely the same as that of Theorem 2.9.

At last, we are ready to prove our multiplicity results. By using the fountain

theorem in [38, Theorem 3.6], we demonstrate infinitely many weak solutions for

problem (1.1). Let E be a reflexive and separable Banach space, then it is known

(see [13]) that there exist {en} ⊆ E and {f ∗n} ⊆ E∗ such that

E = span{en : n = 1, 2, · · · }, E∗ = span{f ∗n : n = 1, 2, · · · },
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and

〈f ∗i , ej〉 =

{
1 if i = j

0 if i 6= j.

Let us denote En = span{en}, Yk =
⊕k

n=1 En, and Zk =
⊕∞

n=k En. In order to obtain

our first multiplicity result, we use the following Fountain theorem.

Lemma 2.11. ([31, 38]) Let E be a real Banach space, I ∈ C1(E,R) satisfies the

(C)c-condition for any c > 0 and I is even. If for each sufficiently large k ∈ N, there

exist %k > σk > 0 such that the following conditions hold:

(1) βk := inf{I(z) : z ∈ Zk, ||z||E = σk} → ∞ as k →∞;

(2) αk := max{I(z) : z ∈ Yk, ||z||E = %k} ≤ 0.

Then the functional I has an unbounded sequence of critical values, i.e., there exists

a sequence {zn} ⊂ E such that I ′(zn) = 0 and I(zn)→ +∞ as n→ +∞.

Theorem 2.12. Let s ∈ (0, 1) and N > 2s. Assume that (P), (K1), (K2) and (H1)–

(H5) hold. Then for any λ > 0, problem (1.1) possesses an unbounded sequence of

nontrivial weak solutions {zn} in Hs
A,P (RN ,C) such that Jλ(zn)→∞ as n→∞.

Proof. The proof follows the lines of that of Lemma 3.2 in [40]. To apply Lemma

2.11, let us denote E := Hs
A,P (RN ,C) and I := Jλ. Plainly, Jλ is an even functional

and ensures the (C)c-condition by Lemma 2.7. It suffices to show that there exist

%k > σk > 0 with the conditions (1) and (2) in Lemma 2.11. Let us denote

ςk = sup
||z||s,A=1,z∈Zk

||z||Lq(RN ).

Then, it is easy to verify that ςk → 0 as k → ∞. For any z ∈ Zk, assume that

||z||s,A > 1. Choose ε > 0 so small that 0 < λεCimb <
min{1,aθ−1}

4
where Cimb is an

imbedding constant of Hs
A,P (RN ,C) ↪→ L2(RN). Then it follows from (2.1) that

Jλ(z) =
1

2
(K(|z|2s,A) + ||z||22,P )− λ

∫
RN
H(x, |z|)dx

≥ min{1, aθ−1}
2

||z||2s,A − λ
∫
RN
H(x, |z|)dx(2.17)

≥ min{1, aθ−1}
2

||z||2s,A −
λε

2
||z||2L2(RN ) −

λC(ε)

q
||z||q

Lq(RN )

≥ min{1, aθ−1}
4

||z||2s,A − λC(ε)ςqk ||z||
q
s,A

=
(min{1, aθ−1}

4
− λC(ε)ςqk ||z||

q−2
s,A

)
||z||2s,A.
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Choose σk =
[

4λC(ε)
min{1,aθ−1}ς

q
k

] 1
2−q

. Since 2 < q and ςk → 0 as k →∞, we infer σk →∞
as k →∞. Hence, if z ∈ Zk and ||z||s,A = σk, then we deduce that

Jλ(z) ≥ min{1, aθ−1}
4

σ2
k →∞ as k →∞,

which implies (1).

Now we prove condition (2). To do this, we claim that Jλ(z)→ −∞ as ||z||s,A →
∞ for all z ∈ Yk. Let us assume that this is false for some k. Then we can choose a

sequence {zn} in Hs
A,P (RN ,C) such that

||zn||s,A →∞ as n→∞ and Jλ(zn) ≥ −K.

