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1. INTRODUCTION

In this paper we examine the existence and uniqueness of solutions to the bound-
ary value problem (BVP) for the impulsive fractional differential equation having

integral boundary conditions

(1.1) ED"y(t) = f(t,y(t)), forae. t € J = [1,T), t #ty, k=1,....m, 1 <r <2,

(1.2) Ayli=t, = Ik(y(t,;)), k=1,...,m,
(1.3) Ay |t:tk27k(y(t,§)), k=1,...,m,
(1.4) y(1) = / o(s.y(s))ds, ¥/ (T) = / h(s, y(s))ds,

where 1 =ty < t; < ... < t, < tpmy1 = T, HD" is the Caputo-Hadamard fractional
derivative of order r, f, g, h : J xR — Rand I}, I, : R — R, k = 1,...,m,
are continuous functions, Ayl—, = y(t}) — y(t;) with y(t)) = lim+y(tk + ¢) and
e—0
y(ty) = li%q y(tr + ), and Ay’ has a similar meaning for y/(t).
e—U—
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In the last couple of decades, fractional-order models have been preferred to
integer-order ones due to their memory retention properties. Fractional differential
equations with integral boundary conditions appear in the mathematical simulation
of structures and processes in the fields of physics, chemistry, aerodynamics, electro-
dynamics, polymer rheology, and many others (see the monographs [1, 2, 4, 23, 26]).
Various studies of fractional problems involving the Caputo, Hadamard, and Caputo-
Hadamard type fractional derivatives can be found, for example, in the papers [9, 12,
18, 19, 20, 21, 22].

A few preliminary notions will be presented in the next section, and our main
results appear in Section 3. The final section of the paper is dedicated to an example

to illustrate our results.

2. PRELIMINARIES

In this section, we introduce some notation, definitions, and preliminary facts that
will be used in the sequel. We let C(J,R) denote the Banach space of all continuous

functions from J into R with the norm

[Ylleo = sup{ly(t)] : ¢ € J},

and take L'(J,R) to be the Banach space of Lebesgue integrable functions y : J — R

with the norm
nwyzéwww.

In addition, AC(J,R) will denote the space of functions y : J — R that are absolutely

continuous.

Let 0 = ti; then we set
dt
ACP(JR) = {y: J — R | 8" 'y(t) € AC(J,R)},

so that AC*(J,R) is the space of functions y : J — R that are absolutely continuous
and have an absolutely continuous first derivative. In what follows, [r] denotes the

integer part of the real number r and log(-) = log,(+).

Next, we define the fractional derivatives and integrals to be used in this paper.

Definition 2.1. ([23]) The Hadamard derivative of fractional order q of a C"*
function y : [1, +00) — R is defined by

1 d\" [\ ds
H nyr
D'y(t) = — | t— log — — n—-1l<r< = 1.
o= (1) [ (eet) v ot <= i4
Definition 2.2. ([23]) The Hadamard fractional integral of order r of a continuous
function y is defined as

Hp _;/t AN
Iy(t)_r(r) L logs y(s)s>r>0>
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provided the integral exists.

Definition 2.3. ([23]) For an n-times differentiable function y : [1, +00) — R, the

Caputo type Hadamard derivative of fractional order r is defined as

HC pr (t)—$/t lo ! "—T—lén (s)@ n—1l<r<n, n=[r]+1
Y In—r) /) &5 AP T '

The following lemma is well known.

Lemma 2.4. ([5]) Lety € AC{([a,b],R) ory € Ci([a,b],R) and r € R. Then

3. MAIN RESULTS

In this section we state and prove our main existence results. Consider the set of

functions

PC(J,R) = { y:J—R|ye ACEH(t, ty1],R), k=1,...,m, and y(¢) }

and y(t,), k=1,...,m, exist with y(t,) = y(tx)
This forms a Banach space with the norm
lyllpe = sup{ly(t)| : t € J}.

