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ABSTRACT. In this work, we investigate the existence of random integral solutions for convex

and non-convex evolution differential inclusions with periodic conditions. Also, we give the random

version of Bader’s fixed point theorem. The existence results are established by means of random

fixed point theory. Finally, an example is given to illustrate the result..
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1. INTRODUCTION

The study of periodic problems has received great attention from many authors.

For evolution equations, we refer to the works by Pruss[26], Vrabie[32], Becker[7] and

the references therein. In addition, for evolution inclusions, we cite the works by

Hu and Papageorgiou [16], Kandilakis and Papageorgiou [20], Lakshmikantham and

Papageorgiou [23], and we also mention recent articles by Bader and Papageorgiou

[4], and Hu and Papageorgiou [19].

The topic of random differential equations and inclusions is a great field. This

theory is used in many different applications such as statistics, control theory, bi-

ological sciences, etc. For more information on such applications, see the books of

Bharucha-Reid [8] and Skorohod [30]. Due to different applications, various studies

of differential equations with random coefficients have been considered recently; see

for instance [5, 14, 15, 24, 28, 29] and their references.
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In view of this we study the existence of random integral solutions for the following

problem

(1.1)

{
−x′(ω, t) ∈ A(ω)x(ω, t) + F (ω, t, x), t ∈ [0, b],

x(ω, 0) = x(ω, b), ω ∈ Ω,

where for every ω ∈ Ω, A(ω) is an m−accretive operator in a reflexive Banach space

X, F : Ω × [0, b] × X → 2X is a multivalued map (perturbation), and x : Ω →
D(A(ω)) ⊂ X is random variable.

We first collect some background material and basic results from multivalued

analysis and random variable calculus in Section 2. The existence of random integral

solutions of (1.1) is investigated in Section 3. The extremal solution is considered in

Section 4. Finally, in Section 5, an example is described to illustrate the applicability

of our results.

2. PRELIMINARIES

Let (E, | · |) be a Banach space. Denote by P(E) = {Y ⊂ E : Y 6= ∅},
Pcl(E) = {Y ∈ P(E) : Y closed}, Pb(E) = {Y ∈ P(E) : Y bounded}, Pcv(E) =

{Y ∈ P(E) : Y convex}, Pcp(E) = {Y ∈ P(E) : Y compact}, and Pwkcp(E) = {Y ∈
P(E) : Y weakly compact}.

Let X be a real reflexive, separable Banach space with norm ‖ · ‖, X∗ be the dual

space of X, with norm ‖ · ‖∗, σ(X,X∗) be the weak topology on X, and denote by

Xw the space X endowed with the topology σ(X,X∗) : The duality pairing between

X and X∗ will be denoted by 〈·, ·〉. The duality mapping J(x) : X → 2X
∗

is defined

by

J(x) =
{
x∗ ∈ X∗ : x∗(x) = ‖x‖2 = ‖x∗‖2∗

}
,∀x ∈ X,

and the upper semi-inner product on X is defined by

〈y, x〉+ = sup {x∗(y) : x∗ ∈ J(x)} .

The duality mapping J is single-valued and uniformly continuous on bounded subsets

of X, if X∗ is uniformly convex.

Let A : X → 2X be a multivalued operator on X. The domain and, respectively,

the range of A are given by

D(A) := {x ∈ X : Ax 66= ∅}, R(A) :=
⋃

x∈D(A)

Ax.

The operator A is called m-accretive if the following conditions are satisfied:

• A is a monotone operator,

〈y′ − y, x′ − x〉+ ≥ 0,∀x, x′ ∈ D(A),∀y ∈ Ax, ∀y′ ∈ Ax′,
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•
R(I + λA) = X, ∀λ > 0,

where I is the identity map on X.

If A is m-accretive, then −A generates a semigroup of contractions {S(t) : t ≥ 0}
on D(A), according to a celebrated conclusion by Crandall and Liggett [11]. The

semigroup {S(t) : t ≥ 0} is said to be a compact semigroup, if S(t) maps bounded

subsets of D(A) into precompact subsets of D(A), for each t > 0.

Throughout this paper we will be using the following notations: C([0, b], X) is

the Banach space of all continuous functions u : [0, b]×X with norm

‖u‖∞ = sup
t∈J
‖u(t)‖,

and for 1 ≤ p < ∞, Lp([0, b], X) is the Banach space of measurable functions u :

[0, b]×X such that ‖u‖p is Lebesgue integrable, endowed with the norm

‖u‖p =

(∫ b

0

‖u(t)‖pdt
)1/p

.

We consider the following weak norm in the space L1([0, b], X), given by

‖u‖w = sup

{∥∥∥∥∫ t

s

u(τ)dτ

∥∥∥∥ : 0 ≤ s ≤ t ≤ b

}
,∀u ∈ L1([0, b], X).

The norm ‖ · ‖w is weaker than the usual norm ‖ · ‖1 and for a broad class of

subsets of L1([0, b], X), the topology defined by the weak norm coincides with the

usual weak topology (see Proposition 4.14 in [17]). The space L1([0, b], X), equipped

with the weak norm, will be denoted by L1
w([0, b], X) . This notation is to be

distinguished from L1([0, b], X)w, which designates the space L1([0, b], X) with the

σ(L1([0, b], X), L∞([0, b], X∗)) topology.

Let A is m-accretive on X. For f ∈ L1([0, b], X) we consider the evolution

equation,

(2.1) −u′(t) = Au(t) + f(t), t ∈ [0, b].

