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1 INTRODUCTION

It is well-known fact that the study of the roots of random polynomials has become
an active area of research among the most popular topics in Mathematics. This field has
motivation and application in many branches of mathematical sciences. This field has a
notably a rich history. We need to invoke and remember the results on random polynomials
in Bharucha-Reid and Sambandham [14] and Farahmand [30]. This contribution is our
earnest effort as a continuation of our earlier papers Thangaraj and Sambandhan [68], [69].

2 RANDOM SYSTEMS OF POLYNOMIAL EQUATIONS

Let f = ( f1, f2, . . . , fm) where

(2.1) fi(t) =
∑
‖ j‖≤di

a(i)
j t j (i = 1, . . . ,m)

be a system of m polynomials in m real variables. The notation in (2.1) is the following:
t := (t1, . . . , tm) denotes a point in Rm, j = ( j1, . . . , jm) a multi-index of non-negative
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integers, ‖ j‖ =
∑m

h=1 jh, t j = t j1 · · · t jm , a(i)
j = a(i)

j1,..., jm
. Further di is the degree of the

polynomial fi.

The next question arises to find the number of solutions of the system of equations

(2.2) fi(x) = 0 (i = 1, . . . ,m)

lying in some subset V of Km. Let N f (V) the number of roots of the system of equations
(2.2) lying in the subset V of Rm. Throughout this section we discuss the case K = R or
K = C. Also N f = N f (Rm). If we treat the coefficients

{
a(i)

j

}
as random, N f (V) becomes a

random variable.

Fundamental results in the case of one polynomial in one variable were started
appearing with the work of Marc Kac [36] (see the book by Bharucha-Reid and
Sambandham [14]). Now we want to expand the horizon by considering the systems with
m > 1, and in particular, for large values of m. We see a striking difference other than the
case m = 1 and in general, little is known on the distribution of the random variable N f (V)
(or N f ) even for simple choices of the probability law on the coefficients.

2.1 AVERAGE NUMBER OF ROOTS OF RANDOM POLYNOMIAL SYSTEMS
At first we note down the real case. Here we record results for (i) Zero Mean Case, (ii)
Non-zero Mean Case, and (iii) Other Polynomial Basis Case.

2.1.1 Real Roots: Zero Mean Case

Theorem 2.1 ([65]). Let the number N f (V) of solutions of (2.2) lie in the Borel subset V
of Rm. Assume that the coefficients are centered Gaussian independent random variables
having variances

(2.3) E
[(

a(i)
j

)2
]

=
di!

j1! · · · jm! (di − ‖ j‖)!
.

Then the expectation of N f is

(2.4) E
(
N f

)
= (d1 · · · dm)1/2 .

ie. that is, the square root of the Bézout number1 associated to the system (2.2).

Some extensions of this theorem, including new results for one polynomial in one
variable, can be found in [29]. There are also other extensions to multi-homogeneous
systems in [52], and, partially, to sparse systems in [48] and [51]. A similar question for
the number of critical points of real-valued polynomial random functions was considered
by Dedieu and Malajovich in [24].

1Bézout’s theorem is a statement in algebraic geometry concerning the number of common zeros of n
polynomials in n indeterminates. In its original form the theorem states that in general the number of common
zeros(Bézout’s number) equals the product of the degrees of the polynomials
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A general formula for E
(
N f (V)

)
when the random functions fi(i = 1, . . . ,m) are

stochastically independent and their law is centered and invariant under the orthogonal
group on Rm can be found in [11]. The Shub-Smale formula (2.4) can be seen as a special
case. Not many results are available on higher moments. The only known results are
asymptotic variances as m → +∞ (see [11] for non-polynomial systems and [70] for the
Kostlan-Shub-Smale model).

Let us consider the case where the coefficients have zero expectation (in some cases,
this has been considered for one polynomial in one variable in [29]).

2.1.2 Real Roots: Non-Zero Mean Case
Let us start with a non-random system

(2.5) Pi(t) = 0 (i = 1, . . . ,m)

with a polynomial noise {Xi(t) : i = 1, . . . ,m}. This leads to consider the system

Pi(t) + Xi(t) = 0 (i = 1, . . . ,m)

and we discuss the number of roots of the new system.

In order to obtain results on E
(
NP+X

)
, some assumptions both on the “noise” X and

the class of polynomial “signals” P, especially the relation between the size of P and the
probability distribution of X are required.