Let ωn = zn/||zn||s,A. Then it is obvious that ||ωn||s,A = 1. Since dimYk <∞, there is

ω ∈ Yk \ {0} such that up to a subsequence,

||ωn − ω||s,A → 0 and ωn(x)→ ω(x)

for almost all x ∈ RN as n→∞. Thus we have by (2.17) that

1

2
+

K

K(|zn|2s,A) + ||zn||22,P
≥ 1

2
− Jλ(zn)

K(|zn|2s,A) + ||zn||22,P

= λ

∫
RN

H(x, |zn|)
K(|zn|2s,A) + ||zn||22,P

dx

≥ λ

∫
{ωn(x)6=0}

H(x, |zn|)
(2K(1) + 1) ||zn||2θs,A

dx.(2.18)

If we follow the analogous argument as in the proof of Lemma 2.8, we derive by (2.10),

(2.18), (H4) and Fatou’s lemma that

1

2λ
≥ lim inf

n→∞

∫
{ωn(x)6=0}

H(x, |zn|)
(2K(1) + 1) ||zn||2θs,A

dx

− lim sup
n→∞

∫
{ωn(x)6=0}

K0

(2K(1) + 1) ||zn||2θs,A
dx

= lim inf
n→∞

∫
{ωn(x) 6=0}

H(x, |zn|)−K0

(2K(1) + 1) ||zn||2θs,A
dx

≥
∫
{ωn(x) 6=0}

lim inf
n→∞

H(x, |zn|)−K0

(2K(1) + 1) ||zn||2θs,A
dx

=

∫
{ωn(x) 6=0}

lim inf
n→∞

H(x, |zn|)
(2K(1) + 1) ||zn||2θs,A

dx

−
∫
{ωn(x)6=0}

lim sup
n→∞

K0

(2K(1) + 1) ||zn||2θs,A
dx

≥ 1

2K(1) + 1

∫
{ωn(x) 6=0}

lim inf
n→∞

(
H(x, |zn|)
|zn|2θ

|ωn|2θ
)
dx =∞,
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where K0 was given in the proof of Lemma 2.8. This is impossible. Thus, Jλ(z) →
−∞ as ||z||s,A → ∞ for all z ∈ Yk. Choose %k > σk > 0 large sufficiently and let

||z||s,A = %k, we finally obtain

ak = max{Jλ(z) : z ∈ Yk, ||z||s,A = %k} ≤ 0.

This completes the proof.

Theorem 2.13. Let s ∈ (0, 1) and N > 2s. Assume that (P), (K1), (K2), (H1)–(H4)

and (H6) hold. Then for any λ > 0, problem (1.1) possesses an unbounded sequence

of nontrivial weak solutions {zn} in Hs
A,P (RN ,C) such that Jλ(zn)→∞ as n→∞.

Proof. By a similar fashion as in Theorem 2.12, instead of Lemma 2.7, by Lemma

2.8, the conclusion holds.

Definition 2.14. Let E be a real separable and reflexive Banach space. We say that

I satisfies the (C)∗c-condition (with respect to Yn) if any sequence {zn}n∈N ⊂ E for

which zn ∈ Yn, for any n ∈ N,

I(zn)→ c and ||(I|Yn)′(zn)||E∗(1 + ||zn||E)→ 0 as n→∞,

contains a subsequence converging to a critical point of I.

Lemma 2.15. (Dual Fountain Theorem [19, Theorem 3.11]) Assume that E is a real

Banach space, I ∈ C1(E,R) is an even functional. If there is k0 > 0 so that, for each

k ≥ k0, there are %k > σk > 0 such that

(A1) inf{I(z) : z ∈ Zk, ||z||E = %k} ≥ 0.

(A2) βk := max{I(z) : z ∈ Yk, ||z||E = σk} < 0.

(A3) γk := inf{I(z) : z ∈ Zk, ||z||E ≤ %k} → 0 as k →∞.

(A4) I satisfies the (C)∗c-condition for every c ∈ [dk0 , 0).

Then I has a sequence of negative critical values cn < 0 satisfying cn → 0 as n→∞.

Lemma 2.16. Under the same assumptions of Lemma 2.7 (resp. Lemma 2.8), the

functional Jλ satisfies the (C)∗c-condition.