Definition 2.1. A continuous function u : [0, b]→ D(A) is called an integral solution

of (2.1) if for all x ∈ D(A), y ∈ Ax and all 0 ≤ s ≤ t ≤ b,

(2.2) ‖u(t)− x‖2 ≤ ‖u(s)− x‖2 + 2

∫ t

s

〈−f(τ)− y, u(τ)− x〉+dτ.

It is well-known that for each u0 ∈ D(A) and f ∈ L1([0, b], X) the equation (2.2)

admits a unique integral solution satisfying the initial condition u(0) = u0.

Let (Ω,Σ, µ) is a complete, σ−finite measure space, L([0, b]) is the Lebesgue

σ−field of [0, b], and B(X) the Borel σ−algebra on X. Then (Ω × [0, b] × X,Σ ×
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L([0, b])×B(X)) and (Ω× [0, b],Σ×L([0, b])) are, respectively, the product σ−algebra

on Ω× [0, b]×X and Ω× [0, b].

The multifunction ϕ : Ω → Pcl(X) is called measurable if it satisfies any of the

following equivalent conditions :

• Grϕ = {(ω, x) ∈ Ω×X : x ∈ ϕ(ω)} ∈ Σ× B(X).

• The function ω → d(x, ϕ(ω)) = inf{‖x− z‖ : z ∈ ϕ(ω)} is measurable.

The set of all measurable selections of ϕ that belong to the Bochner-Lebesgue space

Lp(Ω, X), we denote by Spϕ,

Spϕ = {ψ ∈ Lp(Ω, X) : ψ(ω) ∈ ϕ(ω), a.e. on Ω} .

According to the Kuratowski-Ryll Nardzewski Theorem (see, e.g. [17], p.154) one has

that for a measurable multifunction ϕ : Ω→ Pf (X), the function ω → inf{‖z‖ : z ∈
ϕ(ω)} belongs to Lp+(Ω) = Lp(Ω,R+), if and only if the set Spϕ is nonempty.

A subset A of Lp([0, b], X) is decomposable if for all u, v ∈ A and N ⊂ Σ

measurable, the function uχN
+ vχ[0,b]\N ∈ A, where χ stands for the characteristic

function. Clearly Spϕ is decomposable.

Let now Y be a Hausdorff topological space and let φ : Y → 2X . For A ∈ 2X , we

set

φ−1(A) := {y ∈ Y : φ(y) ∩ A 66= ∅},

φ+1(A) := {y ∈ Y : φ(y) ⊂ A}.

Definition 2.2. The multifunction φ is said to be

(A) Upper semi-continuous on X (u.s.c., for short) if the set φ+(A) is open in Y for

any open subset of A of X.(Equivalently, is u.s.c. if φ−1(C) is closed in Y for

each closed subset C of Z).

(B) Lower semicontinuous on X (l.s.c., for short) if φ+1(C) is closed in Y for each

closed subset C of X.

Proposition 2.1. If φ : Y → Pf (X) is upper semicontinuous, then φ is closed (its

graph Grφ is closed in Y ×X )

Proposition 2.2. if φ : Y → Pf (X) is closed and locally compact (is, for every y ∈ Y ,

there exists a U ∈ N(y) such that φ(U) ∈ Pk(X), then φ is upper semicontinuous

Consider the Hausdorff pseudo-metric distance

Hd(A,B) : P(X)× P(X)→ R+ ∪∞

defined by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}

where d(A, b) = infa∈A d(a, b) and d(a,B) = infb∈B d(a, b).
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A multifunction φ : Y → Pf (X) is called Hausdorff continuous if φ : Y →
(Pf (X), Hd) is a continuous map, that is, for every y0 ∈ Y and any ε > 0 there exists

a neighborhood U0 of y0 such that for any y ∈ U0, we get Hd(φ(y), φ(y0)) < ε.

By a space we always mean a separable Banach space.

Definition 2.3. Let X, Y be two real separable Banach spaces, a multivalued map

F : Ω ×X → Y is called a random operator if ω → F (ω, x) is measurable for every

x ∈ X.

Definition 2.4. A random fixed point of F is a measurable function z : Ω→ X such

that

z(ω) ∈ F (ω, z(ω)) for all ω ∈ Ω.

Definition 2.5. An random multivalued operator F : Ω×X → P(X) is called has a

decomposition if there exists, closed convex subset Y of separable Banach space, an

random operator Φ : Ω×X → Pcv,cp(Y ), for all ω ∈ Ω, Φ(ω, ·) is upper semicontinuous

and continuous map f : Y → X such that

F (ω, x) = (f ◦ Φ)(ω, x) (ω, x) ∈ Ω×X.

The multifunction F is called compact if for every ω ∈ Ω, the multivlued operator

F (ω, ·) is compact.

Theorem 2.6. Let X be a separable Banach space and F : Ω × B̄(0, r) → X be a

compact random operator and that has decomposition. Suppose

a) The random multivalued operator F has a measurable graph.

b) There exists r > 0 such there is not x ∈ X such that

x 6∈ λ(ω)F (ω, x), ‖x(ω)‖ = r, λ(ω) ∈ (0, 1).

Then F has at least one random fixed point.

Proof. From [3, Theorem 7], there exists x(ω) ∈ B(0, r) such that x(ω) ∈ F (ω, x).

Then for each ω ∈ Ω we have

{x ∈ B̄(0, r) : x ∈ F (ω, x)} 6= ∅.

