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ABSTRACT. An epidemic disease caused by coronavirus has spread all over the world with a strong contagion rate. We

implement an SIR model to study the evolution of the infected population and the number of infected recovered and dead

because of this epidemic in South Carolina consistent with available data. We perform an analysis of the results of the model

by varying the parameters and initial conditions, in particular transmission and recovery rates.

We use data covering the period December 1, 2020, to June 1, 2021. The models and results are consistent with the

observations. The models developed using data help us understand the recovery rates. The infection and recovery increasing in

South Carolina do not show improvement. The number of dead people tends to increase although by small amount.

Models were developed based on the available data. Initially neural networks and machine learning methodology were

used to come up with transmission rates. Later, direct calculation and optimal control methodology were used to deduce

transmission parameters. For the period December to June there were no available data on recovered populations and we have

to determine them as well as transmission and recovery rates based on data of infected populations and dead population using

neural networks and optimal control methodologies where transmission, recovery, relapsation immunity and death rates from

infection are considered as decision variables.

From the data from CDC we see that the number of infected population is increasing. We have also data for the number

of dead population due to the virus. Our models are consistent with the data we have available for the infected and dead

population. However, there were no data for recovered population in South Carolina for the entire period December 1 to June

1. We have to use our model to come up with recovered population number. One thing we observe is that the number of

infected population was increasing. One of the control measures that are believed to be reliable methods of curbing the spread

of the virus is quarantine. We include a model that includes quarantine in our work. In our quarantine we see that if 100,000

susceptible people in the whole state were quarantined there would have been a considerable decrease in the number of infected

population.
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1. Introduction

The rapid spread of a disease in regions (epidemic) or the global outbreak of a disease (pandemic), can

have a detrimental effect on health systems and economical activities locally and globally. Measures to reduce

the pandemic spread include curtailing close interactions between using social distancing and face masks and

vaccinations. Social distancing has negative economic effects. It is useful to understand the significance of
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these interventions, ([2], [16], [11],[18]).

Mathematical models have been used in epidemiology for many years, going back to the eighteenth century.

Most of the models are compartmental models, with the population divided into classes and with assumptions

being made about the rate of transfer from one class to another. Here we consider a Susceptible-Infectious-

Recovered (SIR) model to describe the spread of the virus and compute the number of infected and dead

individuals. There are models that include exposed and migration. The goal is to compute the number

of infected, recovered, and dead individuals on the basis of the number of contacts, probability of disease

transmission, incubation period, recovery rate, and fatality rate. The epidemic disease model predicts a

peak of infected and dead individuals as a function of time and assumes that births and natural deaths are

balanced, since we are dealing with a very short period of time. The population members solely decrease

due to the disease as dictated by the fatality rate of the disease. The differential equations are solved with a

forward Euler scheme, ([8]).

2. MATHEMATICAL MODELS

Mathematical and statistical methods provide essential input for governmental decision making that aims

at controlling the outbreak. Statistical methods frequently aim at early detection of disease outbreaks ([16]).

Another approach is to develop models that indicate the outbreak dynamics using compartmental models

([16]). In compartmental models we consider a fraction of the population to be susceptible, a fraction to be

infected, a fraction that has recovered. In some models exposed group is part of the model. Compartmental

models have been used to model HIV epidemic, malaria, and corona virus outbreak, ([7],[12], [9] ,[16], [18]).

In this paper we consider SIR model. SIR model can be modified in several ways, for example, by including

demographics, deceased populations, hidden population, i.e., exposed populations (SEIR). In an accelerating

epidemic outbreak contact tracing , the SEIR model needs to be modified to account for it. In the current

paper we have two main objectives: (i) to report some new analytical results about SIR model and (ii) to

introduce an optimization/neural network approach for the estimation of the parameters of the SIR model

from real time series data. The SIR model is formulated in terms of three populations of individuals. The

susceptible population, z1, consists of all individuals susceptible to the infection of concern. The infected

population population, z2, comprises the infected individuals. These persons have the disease and can trans-

mit it to the susceptible individuals. The recovered population, z3, represents the immune individuals, who

cannot become infected and cannot transmit the disease to others.

Another approach we use is neural network approach ([4], [17]).
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In this paper we consider an SIR epidemic disease model. The total (initial) population, N , is categorized

into four classes, namely, susceptible, S(t), infected-infectious, I(t), and recovered, R(t), where tis the time

variable. We consider discrete and continuous models.