Proof. The proof is carried out by the analogous argument as in [40].

With the help of Lemmas 2.15 and 2.16 we are ready to demonstrate the following

assertion.

Theorem 2.17. Under the same assumptions of Theorem 2.12, the problem (1.1) has

a sequence of nontrivial weak solutions {zn} in Hs
A,P (RN ,C) such that Jλ(zn) → 0

as n→∞ for any λ > 0.
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Proof. Invoking Lemma 2.16, we get that Jλ is even and satisfies the (C)∗c-condition

for all c ∈ R. Now it remains to show that conditions (A1), (A2) and (A3) of Lemma

2.15 are satisfied.

(A1): Let us denote

θ1,k = sup
||z||s,A=1,z∈Zk

||z||L2(RN ), θ2,k = sup
||z||s,A=1,z∈Zk

||z||Lq(RN ).

Then, it is immediate to verify that θ1,k → 0 and θ2,k → 0 as k → ∞. Set ϑk =

max{θ1,k, θ2,k}. Then it follows that

Jλ(z) =
1

2
(K(|z|2s,A) + ||z||22,P )− λ

∫
RN
H(x, |z|)dx

≥ min{1, aθ−1}
2

||z||2s,A −
λc1

2
||z||2L2(RN ) −

λc2

q
||z||q

Lq(RN )

≥ min{1, aθ−1}
2

||z||2s,A −
λc1

2
ϑ2

1,k||z||2s,A −
λc2

q
ϑq2,k||z||

q
s,A

≥ min{1, aθ−1}
2

||z||2s,A − λ
(
c1

2
+
c2

q

)
ϑ2
k||z||

q
s,A

for sufficiently large k and ||z||s,A ≥ 1. Choose

ρk =

[
4λ

min{1, aθ−1}

(
c1

2
+
c2

q

)
ϑ2
k

] 1
2−2q

.

Let z ∈ Zk with ||z||s,A = %k > 1 for k large enough. Then, there exists k0 ∈ N such

that

Jλ(z) ≥ min{1, aθ−1}
2

||z||2s,A − λ
(
c1

2
+
c2

q

)
ϑ2
k||z||

2q
s,A

=
min{1, aθ−1}

4
%2
k ≥ 0

for all k ∈ N with k ≥ k0, because

lim
k→∞

min{1, aθ−1}
4

%2
k =∞.

Therefore,

inf{Jλ(z) : z ∈ Zk, ||z||s,A = %k} ≥ 0.

(A2): Observe that || · ||L2(RN ), || · ||L2θ(RN ) and || · ||s,A are equivalent on Yk. Then

there exist positive constants ς1,k and ς2,k such that

||z||L2(RN ) ≤ ς1,k||z||s,A and ||z||s,A ≤ ς2,k||z||L2θ(RN )

for any z ∈ Yk. From (H2)–(H4), for any M > 0 there is positive constant C7(M)

such that

H(x, τ) ≥Mς2θ
2,kτ

2θ − C7(M)τ 2
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for almost all (x, τ) ∈ RN ×R+. Since K(η) ≤ K(1)(1 + ηθ) for all η ∈ R+
0 , it follows

that

Jλ(z) =
1

2
(K(|z|2s,A) + ||z||22,P )−

∫
RN
H(x, |z|)dx

≤ 1

2

(
K(1)(1 + |z|2θs,A) + ||z||22,P

)
−Mς2θ

2,k

∫
RN
|z|2θdx+ C7(M)

∫
RN
|z|2dx

≤ 1

2

(
2K(1)||z||2θs,A + ||z||2θs,A

)
−Mς2θ

2,k

∫
RN
|z|2θdx+ C7(M)

∫
RN
|z|2dx

≤ 1

2
(2K(1) + 1) ||z||2θs,A −M||z||2θs,A + C7(M)ς2

1,k||z||2s,A

for any z ∈ Yk with ||z||s,A ≥ 1. Let h(τ) = 1
2

(2K(1) + 1) τ 2θ −Mτ 2θ +C7(M)ς2
1,kτ

2.