We define G : Ω→ P(B̄(0, r)) by

G(ω) = {(x, x) ∈ B̄(0, r)× B̄(0, r) : x ∈ F (ω, x)}.

Then

GrG = (Ω×∆) ∩ GrF

where

∆ = {(x, x) ∈ B̄(0, r)× B̄(0, r) : x ∈ B̄(0, r)}.
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Since ∆ is closed and by a), we deduce that GrG ∈ Σ
⊗
B(B̄(0, r)). Applying the

selection Von-Neumann-Aumann’s theorem type [27], we get x : Ω → B̄(0, r) is a

measurable function such that

x(ω) ∈ G(ω), ω ∈ Ω.

Then clearly

x(ω) ∈ F (ω, x(ω)), ω ∈ Ω.

Theorem 2.7. Let (Ω,Σ, µ) be a complete measurable space, X be a separable Banach

space and F : Ω×X → P(X) be a random multivalued map with decomposion D(F )

and F has a measurable graph. If F is compact and the set for each ω ∈ Ω,

A(ω) = {x ∈ X : x(ω) ∈ λF (ω, x(ω)) for some λ(ω) ∈ (0, 1)}

is bounded. Then F has a random fixed point.

Proof. Let r > 0 such that for all x ∈ A(ω) we have ‖x‖ ≤ r. We consider

F̂ (ω, x) =

{
F (ω, x), if ‖x‖ ≤ r,

F (ω,Mr(x)) if ‖x‖ > r,

where

Mr(x) =

{
x, if ‖x‖ ≤ r,

r x
‖x‖ if ‖x‖ > r.

It is clear that

(F̂ ◦ M̂r)(ω, x), (ω, x) ∈ Ω×X,

where M̂r : Ω×X → Ω×X is a measurable function defined by

M̂r(ω, x) = (ω,Mr(x)), (ω, x) ∈ Ω×X.

Let IX be the identity map, hence we deduce

GrF̂ = (M̂r × IX)−1(GrF ).

Since F has a measurable graph, it remains to check that F̂ has a measurable graph;

then from Theorem 2.6 there exists a random variable x : Ω→ B̄(0, r) such that

x(ω) ∈ F̂ (ω, x(ω)), ω ∈ Ω,

and hence from the definition of F̂ , we get

x(ω) ∈ F (ω, x(ω)), ω ∈ Ω.
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3. CONVEX AND NON-CONVEX CASES

In this section, we denote by X a real separable Banach space with a uniformly

convex dual X∗.

Definition 3.1. By an random integral solution of (1.1) we mean a continuous func-

tion x : Ω× [0, b]→ D(A(ω)) for every ω ∈ Ω with the property that x(0, ω) = x(ω, b)

and there exists f(ω, ·) ∈ L1([0, b], X) such that f(ω, t) ∈ F (ω, t, x(ω, t)), a.e. on T ,

and for every ω ∈ Ω, x(ω, ·) is an integral solution (in the sense of Definition 2.1) of

equation (2.1) .

Theorem 3.2. Assume the following conditions hold:

(H1) The operator A(ω) is an m-accretive operator in X for every ω ∈ Ω, in addition

0 ∈ A(ω)0, such that −A(ω) generates a semigroup {S(ω, t), t ≥ 0} which is

compact on D(A(ω)).

(H2) F : Ω× [0, b]×X → Pwkc(X) satisfies:

(a) (ω, t, x)→ F (ω, t, x) is measurable,

(b) for every (ω, t) ∈ Ω× [0, b], the graph of x→ F (ω, t, x) is sequentially closed

in X ×Xw,

(c) for each ρ > 0 there exists a function aρ(ω, ·) ∈ L1
+([0, b]) for any ω ∈ Ω and

a(·, ·) is jointly measurable such that

|F (ω, t, x)| := sup{‖w‖ : w ∈ F (ω, t, x)} ≤ aρ(ω, t),

for every (ω, t, x) ∈ Ω× [0, b]×X with ‖x‖ ≤ ρ,

(d) there exists r > 0 such that 〈v, Jx〉 > 0 for all v ∈ F (ω, t, x), for any

(ω, t, x) ∈ Ω× J ×X× ‖x‖ = r.

Then the problem (1.1) admits at least one random integral solution.

Proof. For all ω ∈ Ω, and g ∈ L1([0, b], X). The following problem has a unique

integral solution

(3.1)

{
−x′(ω, t) ∈ A(ω)x(ω, t) + g(t), t ∈ [0, b],

x(ω, 0) = x0(ω)

defined as follows

x(ω, t) = S(ω, t)x0(ω) +

∫ t

0

S(ω, t− s)g(s)ds.

According to the Crandall-Liggett formula we have

S(ω, t)x = lim
n→∞

(
I +

t

n
A(ω)

)−n
x.
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From [21, Proposition 4.1], we know that ω → (I+ tA(ω)/n)−nx is measurable which

implies that ω → S(ω, t)x is measurable. Using the continuity properties of the

semigroup S(ω, t) and our hypotheses we get that the mapping

ω → S(ω, t)x0(ω)

is measurable. By Fubini’s theorem

ω →
∫ t

0

S(ω, t− s)g(s)ds

is measurable. It then follows that ω → x(ω, t) is measurable.