Assume that the polynomial noise X is Gaussian and centered, the real-valued random
processes

X1(·), . . . , Xm(·)

defined on Rm are independent, with covariance functions

RXi(s, t) := E (Xi(s)Xi(t)) (i = 1, . . . ,m)

depending only on the scalar product 〈s, t〉, that is: RXi(s, t) = Q(i)(〈s, t〉), where

Q(i)(u) =

di∑
k=0

c(i)
k uk, u ∈ R(i = 1, . . . ,m)

In this case, it is known that a necessary and sufficient condition for Q(i)(〈s, t〉) to be a
covariance is that c(i)

k ≥ 0 for all k = 0, . . . , di and the process Xi can be written as

Xi(t) =
∑
‖ j‖≤di

a(i)
j t j

where the random variables a(i)
j are centered Gaussian, independent and

Var
(
a(i)

j

)
= c(i)

‖ j‖

‖ j‖!
j!

(i = 1, . . . ,m; ‖ j‖ ≤ di)

(for a proof, see [11]).
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Particular case: The Shub-Smale model (2.3) corresponds to the particular choice

c(i)
k =

 di

k

 (k = 0, 1, . . . , di)

which implies
Q(i)(u) = (1 + u)di (i = 1, . . . ,m)

We need the following notations to discuss further.

Q(i)
u ,Q

(i)
uu denote the successive derivatives of Q(i). We assume that Q(i)(u),Q(i)

u (u) do
not vanish for u ≥ 0. Put, for x ≥ 0 :

qi(x) =
Q(i)

u

Q(i) ,(2.6)

ri(x) =
Q(i)Q(i)

uu −
(
Q(i)

u

)2(
Q(i))2 , and(2.7)

hi(x) = 1 + x
ri(x)
qi(x)

(2.8)

In (2.6) and (2.7), the functions in the right-hand side are computed at the point x. In
[11] the following statement has been proved:

Theorem 2.2 ([11]). Let V ⊂ Rm be any Borel subset. Then

E
(
NX(V)

)
=

1
√

2π(m+1)/2
Γ

(m
2

) ∫
V

 m∏
i=1

qi

(
‖t‖2

)1/2

· Eh

(
‖t‖2

)
dt

where

Eh(x) = E


 m∑

i=1

hi(x)ξ2
i

1/2
and ξ1, . . . , ξm denote independent standard normal random variables.

Remark: We notice that Theorem 2.2 is a special case of a general theorem (see [11]),
in which the covariance function of the random field is invariant under the action of the
orthogonal group, and not only a function of the scalar product.

Let us assume that each polynomial Q(i) does not vanish for u ≥ 0, which amounts to
saying that for each t the (one-dimensional) distribution of Xi(t) does not degenerate. Also,
Q(i) has effective degree di, that is,

c(i)
di
> 0 (i = 1, . . . ,m)

After simplification, each polynomial Q(i), as u→ +∞, gives

qi(u) ∼
di

1 + u
and(2.9)

hi(u) ∼
c(i)

di−1

dic
(i)
di

·
1

1 + u
.(2.10)
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Further we assume the following:

(H1) hi is independent of i(i = 1, . . . ,m) (but may vary with m). We put h = hi. Of course,
if the polynomials Q(i) do not depend on i, this assumption is satisfied. But there are
more general cases, such as covariances having the form Q(u)li (i = 1, . . . ,m).

(H2) There exist positive constants Di, Ei(i = 1, . . . ,m) and q such that

(2.11) 0 ≤ Di − (1 + u)qi(u) ≤
Ei

1 + u
and (1 + u)qi(u) ≥ q

for all u ≥ 0, and moreover

(2.12) max
1≤i≤m

Di, max
1≤i≤m

Ei

are bounded by constants D̄, Ē, respectively, which are independent of m; q is also
independent of m. Also, there exist positive constants h, h̄ such that

h ≤ (1 + u)h(u) ≤ h̄

for u ≥ 0.

Notice that the auxiliary functions qi, ri, h(i = 1, . . . ,m) will also vary with m. To simplify
somewhat the notation, just drop the parameter m in P,Q, qi, ri, h. However, in (H2) the
constants h, h̄ do not depend on m.

With respect to (H2), it is clear that for each i, qi will satisfy (2.11) with the possible
exception of the first inequality, and (1 + u)h(u) ≤ h̄ for some positive constant h̄, from the
definitions (2.6), (2.8), (2.9), (2.10) and the conditions on the coefficients of Q(i). However,
it is not self-evident from the definition (2.8) that h(u) ≥ 0 for u ≥ 0.

It is assumed the system with has the relation between the “signal” P and the “noise”
X. Let P be a polynomial in m real variables with real coefficients having degree d and
Q a polynomial in one variable with non-negative coefficients, also having degree d,
Q(u) =

∑d
k=0 ckuk. Further it is assumed that Q does not vanish on u ≥ 0 and cd > 0.