For convenience, we set J' = [a, T|\{t1,t2, ..., tm}. We begin with a lemma relating
solutions of a BVP related to (1.1)—(1.4) to the solutions of a fractional integral
equation.
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Lemma 3.1. Let 1 <r <2 and let 0 € AC(J,R). A function y is a solution of the

fractional integral equation

(3.1)
( F(lr) /lt (log é)r_l U(S)% + /lT p1(s)ds + T(logt) /lT pa(s)ds
st [F(rl— Iy /j 1og§)“20(5)%

if and only if y(t) is a solution of the fractional BVP

(3.2) CHDry(t)=o(t), teJ=[1,T], t#ty, 1<r <2,
(3.3) AY |i=t,= L(y(t;)), k=1,....m,

(3.4) Ayl |i=t,= Tk(y(t,;)), k=1,...,m,

(3.5) v = | " (s)ds y(T) = / il

Proof. Let y be a solution of (3.2)-(3.5). If t € [1,;], then Lemma 2.4 implies that

y(t) = ﬁ /lt (log é)r_l a(s)% + ¢1 + c2(logt)

for some constants ¢;, co € R. Then we have

00 =y [ (sl) o
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T
The first condition in (3.5) implies that ¢; = / p1(s)ds, and so
1

1) = estogn)+ [ misyis + s [ (1og?) o2

Co 1 ¢ £\ ds
'"(t) = = log — —.
y(t) t +tFr—1) /1 (Ogs) o(s) s

If t € (t1,t2], then again by Lemma 2.4, we have
1 t ds

W = 575 /tlt (log ;)H 7(5)= + dy + dy(log %)

) 1 t NN ds  dy
A / (log;) ols) o+

for some constants dy, dy € R. From (3.3), Ay |i=,= y(t]) — y(t7) = Li(y(t7)), so

and

and

S S

t= 1yl + [ s+ eatogt) + [ (1 t—) o)

and since Ay’ |=,= ' (t]) — v'(t7) = L (y(t])), we obtain

dy =11 (y(t)) + 2 + ﬁ /lt1 (log %)T_z g(s)@

S

Thus, for t € (1, ts], we have

vt =ttt + [ pitis + s [ (1os) ot

ot () ot

(log tl) t1 ty r—2 ds t - B B
tro [ (5) o F +tos ) + htv(r)

Repeating this process, for t € J, we obtain

o) =esost + [ g+ ol [*(1os) ot

L () et
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Continuing in the same manner, for ¢ € (¢,,, T,

y(t) = calogt + /le(s)ds + ﬁ /t; (log E)H U(s)%
o i/ (lgt—) o)

_l_

i=1 i=1
m " -

+ 3t (low 1 ) hiote)
i=1 v

and

Applying the second boundary condition gives

, o 1 T AU ds
VI = G g )L (log;) 7

n i ﬁ /tt1 (log %)T_za(s)% + i (%) Li(y(t;)),

i=1

that is, we obtain (3.1)
It is easy to see that (3.1) satisfies equation (3.2) and conditions (3.3)—(3.5), and

this completes the proof of the lemma. O
Our first existence result is based on Banach’s fixed point theorem.

Theorem 3.2. Assume that the following conditions hold.
(Hy) There ezist constants ly, la, l3 > 0 such that

|f(t,u)—f(t,v)| < l1|u—v|, |g(t,u)—g(t,v)| < l2|u—v|, and |h(t,u)—h(t,v)| < l3|u—v|
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fort e J and u, v € R.
(Hy) There exist constants I, I* > 0 such that

|Ik(u) = Ii(0)| < lu—v| and |In(u) = Te(v)| < Iflu— vl
forteJandu,veR, k=1,2,...,m
If

(logT)"
L(r+1)

(3.6) Ly { [(m+1) + (1 + 2m)7’]} + (T = 1)(ly + 15T log T)

+ml+ 2m(logT)T1* < 1,

then the problem (1.1)-(1.4) has a unique solution on [1,T].