For g ∈ L1([0, b], X), x0(ω) = x(ω, 0) ∈ D(A(ω)), we denote by x(g, x0(ω)) the

unique random integral solution of (3.1). Let x := x(g, x0(ω)) and x̃ := x(g̃, x̃0(ω)) be

two integral solutions of (3.1) corresponding, respectively, to (g, x0(ω)), (g̃, x̃0(ω)) ∈
L1([0, b], X)×D(A(ω)). Applying [10, Proposition 2], if A(ω)−αI is m-accretive for

some α > 0, then for all t ∈ [0, b] we have

(3.2) ‖x(ω, t)− x̃(ω, t)‖ ≤ e−αt ‖x0(ω)− x̃0(ω)‖+

∫ t

0

e−α(t−s)‖g(s)− ĝ(s)‖ds.

In particular (when g = g̃, and t = b in (3.2)) the Poincaré map x0(ω) = x(ω, b) is a

strict contraction on D(A(ω)). As a result, the periodic problem

(3.3)

{
−x′(ω, t) ∈ A(ω)x(ω, t) + g(t), t ∈ [0, b],

x(ω, 0) = x(ω, b)

admits a unique random integral solution xg ∈ C([0, b], D(A(ω))) for any g ∈ L1([0, b], X).

The map gω → xg will be denoted by ψ.

It clear that A + αI is m-accretive and by A(ω) satisfies (H1). Then for any

ε > 0 and g ∈ L1([0, b], X) there exists a unique integral solution xε(·, ω) = xgε ∈
C([0, b], D(A(ω))) of the problem

(3.4)

{
−x′ε(ω, t) ∈ (A(ω) + εI)xε(ω, t) + g(t), t ∈ [0, b],

xε(ω, 0) = xε(ω, b).

Thus, we can define the solution map ψε : L1([0, b], X)→ C([0, b], D(A(ω))) for every

ε > 0 by

(3.5) ψε(g) = xgε(·),

where xgε is the integral solution of (3.4). We show that ψε is weakly-strongly sequen-

tially continuous. Indeed, let gn(·)→ g(·) weakly in L1([0, b], X), as n→∞, and set

xn(ω, ·) := ψε(gn(·)). By Bénilan’s inequality in [31, Theorem 17.5] and the fact that

0 ∈ A(ω)0, we get

(3.6) ‖xn(ω, t)‖ ≤ ‖xn(ω, s)‖+

∫ t

s

‖gn(τ)‖ dτ, ∀0 ≤ s ≤ t < b.
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Let

(3.7) mn := min
t∈[0,b]

‖xn(ω, t)‖, Mn := max
t∈[0,b]

‖xn(ω, t)‖.

From (3.6) and (3.7), we obtain

(3.8) Mn ≤ mn + C, where C = sup
n

∫ b

0

‖gn(τ)‖dτ.

Since X∗ is uniformly convex space then the duality map J is single-valued, according

to Definition 2.1 we find for each 0 ≤ s ≤ t ≤ b,

‖xn(ω, t)‖2 + 2ε

∫ t

s

‖xn(ω, τ)‖2 dτ ≤ ‖xn(ω, s)‖2 − 2

∫ t

s

〈gn(τ), Jxn(τ, ω)〉 dτ.

Supposing s = 0 and t = b in the last inequality, we conclude that

ε

∫ b

0

‖xn(ω, τ)‖2 dτ ≤
∫ b

0

‖xn(ω, τ)‖ ‖gn(τ)‖ dτ,

hence by (3.7), we have

εbm2
n ≤MnC.

The sequence {xn(ω, ·)}n∈N for all ω ∈ Ω is bounded in C([0, b], X), according to mn

and Mn are bounded from (3.8) and the last inequality. In particular, {xn(ω, 0)}n∈N
is bounded in X. Also observe that the gn(·) vary in a uniformly integrable subset of

L1([0, b], X). According to [32, Theorem 2] that {xn(ω, b)}n∈N is relatively compact

in X. Since xn(ω, 0) = xn(ω, b), thus xn(ω, 0) varies in a relatively compact subset

of X. Using [32, Theorem 2], we deduce also that {xn(ω, ·)}n∈N is relatively compact

in C([0, b], X). For any ω ∈ Ω thus without loss of generality, we can assume that

xn(ω, ·) → x(ω, ·) in C([0, b], X), as n → ∞. Obviously, x(ω, ·) ∈ C([0, b], D(A(ω)))

and x(ω, 0) = x(ω, b). Moreover, since xn(ω, ·) = ψε(gn(·)), with ψε defined by (3.5).

By inequality (2.2) we obtain that

‖xn(ω, t)− y‖2 ≤ ‖xn(ω, s)− y‖2 − 2

∫ t

s

〈gn(τ) + z, J (xn(ω, τ)− y)〉+ dτ,

for each 0 ≤ s ≤ t ≤ b and for all y, z with z ∈ (A(ω) + εI)y. As xn(ω, ·) → x(ω, ·)
strongly in C([0, b], X), gn(·) → g(·) weakly in L1([0, b], X) for all ω ∈ Ω and J is

uniformly continuous from compact subsets of X to X∗ we may pass to the limit in

last inequality as n→∞ to deduce that

x(ω, ·) = ψε(g(·)).