Define

H(P,Q) = sup
t∈Rm

(1 + ‖t‖) ·

∥∥∥∥∥∥∥∇
 P√

Q
(
‖t‖2

) (t)

∥∥∥∥∥∥∥


K(P,Q) = sup
t∈Rm\{0}

(1 + ‖t‖2
)
·

∣∣∣∣∣∣∣ ∂∂ρ
 P√

Q
(
‖t‖2

) (t)

∣∣∣∣∣∣∣


where ∂
∂ρ

denotes the derivative in the direction defined by t
‖t‖ , at each point t , 0. For

r > 0, put:

L(P,Q, r) := inf
‖t‖≥r

P(t)2

Q
(
‖t‖2

) .
One can check by means of elementary computations that for each pair P,Q as above, one
has

H(P,Q) < ∞, K(P,Q) < ∞.
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With these notations, the following assumptions on the systems P,Q, as m grows, have
been defined.

(H3)

Am =
1
m
·

m∑
i=1

H2
(
Pi,Q(i)

)
i

= o(1) as m→ +∞,(2.13)

Bm =
1
m
·

m∑
i=1

K2
(
Pi,Q(i)

)
i

= o(1) as m→ +∞.(2.14)

(H4) There exist positive constants r0, ` such that if r ≥ r0 :

L
(
Pi,Q(i), r

)
≥ ` for all i = 1, . . . ,m

The following result has been proved in [12]

Theorem 2.3 ([12]). Under the assumptions (H1) , . . . , (H4), one has

E
(
NP+X

)
≤ CθmE

(
NX

)
where C, θ are positive constants, 0 < θ < 1.

2.1.3 Real Roots: Other Polynomial Basis
We have so far considered that all probability measures have been introduced in a
particular basis, namely, the monomial basis

{
x j

}
‖ j‖≤d

. But many situations demand that the
polynomial systems are expressed in different basis, for example, orthogonal polynomials,
harmonic polynomials, Bernstein polynomials, etc. This triggers to discuss a question of
studying N f (V) when the randomization is performed in a different basis. For the case of
random orthogonal polynomials one may consult Bharucha-Reid and Sambandham [14],
and Edelman and Kostlan [29] for random harmonic polynomials.

Here, a nice answer to the average number of real roots of a random system of
equations expressed in the Bernstein basis case by Armentano and Dedieu in [7]. The
Bernstein basis is given by

bd,k(x) =

 d
k

 xk(1 − x)d−k, 0 ≤ k ≤ d,

in the case of univariate polynomials, and

bd, j (x1, . . . , xm) =

 d
j

 x j1
1 . . . x jm

m (1 − x1 − . . . − xm)d−‖ j‖ , ‖ j‖ ≤ d,

for polynomials in m variables, where j = ( j1, . . . , jm) is a multi-integer, and

 d
j

 is the

multinomial coefficient.
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Let us consider the set of real polynomial systems in m variables,

fi (x1, . . . , xm) =
∑
‖ j‖≤di

a(i)
j bd, j (x1, . . . , xm) (i = 1, . . . ,m)

Take the coefficients a(i)
j to be independent standard Gaussian random variables. Define

τ : Rm → P
(
Rm+1

)
by

τ (x1, . . . , xm) = [x1, . . . , xm, 1 − x1 − . . . − xm]

Notice that P
(
Rm+1

)
is the projective space associated with Rm+1, with [y] as the class

of the vector y ∈ Rm+1, y , 0, for the equivalence relation defining this projective space. The
(unique) orthogonally invariant probability measure in P

(
Rm+1

)
is denoted by λm. These

lead to state the following result.

Theorem 2.4 ([7]).

(1) For any Borel set V in Rm we have

E
(
N f (V)

)
= λm(τ(V))

√
d1 . . . dm

(2) In particular,
E

(
N f

)
=
√

d1 . . . dm and also

(3) E
(
N f (∆m)

)
=
√

d1 . . . dm/2m, where

∆m = {x ∈ Rm : xi ≥ 0 and x1 + . . . + xm ≤ 1} ,

(4) When m = 1, for any interval I = [α, β] ⊂ R, one has

E
(
N f (I)

)
=

√
d
π

(arctan(2β − 1) − arctan(2α − 1))

The fourth assertion in Theorem 2.4 is deduced from the first assertion but it also can
be derived from Crofton’s formula (see Edelman and Kostlan [29]).

For the proof of Theorem 2.4 see Armentano and Dedieu [7].

2.2 COMPLEX ROOTS CASE
In this section we see that points in the sphere associated with roots of Shub-Smale complex
analogue random polynomials via the stereographic projection, are surprisingly well-suited
with respect to the minimal logarithmic energy on the sphere. This observations provide
a good approximation to a classical minimization problem over the sphere, namely, the
Elliptic Fekete points problem.