The initial value problem we consider is

dz1
dt

= λSC · z1 − (µSC)z1 − u · z1z2(1/N),

dz2
dt

= u · z1z2(1/N)− (v + w)z2 − (µSC)z2 + u · z2z3(1/N),

dz3
dt

= v · z2 − (µSC)z3 − u · z2z3(1/N),

where λSC = birth rate, µSC = natural death rate, u=transmission rate, v=recovery rate, w= death rate of

infected, N=5149000, susceptible population in SC.

We solve the above system of differential Equations by using MATLAB Euler-scheme. The results are

shown below. To determine the necessary parameters, we used data obtained from CDC and optimal control

methodology as well as neural network and machine learning tools.

3. DISCRETE MODEL

We use data covering the period December 1, 2020, to June 1, 2021. In this period vaccination has been

available although not taken advantage of by a lot of people. In addition, social distancing and face making

have been less and less adhered to.

We consider the following discrete model covering the period December 1, 2020, to June 1, 2021. We have

data for infected population and dead population for this model. We are going to rely on our model to

estimate the recovered populations day by day covering this period. The recovered population for Dec. 1,

2020, is known to be 115152.
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z1(i+ 1) = (1− vc) · λSC ·N + z1(i)− µSC · z1(i)

−(1/(1 + exp(−u(i))))z1(i)z2(i)(1/N) + (1/(1 + exp(−s(i))))z3(i),

z2(i+ 1) = z2(i) + u(i)z1(i)z2(i)/N − (v(i) + 1/(1 + exp(−w(i))) + µSC)z2(i)

+1/(1 + exp(−r(i))) · z3(i),

z3(i+ 1) = vc · λSC ·N + z3(i) + (1/(1 + exp(−v(i)))) · z2(i)− (µSC

+1/(1 + exp(−r(i))) + 1/(1 + exp(−s(i)))) · z3(i),

In this model,

λSC = .058 birth rate; µSC = .0095, natural death rate

vc =.40, vc ·N represents proportion of vaccinated people,

N=the susceptible population, 5149000,

transmission rate=1/(1+exp(-u(i))),

recovery rate=1/(1+exp(-v(i))),

relapsation rate= 1/(1+exp(-r(i))),

immunity rate=1/(1+exp(-s(i))),

death rate from infection=1/(1+exp(-w(i))).

Thus, the number of recovered compartment, z3, increases by vc ·N , whereas the susceptible compartment

z1 increases by (1− vc) ·λSC ·N . We see the recovery, relapsation, and death rates are numbers between zero

and 1. They are known. The optimization model determines what are appropriate.The number of infections

arising from an infected individual is then modeled by the number R0(i) given below. The average basic

reproduction number is 1.6133. A sketch of the reproduction number is shown below. We note it is slightly

bigger than 1 consistent with the infected-recovered graph shown below.

A(i) = (u(i)z(i, 1)/N)/(v(i) + w(i) + µSC)

R0(i) = (A(i) + 1/2
√
A(i)2 + 4v(i)r(i)/((v(i) + w(i) + µSC)(µSC + r(i) + s(i)))

We would like to minimize the cost

C(i)2 +D(i)2 + E(i)2

where

C(i) = (z2(i)− Inf(i)),

D(i) = ((1/(1 + exp(−w(i)))) · z2(i)−Dead(i)),

E(i) = (z2(i)− z3(i)).
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∂z2/∂u(i) = (z1(i)z2(i)/N)(−exp(u(i))/(1 + exp(−u(i)))2,

∂z2/∂v(i) = −z2(i)(−1)exp(−v(i))/(1 + exp(−v(i)))2,

∂z2/∂w(i) = −z2(i)(−1)exp(−w(i))/(1 + exp(−w(i)))2,

∂z2/∂r(i) = z3(i)(−1)exp(−r(i))/(1 + exp(−r(i)))2,

∂z3/∂r(i) = −z3(i)(−1)exp(−r(i))/(1 + exp(−r(i)))2,

∂z3/∂s(i) = −z3(i)(−1)exp(−s(i))/(1 + exp(−s(i)))2.

To update decision variables set

au(i) = 2C(i)∂z2/∂u(i) + 2D(i)(1/(1 + exp(−w(i))))∂z2/∂u(i) + 2D(i)∂z2/∂u(i),

+2E(i)∂z2/∂u(i)− 2E(i)∂z3/∂u(i),

av(i) = 2C(i)∂z2/∂v(i) + 2D(i)(1/(1 + exp(−w(i))))∂z2/∂v(i) + 2D(i)∂z2/∂v(i),

+2E(i)∂z2/∂v(i)− 2E(i)∂z3/∂v(i),

aw(i) = 2C(i)∂z2/∂w(i) + 2D(i)(1/(1 + exp(−w(i))))∂z2/∂w(i) + 2D(i)∂z2/∂w(i),

+2E(i)∂z2/∂w(i)− 2E(i)∂z3/∂w(i)

ar(i) = 2C(i)∂z2/∂r(i) + 2D(i)(1/(1 + exp(−w(i))))∂z2/∂r(i) + 2D(i)∂z2/∂r(i)

+2E(i)∂z2/∂r(i)− 2E(i)∂z3/∂r(i),

as(i) = −2E(i)∂z3/∂s(i).

u(i) = u(i)− del1 · au(i),

v(i) = v(i)− del2 · av(i),

w(i) = w(i)− del3 · aw(i),

r(i) = r(i)− del4 · ar(i),

s(i) = s(i)− del5 · as(i).