Let F̂ : Ω× [0, b]×X → Pwkc(X) be given by

(3.9) F̂ (ω, t, x) =

{
F (ω, t, x), if ‖x‖ ≤ r,

F (ω, t,Mr(x)) if ‖x‖ > r.
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where

Mr(x) =

{
x, if ‖x‖ ≤ r,

r x
‖x‖ if ‖x‖ > r.

with r as in (H2). Clear that, F̂ satisfies (H2), to be specific

(3.10)
∣∣∣F̂ (ω, t, x)

∣∣∣ ≤ ar(t, ω), a. e. on [0, b],∀x ∈ X,ω ∈ Ω.

Consider the operator N : Ω× C([0, b], X)→ 2L
1([0,b],X) defined by

(3.11) N(ω, x) = {g(·) ∈ L1([0, b], X) : g(t) ∈ F̂ (ω, t, x(ω, t)) a.e t ∈ [0, b]},

where x : Ω → C([0, b], X) is a measurable function. It is easy to prove that N(ω, ·)
has nonempty, convex, and weakly compact values. In addition, by [17, Proposition

2.23, p.43] and the convergence theorem [2, Theorem p.60], N is an upper semicon-

tinuous multifunction from C([0, b], X) into L1([0, b], X)w. We conclude that

(3.12) N(ω, ·) ∈ Pclcv(L1([0, b], X), is u.s.c, ω ∈ Ω.

Now, we show that for each measurable function x : Ω → C([0, b], X), the mul-

tifunction ω → N(ω, x) is measurable. Indeed, since (ω, t, x)→ F̂ (ω, t, x) is measur-

able, then for any y ∈ X,

(ω, t, x(ω, ·))→ d(y, F̂ (ω, t, x(ω, ·))

is measurable. Since the distance function is continuous in y, for each h ∈ L1([0, b], X),

(ω, t)→ d(h(t), F̂ (ω, t, x(ω, t))),

is measurable. From Fubini’s theorem we get that

ω →
∫ b

0

d(h(t), F̂ (ω, t, x(ω, t)))dt = d
(
h, S1

F̂ (ω,·,x(ω,·))

)
,

is measurable, which implies that ω → N(ω, x) is measurable and ω → ψε ◦ N(ω, ·)
is measurable and the function

(3.13) (ω, h, x)→ d
(
h, S1

F̂ (ω,·,x(ω,·))

)
is measurable. Consider the approximating problem

(3.14)

{
−x′ε(ω, t) ∈ (A(ω) + εI)xε(ω, t) + F̂ (ω, t, xε(ω, t)) , t ∈ [0, b],

xε(ω, 0) = xε(ω, b).

From (3.5) and (3.11), we compare with Definition 3.1. The presence of a random

integral solution to (3.14) is clearly equivalent to the random fixed point for the map

ψε ◦N(ω, ·) in C([0, b], X). We shall use Theorem 2.7 to prove that ψε ◦N(ω, ·) has

a random fixed point. The proof will be given in several steps.
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Step 1 ψε ◦N has a measurable graph.

From (3.13), we conclude

Grψε ◦N = {(ω, x, y) ∈ Ω× C([0, b], X)× C([0, b], X) : d(y, ψε ◦N) = 0}

∈
∑
×B(C([0, b], X)× C([0, b], X)) =

∑
⊗B(C([0, b], X))⊗ B(C([0, b], X)).

Step 2 From (3.12), the multivalued. N(ω, ·) is upper semicontinuous from C([0, b], X)

to L1([0, b], X)w, and ψε is sequentially continuous from L1([0, b], X)w into C([0, b], X).

Step 3 We will prove that ψε ◦ N(ω, x(ω, ·)) is compact. Indeed, let {xn(ω, ·)}n≥1 be

a sequence bounded in C([0, b], X) such that xn(ω, ·) −→ x(ω, ·), n → +∞, As

N(ω, ·) is upper semicontinuous and has weakly compact values, then {N(ω,

xn(ω, ·))}n≥1 is relatively compact in L1
w([0, b], X), and then N(ω, xnk

(ω, ·)) →
N(ω, x(ω, ·)) in L1([0, b], X)w, and as ψε is sequentially continuous, thus ψε(N(ω,

xnk
(ω, ·))) converges to ψε(N(ω, x(ω, ·))). Hence for each ω ∈ Ω,

ψε ◦N(ω, ·)

is compact.

Step 4 It remains to show

(3.15) A(ω) := {x(ω, ·)C([0, b], X) : x(ω, ·) ∈ λψε(N(ω, x(ω, ·)), λ ∈ (0, 1]} ,

is bounded. We will prove by contradiction that

(3.16) ‖x(ω, ·)‖ ≤ r,∀x(ω, ·) ∈ A(ω).

Assume that (3.16) is false. Then either ‖x(ω, t)‖ > r, ∀t ∈ [0, b], ω ∈ Ω, or

there exist η, θ ∈ [0, b], η < θ, such that

‖x(ω, η)‖ = r

and

‖x(ω, t)‖ > r, ∀t ∈ (η, θ].

In the first case, from (3.5), (3.11) (3.14), (3.15) and Definition 2.1, we get

(3.17)

‖x(ω, b)‖2 + 2ε

∫ b

0

‖x(ω, t)‖2dt ≤ ‖x(ω, 0)‖2 − 2λ2
∫ b

0

〈f̂(ω, t), J(λ−1x(ω, t))〉dt,

where f̂(ω, ·) ∈ L1([0, b], X), f̂(ω, t) ∈ F̂ (ω, t, x(ω, t)), a.e. t ∈ [0, b]. From the

homogeneity of J , (3.9) and (H2), we obtain that for each t ∈ [0, b],

(3.18)
〈
f̂(ω, t), J

(
λ−1x(ω, t)

)〉
= λ−1r−1‖x(ω, t)‖

〈
f̂(ω, t), J (Mr(x(ω, t)))

〉
≥ 0.

