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ABSTRACT. In this paper we present a nonlinear programming approach for selecting an optimal scheduling of freight

transportation from sources to destinations to maximize revenue. The decision variables in the model are number of batches

to be transported from sources to destinations. These decision variables take on integer values. In our model we treat them

as continuous variables and add a nonlinear constraint which will enforce the variables to take on integer values at the optimal

solution. The nonlinear constrained problem is transformed to an unconstrained optimization problem using a penalty method.

We use gradient descent to find the optimal solution of the unconstrained optimization problem. A numerical example with two

sources and two destinations is provided.
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1. Introduction

Freight delivery problem gained even more importance with recent supply chain disruptions, increase in cost of transportation,

global warning awareness, and sustainability objectives. Cooperative freight logistic is one of the alternative framework that

intends to minimize costs and drawbacks for all. The problem can be solved in various time intervals and sizes using game

theoretic (combinatorial games). Formulations can be equivalently explained as programming and usually solved with mixed

linear integer programming.

In the literature, there are number of game theoretic approaches ([11], [12]).

In this paper, we present a nonlinear programming approach to determine an optimal scheduling of freight transportation from

sources to destinations. Items to be transported are grouped in batches. The decision variables in the nonlinear programming

model presented are the number of batches from sources to destinations. These decision variables take on integer values. In our

approach, we treat these decision variables as continuous and add a nonlinear constraint to our model to enforce them to take

integer values within a specified tolerance limit at the optimal solution. The constrained optimization problem is transformed to

an unconstrained minimization problem using a penalty method. A gradient decent method is used to find an optimal solution

of the unconstrained optimization problem.

2. Problem Statement and Model

In this section we define the problem that we want to address in this paper and also provide the model that describes the

problem.

Suppose we have s sources from where items in batches are to be picked up and delivered to d destinations.

Let β(k), k = 1, · · · , d be the number of batches to be delivered to destination k from all the s sources.
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Suppose the maximum number of batches source i can transport is α(i), i = 1, · · · , s.
We assume that α(i) ≥ β(k), ∀i = 1, · · · , s, ∀k = 1, · · · , d.
Let

1. c(ℓ, k) = cost of transporting a batch from source ℓ to destination k, ℓ = 1, · · · , s, k = 1, · · · , d
2. b(ℓ, k) = cost of transportation (which include fuel, storage cost, and other transportation costs) of a batch from source ℓ

to destination k, ℓ = 1, · · · , s, k = 1, · · · , d
3. x(ℓ, k) = number of batches to be transported from source ℓ to destination k, ℓ = 1, · · · , s, k = 1, · · · , d

The cost is to the suppliers at the sources who want to deliver batches of items to various destinations. For the freight transport

companies this cost will be a revenue. From the freight transportation company’s point of view, the problem is to maximize

revenue following the definitions of β(k) and α(i) described above. Our goal thus is to maximize

max{
s∑

ℓ=1

d∑
k=1

c(ℓ, k)x(ℓ, k)−
s∑

ℓ=1

d∑
k=1

b(ℓ, k)x(ℓ, k)}

subject to the restrictions described above. The optimization model described below describes the problem.

max{
s∑

ℓ=1

d∑
k=1

c(ℓ, k)x(ℓ, k)−
s∑

ℓ=1

d∑
k=1

b(ℓ, k)x(ℓ, k)}

subject to

1− ϵ ≤
β(k)∑
i=1

e−∆(x(ℓ,k)−i)2 ≤ 1 + ϵ, k = 1, · · · , d; ℓ = 1, · · · , s∑
ℓ=1s

x(ℓ, k) ≤ β(k), k = 1, · · · , d

0 ≤ β(k) ≤ m(k), k = 1, · · · , d

0 ≤ x(ℓ, k) ≤ α(ℓ), ℓ = 1, · · · , s; k = 1, · · · , d

in the model above, The parameter ∆ is a positive number to be chosen (eg 5, 10, 15 etc). The parameter ϵ is a very small

positive number (eg 0.0005) to be chosen. For each k, m(k) is an upper bound for β(k) to be chosen. The first constraint is to

enforce the decision variables x(ℓ, k) to take on integer values. Unless you match one of the i’s only the best candidate will be

close to 1.