We record here the results of Armentano et al. [6], where one can find proofs and more
detailed references.
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ELLIPTIC FEKETE POINTS PROBLEM: Given x1, . . . , xN ∈ S
2 =

{
x ∈ R3 : ‖x‖ = 1

}
,

let

(2.15) V (x1, . . . , xN) = ln
∏

1≤i< j≤N

1∥∥∥xi − x j

∥∥∥ = −
∑

1≤i< j≤N

ln
∥∥∥xi − x j

∥∥∥
be the logarithmic energy of the N -tuple x1, . . . , xN . Let

VN = min
x1,...,xN∈S2

V (x1, . . . , xN)

denote the minimum of this function. N =tuples minimizing the quantity (2.14) are usually
called Elliptic Fekete Points.

One may consult Whyte [71] for origin and Saff anf Kuijlaars [60] for an informative
survey on this problem. In the list of Smale’s problems for the XXI Century [67], Problem
Number 7 is stated as follows.

SMALE’S SEVENTH PROBLEM: Can one find x1, . . . , xN ∈ S
2 such that

(2.16) V (x1, . . . , xN) − VN ≤ c ln N

c a universal constant?

It is to be noted here that the value of VN is not even known up to logarithmic precision.
Rakhmanov et al. have established the following result in [57].

Theorem 2.5 ([57]). If CN is defined by

(2.17) VN = −
N2

4
ln

(
4
e

)
−

N ln N
4

+ CN N

then,
−0.112768770 . . . ≤ lim inf

N→∞
CN ≤ lim sup

N→∞
CN ≤ −0.0234973 . . . .

Now the random polynomial version gives some insight to the problem. Let X1, . . . , XN

be independent random variables with common uniform distribution over the sphere. One
obtains the expected value of the function V (X1, . . . , XN) in this case as,

(2.18) E (V (X1, . . . , XN)) = −
N2

4
ln

(
4
e

)
+

N
4

ln
(
4
e

)
.

We notice here that this random choice of points in the sphere with independent
uniform distribution already provides a reasonable approach to the minimal value VN ,
accurate to the order of O(N ln N).

In this context a beautiful argument provided by Armentano [4] is reproduced
here for the sake of understanding the real spirit of the problem. “On one side, this
probability distribution has an important property, namely, invariance under the action
of the orthogonal group on the sphere. However, on the other hand this probability
distribution lacks on correlation between points. More precisely, in order to obtain
well-suited configurations one needs some kind of repelling property between points, and in
this direction independence is not favorable. Hence, it is a natural question whether other
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handy orthogonally invariant probability distributions may yield better expected values.
Here is where complex random polynomials comes into account.”

Now we are ready to state random polynomials version in [4].

Given z ∈ C, let

ẑ =
(z, 1)

1 + |z|2
∈ C × R � R3

be the associated points in the Riemann Sphere, i.e. the sphere of radius 1/2 centered at
(0, 0, 1/2). Finally, let

X = 2ẑ − (0, 0, 1) ∈ S2

be the associated points in the unit sphere. Given a polynomial f in one complex variable
of degree N, we consider the mapping

f 7→ V (X1, . . . , XN)

where Xi(i = 1, . . . ,N) are the associated roots of f in the unit sphere. Notice that this map
is well defined in the sense that it does not depend on the way we choose to order the roots.

Theorem 2.6 ([4]). Let f (z) =
∑N

k=0 akzk be a complex random polynomial, such that the
coefficients ak are independent complex random variables, such that the real and imaginary
parts of ak are independent (real) Gaussian random variables centered at 0 with variance N

k

. Then, with the notations above,

E (V (X1, . . . , XN)) = −
N2

4
ln

(
4
e

)
−

N ln N
4

+
N
4

ln
4
e

We summarise here some interesting facts.

• We see that the value of V is small at points coming from the solution set of this
random polynomials when we compare Theorem 2.6 with equations (2.17) and (2.18).
• Notice that, taking the homogeneous counterpart of f , Theorem can be restated for

random homogeneous polynomials and considering its complex projective solutions,
under the identification of P

(
C2

)
with the Riemann sphere.

• In this fashion, the induced probability distribution over the space of homogeneous
polynomials in two complex variables corresponds to the classical unitarily invariant
Hermitian structure of the respective space (see Blum et al.[16]). Therefore, the
probability distribution of the roots in P

(
C2

)
is invariant under the action of the unitary

group.
• We note that the distribution of the associated random roots on the sphere is

orthogonally invariant.

For a proof of Theorem 2.6 and a more detailed discussion on this account, one may
consult Armentano et al.[6]. See also Shub and Smale [66].
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We now notice from the results of Hammersley [32] and S̆paro and S̆ur [61] that the
most of complex zeros a random polynomial are near the unit circle. Also Ibragimov and
Zaporochets (11) have shown that the convergence to the unit circle happens if and only if
E log(1 + |Xi|) < ∞. The following question raises in this context: What is scale at which
most of the zeros are near the unit circle?