If M is large enough, then limτ→∞ h(τ) = −∞, and thus there is τ0 ∈ (1,∞) such

that h(τ) < 0 for all τ ∈ [τ0,∞). Hence Jλ(z) < 0 for all z ∈ Yk with ||z||s,A = t0.

Choosing σk = t0 for all k ∈ N, one has

βk := max{Jλ(z) : z ∈ Yk, ||z||s,A = σk} < 0.

If necessary, we can change k0 to a large value, so that %k > σk > 0 for all k ≥ k0.

(A3): Because Yk ∩Zk 6= φ and 0 < σk < %k, we have γk ≤ βk < 0 for all k ≥ k0.

For any z ∈ Zk with ||z||s,A = 1 and 0 < τ < %k, one has

Jλ(τz) ≥ min{1, aθ−1}
2

||τz||2s,A −
λc1

2
||τz||2L2(RN ) −

λc2

q
||τz||q

Lq(RN )

≥ −λc1

2
τ 2||z||2L2(RN ) −

λc2

q
τ q||z||q

Lq(RN )

≥ −λc1

2
%2
kϑ

2
k −

λc2

q
%qkϑ

q
k

for large enough k. Hence, it follows from the definition of %k that

γk ≥ −
λc1

2
%2
kϑ

2
k −

λc2

q
%qkϑ

q
k

= −λc1

2

[
4λ

min{1, aθ−1}

(
c1

2
+
c2

q

)] 1
1−q

ϑ
4−2q
1−q
k

− λc2

q

[
4λ

min{1, aθ−1}

(
c1

2
+
c2

q

)] q
2−2q

ϑ
(2−q)q
1−q

k .

Because 2 < q and ϑk → 0 as k →∞, we derive that limk→∞ γk = 0.

Hence all conditions of Lemma 2.15 are required. Consequently, we assert that

problem (1.1) has a sequence of nontrivial weak solutions {zn} in Hs
A,P (RN ,C) such

that Jλ(zn)→ 0 as n→∞ for any λ > 0.

Theorem 2.18. Under the same assumptions of Theorem 2.13, the problem (1.1) has

a sequence of nontrivial weak solutions {zn} in Hs
A,P (RN ,C) such that Jλ(zn) → 0

as n→∞ for any λ > 0.
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Proof. The proof is carried out by a similar fashion as in Theorem 2.17.

3. Conclusion

In this paper, we take into account the variational methods to get the existence

of nontrivial solutions to nonlocal Schrödinger–Kirchhoff equations with the external

magnetic field. In particular we obtain these results under the various conditions on h

when the nonlinear growth h does not satisfy the condition of Ambrosetti-Rabinowitz

type. We point out that with an analogous analysis our main assertions still hold when

(−∆)sAz in (1.1) is changed into any non-local integro-differential operator Lφ defined

as follows:

Lφz(x) = 2

∫
RN

(z(x)− E(x, y)z(y))φ(x− y)dy for all x ∈ RN .

where E(x, y) := ei(x−y)·A(x+y
2

) and φ : RN \ {0} → (0,+∞) is a kernel function

satisfying properties that

(K1) mφ ∈ L1(RN), where m(x) = min{|x|2, 1};
(K2) there exists µ > 0 such that φ(x) ≥ µ|x|−(N+2s) for all x ∈ RN \ {0};
(K3) φ(x) = φ(−x) for all x ∈ RN \ {0}.
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[34] R. Servadei and E. Valdinoci, Lévy-Stampacchia type estimates for variational inequalities

driven by non-local operators, Rev. Mat. Iberoam., 29:1091-1126, 2013.

[35] R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans.

Amer. Math. Soc., 367:67–102, 2015.

[36] M. Squassina and B. Volzone, Bourgain-Brezis-Mironescu formula for magnetic operators,

Comptes Rendus Mathmatique, 354:825–831, 2016.

[37] C. Torres, Existence and symmetry result for fractional p-Laplacian in RN , Commun. Pure

Appl. Anal., 16:99–114, 2017.

[38] M. Willem, Minimax Theorems, Birkhäuser, Basel, 1996.
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