We use a penalty method to convert the above constrained optimization problem to an unconstrained minimization problem as
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follows.

min−
s∑

ℓ=1

d∑
k=1

c(ℓ, k)x(ℓ, k) +

s∑
ℓ=1

d∑
k=1

b(ℓ, k)x(ℓ, k)

+L1

s∑
ℓ=1

d∑
k=1

ω

β(k)∑
i=1

e−∆(x(ℓ,k)−i)2 − 1− ϵ


+L2

s∑
ℓ=1

d∑
k=1

ω

1− ϵ−
β(k)∑
i=1

e−∆(x(ℓ,k)−i)2


L3

d∑
k=1

ω

((
s∑

i=1

x(i, k)

)
− β(k)

)

L4

s∑
ℓ=1

d∑
k=1

ω (x(ℓ, k)− α(ℓ))

L5ω

(
d∑

k=1

(β(k)−m(k))

)

L6

(
−ω

(
d∑

k=1

β(k)

))
Li > 0, i = 1, · · · , 6 are penalty parameters. The function ω is defined as follows,

ω(x) =

{
x if x ≥ 0

0 if x < 0

The derivative ω′(x) is

ω′(x) =

{
1 if x > 0

0 if x < 0

ω is not differentiable at x = 0. However, take the derivative at x = 0 to be 1. We use gradient descent method to find opti-

mal solution of the above unconstrained minimization problem. The optimal solutions x(ℓ, k) are also optimal solutions to the

original constrained optimization problem. We present an algorithm to find optimal solution of the unconstrained minimization

problem.

Algorithm

Initialize Parameters in the model

Choose δ the step size in gradient descent

for n = 1 : maxiter do

if
(∑β(k)

i=1 e−∆(x(ℓ,k)−i)2 − 1− ϵ ≥ 0
)
ω1 = 1 else ω1 = 0 end

if
(
1− ϵ−

∑β(k)
i=1 e−∆(x(ℓ,k)−i)2 ≥ 0

)
ω2 = 1 else ω2 = 0 end

if
(∑s

ℓ=1

∑d
k=1 ω (x(ℓ, k)− α(ℓ)) ≥ 0

)
ω4 = 1 else ω4 = 0 end

if
(∑d

k=1 ω ((
∑s

i=1 x(i, k))− β(k) ≥ 0)
)
ω3 = 1 else ω3 = 0 end

if
((∑d

k=1 β(k)−m(k)
)
≥ 0
)
ω5 = 1 else ω5 = 0 end

if
(
−
(∑d

k=1 β(k)
))

≥ 0 ω6 = 1 else ω6 = 0 end

Compute the gradient of the objective function.

Update x(ℓ, k)
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Update the objective function

−
s∑

ℓ=1

d∑
k=1

c(ℓ, k)x(ℓ, k) +

s∑
ℓ=1

d∑
k=1

b(ℓ, k)x(ℓ, k)

+L1

s∑
ℓ=1

d∑
k=1

ω1 ∗

β(k)∑
i=1

e−∆(x(ℓ,k)−i)2 − 1− ϵ


+L2

s∑
ℓ=1

d∑
k=1

ω2 ∗

1− ϵ−
β(k)∑
i=1

e−∆(x(ℓ,k)−i)2


L3

d∑
k=1

ω3 ∗

((
s∑

i=1

x(i, k)

)
− β(k)

)

L4

s∑
ℓ=1

d∑
k=1

ω4 ∗ (x(ℓ, k)− α(ℓ))

L5ω5 ∗

(
d∑

k=1

(β(k)−m(k))

)

L6

(
−ω6 ∗

(
d∑

k=1

β(k)

))
n = n+ 1

end

3. Numerical Examples

In this section we provide two numerical examples. In both examples we consider two sources and two destinations. s = 2

and d = 2. The difference between the two examples is the initial approximation to the solution and the number of iterations.