Shepp and Vanderbei [62] have shown that most of zeros are on the scale
1
n

away from
the unit circle when the IID random coefficients in the algebraic random polynomial follow
standard normal distribution. They have found an exact expression for the expected number
of zeros in a set A ⊂ C. A new observation in the study by Peres and Viŕah [55] that zeros
uniformly bounded away from unit circle tend to a determinantal point process.

Conjecture: Shepp and Vanderbei [62] have formulated the following conjectures when
the coefficients follow standard normal distribution.

(a) There is a complex zero within O(1/n2) of the unit circle with high probability. Further,
if {ζi} is the set of complex zeros then {(|ζ | − 1)n2}ζ tends to Poisson Process.

(b) There is a real zero within O(1/n) of the unit circle with high probability. Further, if
{r} is the set of zeros then {(|r| − 1)n} tends to Poisson Process.

Ibragimov and Zeitouni [34], and, Konyagin and Schlag [38] have shown that O(1/n2)
is the best possible for the conjecture (a) : For ε > 0 small enough, there is a positive
probability that there are no zeros within ε/n2 of unit circle. It is pertinent to note results
of Michelen and Sahasrabudhe [54].

Theorem 2.7 ([54]). Conjecture (a) holds. For IID standard normal coefficients, if {ζ} are
the zeros of the random algebraic polynomial in the upper half plane then {(|ζ | − 1)n2}ζ

tends to a homogeneous Poisson process with intensity 1/12 in the vague topology.

We have a deduction from the above result.

Corollary 2.8 ([54]). If dn is the distance from the unit circle to the closest zero of random
algebraic polynomial Fn, then dnn2 converges to an exponential random variable of rate
1/6 in distribution.

Further Michelen[53] has established the following result.

Theorem 2.9 ([53]). First half of Conjecture (b) holds whereas the second half does not.
For E(Xi) = 0 and E(X2

i ) = 1, there is a real zero within O(1/n) of the unit circle with high
probability but {(|r| − 1)n} tends in distribution to non-Poisson limit.

Question: This investigation leads to several avenues for further study when the
coefficients follow other distributions.
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2.3 VARIANCE NUMBER OF ROOTS OF RANDOM POLYNOMIAL SYSTEMS
We may look for analogous results of Maslova ([49],[50]) for the random polynomial
system. In this connection, we present here the results in Armentano et al.[5].

The case of algebraic polynomials Pd(t) =
d∑

j=1
a jt j with independent identically

distributed coeffcients was the first one to be extensively studied and was completely
understood during the 70s. If a1 is centered, P(a1 = 0) = 0 and E(|a1|

2+δ) < ∞ for some
δ > 0, then, the asymptotic expectation and the asymptotic variance of the number of
real roots of Pd, as the degree d tends to infinity, are of order log d and, once normalized,
the number of real roots converges in distribution towards a centered Gaussian random
variable.

The case of systems of polynomial equations seems to be considerably harder and has
received in consequence much less attention. The results in this direction are confined to the
Shub-Smale model and some other invariant distributions. The ensemble of Shub-Smale
random polynomials was introduced in the early 90’s by Kostlan [39]. Kostlan argues
that this is the most natural distribution for a polynomial system. The exact expectation
was obtained in the early 90’s by geometric means, see Edelman and Kostlan [29] for the
one-dimensional case and Shub and Smale [65] for the multi-dimensional one. In 2004,
2005 Azaı̈s and Wschebor [11] and Wschebor [70] obtained by probabilistic methods the
asymptotic variance as the number of equations and variables tends to infinity. Recently,
Dalmao [23] obtained the asymptotic variance and a CLT for the number of zeros as the
degree d goes to infinity in the case of one equation in one variable. Letendre in [44]
studied the asymptotic behavior of the volume of random real algebraic submanifolds. His
results include the finiteness of the limit variance, when the degree tends to infinity, of the
volume of the zero sets of Kostlan-Shub-Smale systems with strictly less equations than
variables. Some results for the expectation and variance of related models are included in
([11], [42], [43]).

Now we state the interesting results obtained by Armentano et al.[5]. Consider a square
system P of m polynomial equations in m variables with common degree d > 1. More
precisely, let P = (P1, . . . , Pm) with

P`(t) =
∑
|j |≤d

a(`)
j

tj

where

(1) j = ( j1, . . . , jm) ∈ Nm and | j| =
∑m

k=1 jk;
(2) a(`)

j = a(`)
j1... jm

∈ R, ` = 1, . . . ,m, | j| ≤ d
(3) t = (t1, . . . , tm) and t j =

∏m
k=1 t jk

k .
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We say that P has the Kostlan-Shub-Smale (KSS for short) distribution if the coefficients
a(`)

j are independent centered normally distributed random variables with variances

Var
(
a(`)

j

)
=

 d
j

 =
d!

j1! . . . jm!(d − | j|)!