Proof. To transform the problem (1.1)—(1.4) into a fixed point problem, we define the
operator F': PC(J,R) — PC(J,R) by

(Fy)(t) = / 9(5,y())ds + T(logt) / h(s,y(s))ds

1 mo ot t; r—2 ds o _
+ D ; /t (log ;) f(s,y(s))? + Ztili(y(ti ))]

+Ztk(log ) Z/ (log) f(s,y(S))d—:-

Clearly, the fixed points of the operator I are solutions of problem (1.1)—(1.4).
Let xz, y € PC(J,R); then for each ¢t € J, we have

|[(F)(t) = (Fy)(t)]
/ l9(s,2(s)) — g(s,y(s))|ds + T (log ) / |h(s,x(s)) = (s, y(s))l|ds

~ (log?) % log 1) 1£(s2(s)) — Fls,y(s)| 2
L(r—1) ¢ s S

=P (o t—) 7G5, 2(5)) = F(s,yls)| S
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# ) ~ ) + 20 108 1) IEGele) = Flote)

g T l _ r— 2d
§/ 12||55—?/||ds—|—T(logt)/ Is||z — y||ds + (log t) [1”93 Y| ( ) _s
1 1
ll||if—y|| s &
L(r—1) Z/t1 B _+Ztl| (y ()]

z1||x—y|| ( )d z1||x—y||2/( )d
t
iy e ;(y_(ll)g 0 [ (10 i) % éﬂ(x(ﬁ)) — ()

i=1

+3 ot (10%) Pl (t) — ()]

lo
< (T = alle =yl + ToT)T = Vsl = ol + 5 e =
m(log T)" . (log T)"
re e = gl + mTog ) e = ol + 12Dl o]

m(logT)"
I(r+1)
+ml|z -yl + mT(ogT)*||z -y
(m+1)(logT)"  (1+2m)(log T)T]
T(r+ 1) L(r)

mT (logT)"
hile =l + P B e =

+ml + 2ml* (log T) T] |z =yl .

We then have

(m+1)(logT)"
L(r+1)

(3.7) |Fz — Fy|| < {(T—l)(l2+l3TlogT)+l1{
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14 2m)(logT)"
(3.8) L+ 2m)os Ty om(iog )70 b il — o).
(r)
In view of (3.6), F'is a contraction, so by Banach’s fixed point theorem, F' has a fixed
point that is a solution of the problem (1.1)—(1.4). O

Our second result is based on Schaefer’s fixed point theorem.

Theorem 3.3. Assume that the following conditions hold:

(H3) There ezists a constant M > 0 such that |f(t,u)| < M fort € J and u € R.
(Hy) There exists a constant M* > 0 such that

lg(u)| < M* and |h(u)| < M* foru e R.
(Hs) There ezist a constant N > 0 such that
[Ii(u)] <N and |Iy(uw)] <N forueR, k=1,...,m.
Then the problem (1.1)-(1.4) has at least one solution on [1,T].

Proof. In order to apply Schaefer’s fixed point theorem, the proof will be given in

several steps.

Step 1: F' is continuous. Let y, be a sequence such that y, — y in PC(J,R).
Then for each t € [1,T],

[E'(yn) (t) = F(y)(1)]

S/l |9(, yn(s)) —g(&y(S))IdSJrT(loglt)/1 |1(8, yn(s)) — (s, y(s))|ds

0&0) / (log f) 1505 5n(5)) — £(5, 95D

5

I(r—1
o [ (o8) i) sevon

oo (1gt) 7G5 n()) — S, 9IS
1 < ds
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" Ztk (108 £ ) 1T (60) = F(e )L
Due to our continuity assumptions, we have

1E(yn) = FY)lloo — 0 as n — o0,

i.e., F' is continuous.