We combine (3.17) and (3.18) to obtain

(3.19) ‖x(ω, b)‖ < ‖x(ω, 0)‖,∀ω ∈ Ω,



276 O. K. BELLAOU1, A. BALIKI2, J. HENDERSON3, AND A. OUAHAB2

which is absurd. In the second case, the inequality (3.17) holds. When, we

change 0 and b to η and θ respectively, and (3.18) is satisfied on [η, θ], then

(3.19) changes to

‖x(ω, θ)‖ < ‖x(ω, η)‖,∀ω ∈ Ω,

which contradicts the choice of η and θ. Then (3.16) has been proved. From

Theorem 2.7, we deduce that ψε ◦ N has a random fixed point xε(ω), which is

the solution to (3.14).

Step 5 Now we are in the position to prove that xε(ω, ·) converges to some random

integral solution of the problem (1.1). Since xε(ω, ·) must satisfy (3.16), it follows

that F̂ (ω, t, xε(ω, t)) = F (ω, t, xε(ω, t)) (see (3.9)), so that xε(ω, ·) is an integral

solution of

(3.20)

{
−x′ε(ω, t) ∈ (A(ω) + εI)xε(ω, t) + fε(ω, t), t ∈ [0, b],

xε(ω, 0) = xε(ω, b),

where f(ω, ·) ∈ L1([0, b], X), f(ω, t) ∈ F (ω, t, xε(ω, t)) a.e. t ∈ [0, b].

The sequence {xε(ω, ·)}ε>0 is bounded in C([0, b], X) from (3.16). According

to (H2) we deduce that {fε(ω, ·)}ε>0 is uniformly integrable in L1([0, b], X).

On the basis of (H1), we can think in the same way as in the second section

of the proof of the weak-strong sequential continuity of ψε to infer that (on a

subsequence, as ε→ 0),

(3.21) xε(ω, ·)→ x(ω, ·) in C([0, b], X), fε(ω, ·)→ f(ω, ·) weakly in L1([0, b], X).

According to (H2),and ([32], p.120), it follows that f(ω, t) ∈ F (ω, t, x(ω, t)), a. e.

t ∈ T . Then, using the continuity of J and (3.21) we have

(3.22) ‖xε(ω, t)− y‖2 ≤ ‖xε(ω, s)− y‖2 − 2

∫ t

s

〈fε(ω, τ) + z, J (xε(ω, τ)− y)〉+ dτ,

for all 0 ≤ s ≤ t ≤ b and all y, z with z ∈ (A(ω) + εI)y. So, we can pass to the

limit in (3.22) as ε→ 0, and then

(3.23) ‖x(ω, t)− y‖2 ≤ ‖x(ω, s)− y‖2 − 2

∫ t

s

〈f(ω, τ) + z, J (x(ω, τ)− y)〉+ dτ

for all 0 ≤ s ≤ t ≤ b and all y, z with z ∈ A(ω)y. So, we may pass to the limit in

(3.20) as ε→ 0 and conclude that x(ω, ·) is an integral solution to the problem

(1.1) in the sense of Definition 3.1.

Now, our result for the non-convex problem is the the following.

Theorem 3.3. Assume that (H1), (H2)((c)− (d)) and

(H3) F : Ω× [0, b]×X → Pf (X) satisfies:

(ā) (ω, t, x)→ F (ω, t, x) is Ω⊗ L([0, b])⊗ B(X) measurable,
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(b̄) x→ F (ω, t, x) is lower semicontinuous for all (ω, t) ∈ Ω× [0, b],

hold. Then there is a random integral solution to problem (1.1).

Proof. Let again F̂ : Ω× [0, b]×X → Pf (X) and N : Ω×C([0, b], X)→ 2L
1([0,b],X) be

given by (3.9) and (3.11), respectively. N is well-defined, having closed decomposable

values, which can be easily confirmed. Furthermore, by simple modification of the

proof of [12, Proposition 1] or [17, Theorem 7.28, p.238], we deduce that the multival-

ued N(ω, ·) is l.s.c. for all ω ∈ Ω. Hence, we can utilize the Bressan-Colombo selection

theorem [9] for existence of a continuous function u(ω, ·) : C([0, b], X)→ L1([0, b], X)

such that

(3.24) u(ω, x(ω, ·)) ∈ N(ω, x(ω, ·)),∀x(ω, ·) ∈ C([0, b], X).

We consider the approximating problem :

(3.25)

{
−x′ε(ω, t) ∈ (A(ω) + εI)xε(ω, t) + u(ω, xε(ω, ·))(t), t ∈ [0, b],

xε(ω, 0) = xε(ω, b).

The existence of an integral solution of (3.25) is identical to existence a fixed point

for the map ψε ◦u(ω, ·) in C([0, b], X), where ψε is given by (3.5). Since ψε ◦u(ω, ·) is

continuous, compact and measurable, we can apply the Leray-Schauder type random

fixed point theorem (see [14, Theorem 9.26]) to demonstrate the existence of a random

fixed point.

We consider the set :

Ŝ := {x(ω, ·) ∈ C([0, b], X) : x(ω, ·) = λ(ψε ◦ u(ω, x(ω, ·))), λ ∈ (0, 1)}.