We are interested in the number of real roots of P that we denote by NP
d . Shub and Smale

[65] have proved that E
(
NP

d

)
= dm/2. The main interesting result is the following.

Theorem 2.10 ([5]). Let P be an KSS random polynomial system with m equations, m
variables and degree d. Then, as d → ∞ we have

lim
d→∞

Var
(
NP

d

)
dm/2 = V2

∞

where 0 < V2
∞ < ∞.

Also we present here an explicit expression of the variance.

Theorem 2.11 ([5]). For k = 1, . . . ,m let ξk, ηk be independent standard normal random
vectors on Rk. Let us define

• σ̄2(t) = 1 − t2 exp(−t2)
1−exp(−t2) ;

• ρ̄(t) =
(1−t2−exp(−t2)) exp(−t2/2)

1−(1+t2) exp(−t2) ;

• mk, j = E
(
‖ξk‖

j
)

= 2 j/2 Γ(( j+k)/2)
Γ(k/2) , where ‖ · ‖ is the Euclidean norm on Rk;

• for k = 1, . . . ,m − 1,Mk(t) = E

[
‖ξk‖

∥∥∥∥∥∥ηk + e−t2/2(
1−e−t2

)1/2 ξk

∥∥∥∥∥∥
]

• for k = m,Mm(t) = E
[
‖ξm‖

∥∥∥∥∥ηm +
ρ̄(t)

(1−ρ̄2(t))1/2 ξm

∥∥∥∥∥] ,
Then we have V2

∞ = 1
2 + κmκm−1

2(2π)m ·
∫ ∞

0
tm−1

[
σ̄4(t)(1−ρ̄2(t))

1−e−t2

]1/2 [∏m
k=1 Mk(t) −

∏m
k=1 m2

k,1

]
dt.

3 RANDOM POLYNOMIALS IN ALGEBRAIC STRUCTURES

In this section, we deal with algebraic algorithms that work with univariate
polynomials over finite fields. The account on this problem discusses polynomial
factorization, irreducibility tests, and constructions of both irreducible polynomials and
finite fields. This has led to develop efficient algebraic algorithms that work with
polynomials over finite fields. The outline based on generating functions and their
asymptotic analysis, permits to analyze the behavior of the algorithms in question. We
notice that a complete analysis of algorithms for polynomials reveals the understanding of
polynomials over finite fields.

Let Fq be a finite field. We take univariate monic polynomials over Fq for discussion.
The interesting aspects are as follows:

1. How is a random polynomial in terms of its irreducible factors?
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2. Random polynomials in algorithms, and
3. Average-case analysis of algorithms that use polynomials over finite fields.

It is well-known that a polynomial of degree n is irreducible with probability close to
1/n. One may be interested to know more about the behavior of a random polynomial? For
instance, (cf.[59])

• how many irreducible factors should we expect in a random polynomial?
• how often will it be square-free?
• what is the expected largest (smallest) degree among its irreducible factors? and the

second largest one?
• how is the degree distribution among its irreducible factors?
• how often a polynomial is m -smooth (all irreducible factors of degree smaller or

equal to m )?
• how often are two polynomials m-smooth and coprime? and so on.

Let Fq where q is a prime power, n ≥ 2 , an integer and Fqn the finite fields with q and
qn elements, respectively. It is assumed that the arithmetic in Fq is given.

The extension field Fqn of degree n over Fq can be viewed as a vector space of
dimension n over the field Fq.

Theorem 3.1. Let Ωn be a random variable counting the number of irreducible factors of
a random polynomial of degree n over Fq, where each factor is counted with its order of
multiplicity.

1. The mean value of Ωn is asymptotic to log n + O(1). or more precisely, to the harmonic
sum: Hn =

∑n
i=1 1/i.

2. The variance of Ωn is asymptotic to log n + O(1).
3. For any two real constants λ < µ,

Pr
{
log n + λ

√
log n < Ωn < log n + µ

√
log n

}
→

1
√

2π

∫ µ

λ

e−t2/2dt

4. The distribution of Ωn admits exponential tails.
5. A local limit theorem holds.

Theorem 3.1 shows that the average number of irreducible factors of a random
polynomial of degree n is asymptotic to log n with a standard deviation of

√
log n. A

natural variation is to consider the same parameter but for an interval [a, b] ⊆ [1, n].

Theorem 3.2. Let Ω
[a,b]
n be a random variable counting the number of irreducible factors of

a random polynomial of degree n over Fq with degrees belonging to a fixed interval [a, b],
where each factor is counted with its order of multiplicity.