Step 2: F maps bounded sets into bounded sets in PC(J,R). It suffices to show
that for any n*, there exists a positive constant L such that, for each y € B,» = {y €
PC(J,R) : |lyll <}, we have [|F(y)|| < L. Applying (Hs)-(Hs), for cach t € J, we

obtain

[F(y)(t)] S/l Ig(s,y(S))lds+T(10g1t)/1 |h(s,y(s))|ds

T e N S INIEIC

lfg_t1 Z/ (1og ) |f(s>y(8)l%+iti|h(y(t_
o / (logé)r_lwsy ek Z / (s )r—1|f<s,y<s>|%

t
k (log ) ! N d k
P (1) 1S+ S It )
Zk t ) 1=
#3n (1021 ) 1Rt
T T M 1 T T 7“—2d
§M*/1 als%—T(logt)]\/[*/1 ds—l—%/tm (log;) ?S
Ml,lo_glt'Z/ (l 0g ) @er(logt)TN

+£/tltr1d8 7"1@
L(r) Ji, % s

t
k M(logt—) t; t r—2 ds
— i/ log~) =+ mN+mT(logT)N
+; T —1) /l(ogs) s+m +mT (logT)

ti—

M(logT)"  Mm(logT)"
(r) L(r)
M(logT)  Mm(logT)" Mm(logT)"

I(r+1) I(r+1) I'(r)

< (T = 1)(M* 4+ T(log T)M*) + m(logT)T'N

+mN + mT (logT)N
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(1+2m)(logT)"
L(r)

< (T = 1)(M* + T(log T)M*) + M

(1+m)(logT)"
L(r+1)

+ M +mN + 2mT (logT)N.

Therefore,

(I+m) (1+2m)
L(r+1) I'(r)

T {(T— 1)(M* + T(log T)M*) + M ] (log Ty

+mN + QmT(logT)N} = L.

Step 3: F maps bounded sets into equicontinuous sets of PC(J,R). Let 7,
7, € J with i < 7, let B,» be a bounded set in PC(J,R) as in Step 2, and let
y € By+. Then,

(log—
=P

1<t<7’2 T1 i

e / (10 2) = (106 2) ) s S

(log ) |f(s,y(s))|%+ > tilLly()

1<t<to—T1

7,2

I<t<to—T1 i

S (1og9) [ (log%)r_zv(s,y(S))I%

7’—1
I<t<to—71
COY mue) e Y (log )uk(( 0
1I<t<ro—71 1I<t<to—71

As 71 — Ty, the right-hand side of the above inequality tends to zero, which shows

the equicontinuity.

As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we

conclude that F' is completely continuous.

Step 4: A priori bounds. Now it remains to show that the set

e={ye€ PC(J,R) — PC(J,R) :y=AF(y) for some 0 <\ <1}
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is bounded. Let y € €; then y = AF'(y) for some 0 < A < 1. Thus, for each t € J, we

have
T

(Fy)(t) = A / 9(5,y())ds + AT (log ) / h(s,y(s))ds

1

- ?((ﬁof = ' (1gf) s, 592

Allog t) Z / (lg ) f(s,y(s»%_Aaogoztizi(y(t;))

7’—1

AT
*m/tk(“)g;) fo

Sy (10%) ().

For each t € J, by (H9)-(H11), we have

lyll < (T = 1)(M* + M*Tlog T) + M {él(:ﬁ)) i lf(f)m)} (log T)’
+mN + 2mT (logT)N.

This shows that the set £ is bounded. As a consequence of Schaefer’s fixed point
theorem, F' has a fixed point that in turn is a solution of the problem (1.1)—(1.4). O

Our final existence result is based on the nonlinear Leray-Schauder alternative.
Here we are able to weaken conditions (H3)—(Hj) used above.
Theorem 3.4. Assume that:

(Hg) There exist ¢y, ¢4, ¢n € C(J,RT) and continuous and non-decreasing functions
Y5, Vg, Yy 1 [0,00) — [0, 00) such that
|t u)] < @p(@)s(lul),  g(t,w)] < ¢g(t)bg(lul), and |h(t,w)] < ¢n(t)Yn(|ul)
fort e J and u € R.