Inf(i) is the number of infected people at or on the i− th date after December 1,2020. The numbers are

gotten from CDC. Likewise Dead(i) represents the number of dead people. The quantity E(i) represents the

difference between the number of infected people according to our model z2(i), and infected people, Inf(i),

gotten from CDC data. We represent the recovered people by z3(i).
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Figure 1, 2, and 3 represent the number of infected and recovered populations, death, recovery and contact

figures, and reproduction rates that were obtained using the discrete model approach.
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Figure 1. Infected and Recovered, Death rate.
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4. Continuous Model-Optimal Control Approach

Mathematical models are important in analyzing the spread and control of infectious diseases. The model

formulation requires carefully designed models with appropriate assumptions, and variables parameters.

Mathematical models have been critical in the study of infectious diseases ([8] , [16], [17]). They have been

used in studying tuberculosis([15], HIV ([9]), and dengue fever ([1]) models, etc. The aim here is to start

with appropriate model and relevant parameters to be determined. Among the parameters of importance to

be determined are contact rates u, recovery rates v, relapse rates r, infection reproduction rates R0, death

rates w, immunity rates s. We also include the role of vaccination. Although vaccinated people are unlikely

to be infected contributing to immunity, there is still a possibility of relapse.

We would like to minimize the cost function

∫ T

0

{(w(t)z1(t)−Dead(t))2 + (v(t)z2(t)− z3(t))2 + (u(t)z1(t)− z2(t)2}dt

Subject to the constraint

dz1
dt

= (1− vc) · λSC ·N − µSCz1 − uz1z2(1/N) + s · z3,

dz2
dt

= uz1z2(1/N)− (v + w)z2 − µSCz2 + rz3,

dz3
dt

= vc · λSC ·N + vz2 − µSCz3 − rz2 − sz3.(4.1)

The adjoint equation is

dP1/dt = 2(uz1 − z2)u+ (µSC + uz2/N)P1 − (uz2/N)P2,

dP2/dt = 2(wz2 −Dead(t))w + 2(vz2 − z3)v − 2(uz1 − z2) + (uz1/N)P1

−(uz1/N − v − w − µSC)P2 − vP3,

dP3/dt = −2(vz2 − z3)− sP1 − rP2 + (µSC + r + s)P3.(4.2)

Next we construct the Hamiltonian.

Set

f0(t) = (w(t)z1 −Dead(t))2 + (v(t)z2 − z3)2 + (u(t)z1 − z2)2,

Next,

∂f0/∂u = 2(uz1 − z2)z1,

∂f0/∂v = 2(v)z2 − z3)z2,

∂f0/∂w = 2(wz2 −Dead(t))z2.
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∂f1/∂u = −z1z2/N,

∂f1/∂v = 0,

∂f1/∂w = 0.

∂f2/∂u = z1z2/N,

∂f2/∂v = −z2,

∂f2/∂w = −z2.

∂f3/∂u = 0,

∂f3/∂v = z2,

∂f3/∂w = 0.

∂H/∂u(t) = f0(t)u(t)− P1∂f1/∂u− P2∂f2/∂u− P3∂f3/∂u,

∂H/∂v(t) = f0(t)v(t)− P1∂f1/∂v − P2∂f2/∂v − P3∂f3/∂v,

∂H/∂w(t) = f0(t)w(t)− P1)∂f1/∂w − P2∂f2/∂w − P3∂f3/∂w.

Finally we update our control variables.

u(t) = u(t)− del1 · ∂H/∂u(t),

w(t) = w(t)− del2 · ∂H/∂w(t),

v(t) = v(t)− del3 · ∂H/∂v(t).

Again, we use the CDC data of infected population and dead people day by day from December 1, 2020, to

June 1, 2021. We use our model to estimate the number of recovered people. The following figure represents

the recovered (green) and infected (blue) populations.

We see from both discrete and continuous models is that the number of infected populations increases until

mid-April and begins to decrease. The number of recovered populations follows the pattern of recovered

populations. The number of recovered people becomes closer to the number of infected populations.
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Figure 8. Adjoint Trajectory 3.