• The mean value of Ω
[a,b]
n is asymptotic to

∑b
k=a

Ik

qk(1−q−k) .

• The variance of Ω
[a,b]
n is asymptotic to

∑b
k=a

Ik

qk(1−q−k)2 .
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The number of irreducible factors of specified degree in polynomials of degree n was
given by Williams [72]. See also [56] for low-degree factors of random polynomials.. A
detailed analysis including variance appears in Knopfmacher and Knopfmacher [40].

Theorem 3.3. Let r be a positive integer, and let Ωr
n be a random variable counting the

number of irreducible factors of degree r in a random polynomial of degree n over Fq,
where each factor is counted with its order of multiplicity.

• The mean value of Ωr
n is asymptotic to Ir

qr(1−q−r) .
• The variance of Ωr

n is asymptotic to Ir

ar(1−q−r)2 .

In [59] and the references therein will throw more light on the problems on random
polynomials on finite algebraic structures.

4 RANDOM POLYNOMIALS ON RANDOM FIELDS AND MANIFOLDS

4.1 Random Polynomials on Random Fields
It is well known that there exist two variants of the change of variables formula for multiple
integrals used in integral geometry.

• The first one, known as Area Formula, corresponds to smooth, locally bijective
functions G : Rd → Rd and
• the second, known as Coarea Formula, applies to smooth functions G : Rd → R j with

d > j, having a differential with maximal rank.

Definition 4.1. Let (Ω,F ,P) be a complete probability space and T a topological space.
Then a measurable mapping f : Ω → RT (the space of all real-valued functions on T ) is
called a real-valued random field. Measurable mappings from Ω to

(
RT

)d
, d > 1, are called

vector-valued random fields. If T ⊂ RN , we call f an (N, d) random field, and if d = 1,
simply an N-dimensional random field.

Note: we assume that all random fields be separable(thanks to Doob[27]). This assumption
solves many measurability problems. For instance, without separability, it is not necessarily
the case that the supremum of a random field is a well-defined random variable.

Applying the Area and Coarea formulae to trajectories of random fields and taking
expectation afterwards, one catches the well-known Kac-Rice formulae. In recent times,
the two inspiring resources Adler and Taylor [2] and Azaı̈s [12], there has been a
progressive interest in the application of these formulae in many domains. viz. random
algebraic geometry, algorithm complexity for solving large systems of equations, study of
zeros of random polynomial systems and finally, engineering applications.

As the ingredients are too technical, we request the interested to reader to refer to
Berzin et al.[13] for results and interesting new proofs.

Angst and Poly [3] studied of the volume of the zero-sets (or nodal sets) of Gaussian
random fields on (R/Z)n and established a set of formulae (of “Kac-Rice type”) that
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compute the volume of the zero-set of a real-valued function f on (R/Z)n as an integral
of a functional of f and its derivatives. In particular, they gave a general formula in the
one-dimensional case and a few specific formulae in higher dimension. Further Jubin
[35], established a general Kac-Rice Type formula for functions on compact Riemannian
manifolds.

Characterising geometry of a complicated landscape is an important problem
motivated by numerous applications in physics, image processing and other fields of
applied mathematics [31, 1]. Longuet-Higgins [45, 47], obtained the mean number of all
stationary points (minima, maxima and saddles), which is a relevant question in statistical
physics of disordered (glassy) systems [46, 33, 20, 41, 19, 21, 22, 58], and more recently
in string theory [28].

4.2 Random Polynomials on Manifolds
Shiffman and Zelditch[64] studied the limit distribution of zeros of certain sequences
of holomorphic sections of high powers LN of a positive holomorphic Hermitian line
bundle L over a compact complex manifold M. Their first result concerns ‘random’
sequences of sections. Using the natural probability measure on the space of sequences
of orthonormal bases

{
S N

j

}
of H0

(
M, LN

)
, they have shown that for almost every sequence{

S N
j

}
, the associated sequence of zero currents 1

N ZS N
j

tends to the curvature form ω of L.

Thus, the zeros of a sequence of sections sN ∈ H0
(
M, LN

)
chosen independently and at

random become uniformly distributed. Their second result concerns the zeros of quantum
ergodic eigenfunctions, where the relevant orthonormal bases

{
S N

j

}
of H0

(
M, LN

)
consist

of eigensections of a quantum ergodic map. In this case, they also proved that the zeros
become uniformly distributed.

On symplectic manifolds, Donaldson[25, 26] and Auroux[9, 10] use analogues of
holomorphic sections of an ample line bundle L over a symplectic manifold M to create
symplectically embedded zero sections and almost holomorphic maps to various spaces.
Their analogues were termed ’asymptotically holomorphic’ sequences {sN} of sections of
LN . In [63], they studied another analogue H0

J

(
M, LN

)
of holomorphic sections, which are

called ’almostholomorphic’ sections, following a method introduced earlier by Boutet de
Monvel - Guillemin [18] in a general setting of symplectic cones.