Similar to the proof of Theorem 3.2, we conclude that (3.16) holds. Hence by [14,

Theorem 9.26], the operator ψε ◦ u(ω, ·) has at least one random integral fixed point

which is solution of (3.25). We denote this solution by xε(ω, ·). Moreover

‖xε(ω, ·)‖ ≤ r, ω ∈ Ω.

Combining (3.9) and (3.24) we get

u(ω, xε(ω, ·))(t) ∈ F (ω, t, xε(ω, t)), a. e. on[0, b].

Applying the similar argument of the proof of Theorem 3.2, we can prove that

xε(ω, ·)→ x(ω, ·) in C([0, b], X) as ε→ 0. In view of the continuity of u(ω, ·) and J ,

passage to the limit in (3.25), as ε→ 0 yields that x(ω, ·) is a solution of (1.1). Then

the proof is finished.
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4. EXTREMAL SOLUTIONS

In this section, we study the existence of so-called extremal solutions to problem

(1.1). Now we consider the evolution inclusion

(4.1)

{
−x′(ω, t) ∈ A(ω)x(ω, t) + extF (ω, t, x(ω, t)), t ∈ [0, b],

x(ω, 0) = x(ω, b) ω ∈ Ω,

where extF (ω, t, x(t, ω)) denotes the set of extreme points of F (ω, t, x(ω, t)).

We suppose that F has nonempty, weakly compact values, thus extF (ω, t, x) 66= ∅
for all (ω, t, x) ∈ Ω× [0, b]×X. In general, Theorems 3.2 and 3.3 do not apply to (4.1)

because the multivalued map (ω, t, x) → extF (ω, t, x) is neither convex nor closed

valued. The following conditions are imposed on A(ω) and F .

Theorem 4.1. Assume the following conditions (H1), (H2)((c)− (d)) and

(H4) There exists α > 0 such that A(ω)− αI is accretive,

(H5) F : Ω× [0, b]×X → Pf (X) satisfies:

(c̄) (ω, t)→ F (ω, t, x) is measurable for all x ∈ X,

(d̄) x → F (ω, t, x) is continuous for the Hausdorff pseudometric for a.a. (ω, t) ∈
Ω× [0, b],

hold. Then the problem (4.1) has at least on integral random solution.

Proof. Let

(4.2) V :=
{
g(ω, ·) ∈ L1([0, b], X) : ‖g(ω, t)‖ ≤ ar(t, ω)a. e. on [0, b]

}
.

BecauseX is reflexive, from The Dunford-Pettis theorem, then V is weakly compact in

L1([0, b], X). In view of the strong accretivity of A(ω) (cf. (H4) ), for each g(ω, ·) ∈ V
there exists a unique random integral solution xgω(ω, t) = ψ(g(ω, t)) of (3.2).

ψ is weakly-strongly continuous as a map from V to C([0, b], X), as proved in the

proof of Theorem 3.2 (see the properties of ψε), then ψ(V ) ⊆ C([0, b], X) is compact.

Let K := convψ(V ) and note that K is a convex, compact subset of C(T,X).

For only a measurable function x : Ω → C([0, b], X), consider the multifunction

N : Ω×K → P(L1([0, b], X)) defined by

(4.3) N(ω, x) = extS1
F̂ (ω,·,x(·))

where F̂ be defined by (3.9) and recall that (3.10) is satisfied.

Moreover, by [17, Theorem 4.6, p.192], we know that

extS1
F̂ (ω,·,x(ω,·)) = S1

ext F̂ (ω,·,x(ω,·)),∀x(ω, ·) ∈ K,

and then

N(ω, x) = S1
ext F̂ (ω,·,x(·)),∀x ∈ K.
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For each x(ω, ·) ∈ K, the multifunction ω → N(ω, x) is measurable. Indeed, since

(ω, t)→ F̂ (ω, t, x) is measurable, x→ F̂ (ω, t, x) is h-continuous and ext F̂ (ω, t, x) ⊆
F̂ (ω, t, x). Then, from [25, Theorem 3.3], the multifunction, ext F̂ (·, ·, ·) is jointly

measurable. Hence for every y ∈ X,

(ω, t, x)→ d(y, ext F̂ (ω, t, x(ω, ·))

is measurable. By the continuity of the distance function, for each h ∈ L1([0, b], X),

(ω, t)→ d(h(t), ext F̂ (ω, t, x(ω, t)))

is measurable. From Fubini’s theorem we get that

ω →
∫ b

0

d(h(t), ext F̂ (ω, t, x(ω, t)))dt = d
(
h, S1

ext F̂ (ω,·,x(ω,·))

)
is measurable, which implies that ω → N(ω, x) is measurable.

Next, we consider the multifunction R : Ω→ P(C(K,L1
w([0, b], X))) given by

R(ω) =
{
u ∈ C

(
K,L1

w([0, b], X)
)

: u(x) ∈ N(ω, x) for all x(ω, ·) ∈ K
}
.

From Fryszkowski’s selection theorem [13], we know that, for all ω ∈ Ω, R(ω) 66= ∅.
We have

R(ω) =
{
u ∈ C

(
K,L1

w([0, b], X)
)

: d(u(x), N(ω, x)) = 0 for all x ∈ K
}
.

Since x→ ext F̂ (ω, t, x) is h-continuous, the multifunction x→ R(ω, x) is h-continuous.

It follows that

x→ d(u(x), N(ω, x))

is continuous. Now, for fixed x ∈ K, ω → d(u(x), N(ω, x)) is a measurable function.