From the state equation ( 3.1) we consider

dz2
dt

= uz1z2(1/N)− (v + w)z2 − µSCz2 + rz3,

dz3
dt

= vz2 − (µSC)z3 − rz2 − sz3.(4.3)

We rewrite this equations as

(4.4)
dz

dt
= (F + V )z

where

(4.5) F =

 uz1/N r

v 0

 .
and
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(4.6) V =

 −v − w − µSC 0

0 −µSC − r − s

 .
Now,

(4.7) − FV −1 =

 uz1/(v + w + µSC) r/(µSC + r + s)

v/(v + w + µSC) 0

 .

A(i) = (u(i)z(i, 1)/N)/(v(i) + w(i) + µSC)

R0(i) = (A(i) + 1/2
√
A(i)2 + 4v(i)r(i)/((v(i) + w(i) + µSC)(µSC + r(i) + s(i)))(4.8)

The dominant eigenvalue of −FV −1 is R0 and the average of R0(i) is 1.0314. A sketch of the reproduction

number is shown below. We note it is slightly bigger than 1 consistent with the infected-recovered graph

shown below.

4.1. Effect of Quarantine. In Figure 4 we see that the number of infected people is increasing. The figure

of infected people shown is in complete agreement to the data gotten from CDC. It is not acceptable to see

the number is increasing. It is known that the disease of COVID-19 is transmitted through different mech-

anisms, such as hand contamination followed by mucosal inoculation, and droplets or aerosols disseminated

by coughing and sneezing. Some measures that control the transmission of COVID-19 involve simple habits

such as washing one’s hands continuously, sneezing into one’s hand or elbow, use of face mask low mobility,

quarantine. Quarantine includes all of these measures. What we want to show is what could be the outcome if

quarantine had been implemented from the very beginning. We will see a model where an initial quarantine of

50,000 susceptible people, which decreases very fast, leads to a significant decrease in the infected population

and corresponding increase in the recovered population. We modify (4.1) to include quarantine of a small

fraction of the susceptible population. We will see what would be the effect of quarantine had it been applied

from the beginning in our model, i.e., Dec. 1, 2020.

dz1
dt

= (1− vc) · λSC ·N − µSCz1 − uz1z2(1/N) + s · z3 − λ1z1z4(1/N) + θ1z4,

dz2
dt

= uz1z2(1/N)− (v + w)z2 − µSCz2 + rz3,

dz3
dt

= vc · λSC ·N + vz2 − µSCz3 − rz2 − sz3,

dz4
dt

= λ1z1z4(1/N)− θ1z4 − µSCz4.(4.9)
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In our quarantine model we use the same contact, recovery, relapse and immunity rates that were obtained

in the optimal control method. Thus, we proceed to solve the differential equation (4.9). The graphs of the

infected and recovered populations, and the quarantined population are shown in Figure 9.
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Figure 9. Infected Recovered after Quarantine and Quarantined Susceptible

5. CONCLUSION

The worldwide spread of corona virus exerts enormous pressure on healthcare systems, societies, and gov-

ernments. Therefore, predicting the epidemic dynamics is an important problem from a data science and

mathematical modeling perspective. The motivation of the current work was to explore the potential of

sequential data assimilation to create a regional epidemic model as a forecasting tool. The standard epidemic

SIR-type models implement a compartmental description under the assumption of homogeneous mixing of

individuals.

More realistic modeling approaches must account for spatial heterogeneity due to time varying disease onset

times, regionally different contact rates, and the time dependence of the contact rates due to the implementa-

tion of containment strategies. However, extensive data are not currently available. Thus, we must construct

models where control theory, optimization, and neural network methodologies to approximate missing and

necessary data. In the work we did relating to data from December 1, 2020, to June 1, 2021, we rely only on

available data of infected and dead populations to have some ideas on the transmission, recovery, and relapse
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rates.

What we see in the last three pictures from the discrete model are a decrease in death rate, high recovery

rate, and decreasing infection transmission rate. The basic reproduction rate is consistent with this observa-

tion although it trending upward, but less than 1. What we see in the very last picture is like the first picture

of the recovered and infected populations. We notice they are similar. In the figure of infected and recovered

in Figure 4 we see that the infected population increases consistent with the CDC data. This increase in not

acceptable. By considering quarantine in our model we see that quarantine could have made a significant

impact in decreasing the infected population and increasing the recovered population (Figure 9) had it been

applied starting starting Dec. 1, 2020. Thus, quarantine is an effective tool in curbing the spread of the virus.
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