(H7) There ezist continuous and non-decreasing functions w, @ : [0,00) — [0, 00) such
that
[Ik(u)] < w(lul) and  [Ix(u)] < &(|u])

forueR kE=1,....m

If there exists a number M > 0 such that

(3.9) M{%(M)H%HD T T(log T (31 .
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(1+m)(logT)" (1+2m)(log T)T)
L(r+1) I'(r)

0w, ()

+ mw(M) + QmT(logT)w(H)}_ > 1,

where ¢ = sup{¢;(t) : t € J}, then the problem (1.1)-(1.4) has at least one solution
on J.

Proof. Consider the operator F' defined in the proof of Theorems 3.2. As we have

seen above, F' is continuous and completely continuous. For A € (0,1) and each t € J,
let y(t) = A(Fy)(t). Then from (Hg)—(Hz7),

y(0)| S/l Ig(s,y(S))IdSJrT(logt)/1 |h(s, y(s))|ds

+F((lfg_t)1) [ (108 ) staton®
5y

(1 ds oo
s (e ‘) 750N+ o) lE (e

T / (1) NIl i > / (100 %)Lllf(s,y( =

+Z(logt)/'(1 Y ol + 3
L loe |f(5>y(5))|s+Z|Il(y(ti))|

7’ —1
£ (mgg) Ty (67|
< / b(s1y(ly(s))ds + T (log 1) / (s ((y(3)))ds

» st / (1gf) 55V (s >|>d$

p((lf Z/t ( ) or(s)vs(ly(s)))— + (logt) thw ly))

+%/ (1gt) s (s >|>d$

= Z / (1gi) 65y S

x>

=

+i(log;) /ti (1 t\" ds |«
L T(r—1) J, | Ogs) O(&)0s(ly(s))— + D w(ly)

=1
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- Ztk (log ) &(lyl)

AM@/%@@+T®MWMmm[@@@+“%?¢wwm
+ B gl + T Qog T lyl) + 1230 o)
e ous(lul) + " oyl + sl + m (o8 D))

< Pg(lylDlldgllr + T (log T)n([lyl)l| onll o1

+¢wﬂwm(“ﬂﬂ?§§TV (1+%QS%TV)

+maw([lyll) + 2mT (log T)w(|[y[))-

Thus,

||y||{wg(IIyH)IlcbgllL1 + T (log T)n(lly[Dllénll 1

(1+m)(logT)"  (1+ Qm)(logT)T)
I'(r+1) I'(r)

+¢wmmo(

+ma(llyl) + 2mT(10gT)w(||y||)}_ <L

Then by condition (3.9), there exists M such that ||y|| # M.
Let

U={yePC(R): |yl <M}
The operator F : U — PC(J,R) is continuous and completely continuous. From
the choice of U, there is no y € OU such that y = AF(y) for some A € (0,1).
As a consequence of the Leray-Schauder nonlinear alternative, F' has a fixed point
y € U that is a solution of the problem (1.1)-(1.4). This completes the proof of the

theorem. u

4. EXAMPLE

Consider the boundary value problem

(1.1 DY) = Ol 1T =, 14
1 1

4.2 Ay(7/4) = ————, AY(7/4) = ————,

(1.2 VA = e S =

© ly(s)l : © ly(s)l
(4.3) y(l):/1 mds, y(e):/1 mds
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For (t,y) € J x R, we have

Y
ty) = ——— t,y) = d h(t,y) = .
f(t,y) 200 9(t,y) B, ™ (t,y) By
Also,
Ii(y) = d I(y) = for y € R.
k(Y) 01, ™ k(Y) By oy
H s 1, ¢ ’ dT = It t that [ — 1 !
rer = — = = —, an = i = = —
ee1 2,7171 , b 14,a e. s easy to see that ly = 700, b = ¢,
I3 = B l= 0 and [* = =5 Finally, we see that (3.6) becomes
. ) R Y
400 3V/_ 15 13 10 25

All the conditions of Theorem 3.2 are satisfied and so problem (4.1)—(4.3) has a unique

solution y on [1, e].
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