Example-1

In this example, the cost of transportation of a batch from source i to destination j is given by the following matrix where cij

is the cost per batch from source i to destination j. These costs are revenues for the freight transportation companies.

c =

(
25 17

18 17

)
The operational cost of transportation for the freight companies from source i to destination j is given by the following matrix

where bij is the cost per batch from source i to destination j.

b =

(
2 3

1 2

)
β = [15, 9] α = [16, 4] m = [16, 10] ∆ = 14 ϵ = 0.000005

Li is taken to be 106 for all i = 1, · · · , 6. The initial approximation to the solution x(i, j) is given by the following matrix. The

step length parameter δ = 10−6

x =

(
5 6

2 3

)



DETERMINING AN OPTIMAL SCHEDULING OF FREIGHT TRANSPORTATION TO MAXIMIZE REVENUE 21

xij is the number of batches transported from source i to destination j. A MATLAB code is written to ex-cute the algorithm

and obtain the optimal number of batches from sources to destinations. The optimal solution is given by the following matrix.

x =

(
13.9995 3

5 2

)
Thus in the optimal solution, 14 batches are transported from source 1 to destination 1, 3 batches from sources 1 to destina-

tion 2, 5 batches from source 2 to destination 1, and 2 batches from source 2 to destination 2. The optimal objective function

value (that is the revenue for the freight company) for the maximization problem we had at the beginning is found to be 478.9875.

Example-2

In this example we take the same values of the parameters as in the first example. The maximum number of iterations for this

example is half of the number of iterations used in the first example. The initial approximation of the solution in this example

is given by the following matrix.

x =

(
12 4

3 2

)
The optimal solution is found to be the same as the one obtained in the first example.

x =

(
13.9995 3

5 2

)
Thus in the optimal solution, 14 batches are transported from source 1 to destination 1, 3 batches from sources 1 to destination

2, 5 batches from source 2 to destination 1, and 2 batches from source 2 to destination 2. The optimal objective function value

(that is the revenue for the freight company) for the maximization problem we had at the beginning is found to be 478.9875.

The optimal solutions and the optimal objective function values in the two examples are the same. We took two different initial

approximations of the optimal solution and obtained the same optimal solution in both cases.

4. Conclusion

In this paper, we presented a nonlinear programming approach to determine an optimal scheduling of freight transportation

from of sources to destinations. Items to be transported are grouped in batches. The decision variables are the number of

batches from sources to destinations. These decision variables take on integer values. A nonlinear constraint is added to the

optimization model to enforce these decision variables to be integers within a tolerance limit of ϵ (which is taken to be a small

number). We transformed the constrained optimization problem to an unconstrained optimization problem using a penalty

method. A gradient descent method is used to find an optimal solution of the unconstrained optimization problem. The choice

of the step length in the gradient descent method depends on the norm of the gradient of the objective function. We select

the an appropriate step length by trial and error. The initial approximation of the solution also plays an important role in the

convergence of the algorithm to an optimal solution. There is no rule for the choice of the initial approximation of the solution

but starting with some feasible solution will help. The number of iterations needed to get to n optimal solution depends on

the problem and one has to make an adjustment of to the maximum number of iterations (increase or decrease) based on the

outcome of a solution to the decision variables until we get integer or close to integer values within the tolerance limit.

The objective function in the maximization problem is linear and there could be more than one possible solution to the problem.

In the optimal scheduling problem, there could be a number of sources, a number of destinations, many batches of items to be

transported from sources to destinations. A single carrier (truck company) may not be able to perform all the task. Once the

optimal scheduling is determined, different carriers can cooperate and share revenue based on the task each carrier performed.

For example, a Shapley value can be used to divide the revenue among the carriers who cooperated to perform the task.
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