We note that, by definition, sections in H0
J

(
M, LN

)
lie in the range of a Szegö projector

ΠN . Starting almost from scratch, and only using almost complex geometry, Shiffman
and Zelditch[63] constructed a simple parametrix for ΠN of precisely the same type as
the Boutet de Monvel-Sjöstrand parametrix in the holomorphic case [17]. In [63] they
proved that ΠN(x, y) has precisely the same scaling asymptotics as does the holomorphic
Szegö kernel as analyzed in [15]. The scaling asymptotics imply more or less immediately
a number of analogues of well-known results in the holomorphic case, e.g. a Kodaira
embedding theorem and a Tian almost-isometry theorem. Also in [63], they explained
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how to modify Donaldson’s constructions to prove existence of quantitatively transverse
sections in H0

J

(
M, LN

)
.

Shiffman and Zelditch[64] studied the variance of the number of simultaneous zeros
of m IID Gaussian random polynomials of degree N in an open set U ⊂ Cm with smooth
boundary is asymptotic to Nm−1/2νmm Vol(∂U), where νmm is a universal constant depending
only on the dimension m. Also they provided formulae for the variance of the volume
of the set of simultaneous zeros in U of k < m random degree−N polynomials on Cm.

Infact their results hold more generally for the simultaneous zeros of random holomorphic
sections of the N−th power of any positive line bundle over any m−dimensional compact
Kähler manifold. Many results were established by Shiffman and Zelditch[64] in a series
of papers.

5 RANDOM POLYNOMIALS ON LIE GROUPS

Kazarnovskii and other references in [37] saw a new planet in their journey in cosmos
to investigate the behaviour of random polynomials on Lie groups and other algebraic
structures. The following results from [37] are thought provoking.

A π-polynomial on a Lie group K is a finite linear combination of matrix elements of a
finite dimensional representation π of a Lie group K. If K is compact then any π-polynomial
uniquely extends to a holomorphic function on the complexification KC of K. For a system
of n πi-polynomials, where n = dim(K), he discussed the proportion of real roots, that is
the ratio of the number of roots to the number of roots in KC. It turns out that for growing
representations πi and random system of πi-polynomials, the expected proportion of real
roots converges not to 0 , but to a nonzero constant. He calculated the limit in terms of
the volumes of some compact convex sets that determine the growth of representation π.
Notice that for a 1-dimensional torus K the limit is 1/

√
3.

6 CONCLUSIONS

In this new cosmos, we travelled in many planets. We have just summarised a cross
section of results. We have not summarised all results. Our intension is to identify some
areas where random polynomials manifest in different directions and we do not claim the
originality of results quoted in ths survey. Researchers can probe further to find new paths.
Now the stage is open to young minds.
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267–285, 1993.

[66] Shub, M. and Smale, S. Complexity of Bezout’s theorem. III. Condition number and packing.
(Festschrift for Joseph F. Traub, Part I). J. Complexity. 9(1), 4–14, 1993.

[67] Smale, S. Mathematical problems for the next century, Mathematics: Frontiers and Perspectives. Amer.
Math. Soc., Providence, RI, 271–294, 2000.

[68] Thangaraj, V. and Sambandham, M. On Random polynomials-I: A Survey. Neural, Parallel, and
Scientific Computations. 28, No.2, 106–127, 2020.

[69] Thangaraj, V. and Sambandham, M. On Random polynomials-II: A Survey. Neural, Parallel, and
Scientific Computations. 29, No.4, 230–251, 2021.

[70] Wschebor, M. On the Kostlan–Shub–Smale model for random polynomial systems. Variance of the
number of roots. J. Complexity. 21(6), 773–789, 2005.

[71] Whyte L.L. Unique arrangements of points on a sphere. Amer. Math. Monthly. 59, 606–611, 1952.
[72] Williams, K.S. Polynomials with irreducible factors of specified degree. Canad. Math. Bull. 12,

221-223, 1969.


	INTRODUCTION
	RANDOM SYSTEMS OF POLYNOMIAL EQUATIONS
	AVERAGE NUMBER OF ROOTS OF RANDOM POLYNOMIAL SYSTEMS
	COMPLEX ROOTS CASE
	VARIANCE NUMBER OF ROOTS OF RANDOM POLYNOMIAL SYSTEMS

	RANDOM POLYNOMIALS IN ALGEBRAIC STRUCTURES
	RANDOM POLYNOMIALS ON RANDOM FIELDS AND MANIFOLDS
	Random Polynomials on Random Fields
	Random Polynomials on Manifolds

	RANDOM POLYNOMIALS ON LIE GROUPS
	CONCLUSIONS