Therefore

(ω, x)→ d(u(x), N(ω, x)),

is a Carathéodory map. So, the multifunction R is measurable. According to the

selection theorem of Kuratowski and Ryll-Nardzewski [22], there exists u : Ω →
C(K,L1

w([0, b], X)) which is measurable such that u(ω) ∈ R(ω) for all ω ∈ Ω, and

(4.4) u(ω)(x(·)) ∈ S1
ext F̂ (ω,·,x(·)).

Now, we consider the operator ψ ◦ u(ω). Combining with (3.10), (4.2) and (4.4),

we obtain that ψ ◦ u(ω)(K) ⊂ K. In addition, ψ ◦ u(ω) is continuous. Indeed, let

xn(ω, ·)→ x(ω, ·) in C([0, b], X) as n→∞ with xn(ω, ·), x(ω, ·) ∈ K. The continuity

of u(ω)(·), implies that u(ω)(xn(ω, ·)) → u(ω)(x(ω, ·)) in L1
w([0, b], X), as n → ∞.

Since

ext F̂ (ω, t, xn(ω, t)) ⊆ F̂ (ω, t, xn(ω, t)) a. e. on[0, b],∀n ∈ N,

it follows by (3.10) and (4.4) that

(4.5) ‖u(ω) (xn(ω, .)) (t)‖ ≤ ar(ω, t) a. e. on [0, b],∀n ∈ N



280 O. K. BELLAOU1, A. BALIKI2, J. HENDERSON3, AND A. OUAHAB2

where (see (H2)((c)−(d)) and (H5)), ar(ω, ·) ∈ Lp+([0, b]) with 1 < p <∞. As a result,

we may use [18, Lemma 2.8, p.24] to deduce that u(ω)(xn(ω, ·)) → u(ω)(x(ω, ·)),
weakly in L1([0, b], X), as n→∞. Then by the weak-strong continuity of ψ we have

(ψ ◦ u(ω))(xn(ω, t))→ (ψ ◦ u(ω))(x(ω, t)), as n→∞.

Therefore ψ◦u(ω) is continuous. Consequently by Schauder’s theorem of type random

fixed point, we conclude that there exists x : Ω → K such that x(ω, ·) = (ψ ◦
u(ω))(x(ω, ·)). As a result, x(ω, ·) is an integral solution of

(4.6)

{
−x′ε(ω, t) ∈ (A(ω) + εI)xε(ω, t) + u(ω)(xε(ω, ·))(t), t ∈ [0, b],

xε(ω, 0) = xε(ω, b),

where u(ω)(·) satisfies (4.4). Using (H2)((c)− (d)) and (H5) one shows, exactly as in

the proof of Theorem 3.2, that ‖x(ω, ·)‖ ≤ r, so that F̂ (ω, t, x(ω, t)) = F (ω, t, x(ω, t))

a.e. on [0, b]. According to (4.4) and (4.6), x(ω, ·) is an integral solution of (4.2).

5. EXAMPLE

In this section we introduce an example to which Theorem 3.2 can be applied.

Let (Ω,Σ, µ) be a complete probability space and W an open domain in Rn(n ≥ 1),

with smooth boundary ∂W = Γ, be a measurable space, and let ρ : R → R be

a nondecreasing and continues function with ρ(0) = 0. We consider the boundary

value problem{
−∂x

∂t
(ω, t, z) = ∆ρ(u(ω, t, z)) + F (ω, t, x), on Ω× [0, b]×W,

x(ω, 0, z) = x(ω, b, z), a.e. on Ω×W.

Set X = L2(W ) which is a separable Banach space, and let us define A : D(A) ⊂
L2(W )→ L2(W ) by

Au = −∆ρ(u),

for all u ∈ D(A), where

D(A) =
{
u ∈ L2(W ); ρ(u) ∈ H1

0 (W ),∆ρ(u) ∈ L2(W )
}
.

According to [31, p.27], A is m-accretive on X, 0 ∈ A0 and −A generates a compact

semigroup on D(A) = X, then (H1) is satisfied.

Let F : Ω× [0, b]×X → 2X be a multivalued map defined by

F (ω, t, x(ω, t, z)) = {v ∈ X : v(z) ∈ f̂(ω, t, x(z)), a.e. (ω, x) ∈ Ω×W},

where f̂ : Ω× [0, b]× R→ 2R is defined by

(5.1) f̂(ω, t, x) = [f1(ω, t, x), f2(ω, t, x)],

and f1, f2 : Ω× [0, b]× R→ R can be defined as:

f1(ω, t, x) = lim
x′→x

inf f (ω, t, x′) , f2(ω, t, x) = lim
x′→x

sup f (ω, t, x′) ,
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where f : Ω× [0, b]× R→ R satisfies

(H1) (ω, t, x)→ f(ω, t, x) is measurable,

(H2) there exist α, β : Ω→ L1
+([0, b]) such that

(5.2) |f(ω, t, x)| ≤ α(ω, t)|x|+ β(ω, t), a.e. t ∈ [0, b], ∀(ω, x) ∈ Ω× R

(H3) xf(ω, t, x) ≥ 0 a.e. t ∈ [0, b],∀x ∈ R and ω ∈ Ω.

By [18, p. 97], the function f1 is l.s.c., and f2 is u.s.c. with respect to x. It is easy to

prove (see [18, p.96]) that F satisfies (H2).
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