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ABSTRACT. This paper highlights on the occurrence of vibrational resonance (VR), investigated

in a double-well position-dependent mass (PDM)-Duffing oscillator system driven by an amplitude

modulated (AM) force. The AM force consists of one low-frequency (ω) component and two high-

frequencies (Ω + ω) and (Ω − ω) components with (Ω À ω). In the PDM-Duffing oscillator with

one low-frequency and one high-frequency forces, by applying a theoretical approach an analytical

expression is obtained for the response amplitude at the low-frequency (ω). The system provides

an interesting scenario where PDM function makes a significant contribution to the occurrence of

VR. We examine the role played by PDM parameters (m0, λ) and force parameters (g, ω,Ω) on

VR. We show the enhanced response amplitude Q at the low-frequency ω, showing more number of

resonance peaks, a non-decay of response amplitude and hysteresis and a jump phenomenon on the

response amplitude curve due to the amplitude modulated force. Results of analytical investigations

are validated and complemented by numerical simulation.

AMS (MOS) Subject Classification. 34K18, 37C29, 65P20, 65P30, 74H65.
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tional resonance, Hysteresis, Chaos.

1. INTRODUCTION

Vibrational resonance (VR) was first reported by Landa and McClintock [1] in

biharmonically driven bistable systems when there is a large difference between the

frequencies (ΩÀ ω) of the two driving forces. Thereafter, an analytical investigation
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to confirm VR was carried out by Gitterman [2]. After these investigations, the

features of VR have been studied theoretically, numerically and experimentally in a

variety of nonlinear systems [3–15]. The mass changes with respect to either velocity

or position, time or both position and time is known as varying mass. The position-

dependent mass (PDM) approach has a wide range of applications in various areas

of science [16–20]. A very notable application of the field is in the micro-fabrication

technique which includes molecular-beam epitaxy and nanolithography [21–23]. This

paper investigates, the position-dependent mass (PDM) system, which is position-

dependent mass-Duffing oscillator under the influence of an amplitude modulated

force.

This paper is structured into five sections. To get initiated with, at first we in-

troduced the position-dependent mass-Duffing oscillator system in Sec.2. The system

was treated with only one high-frequency force which is explained in Sec.3. We ob-

tain the equation of motion and an approximate analytical expression for the response

amplitude Q of the low-frequency output oscillation. This analytical expression of Q

is used to analyze the occurrence of VR and verify the theoretical predictions through

numerical simulation. We take up the system with two high-frequency forces in Sec.4.

By numerical technique, we show the occurrence of enhanced VR, hysteresis and a

jump phenomenon and various dynamical behaviours in the PDM system. Section 5

deals with the conclusion of the research.

2. Position Dependent Mass-Duffing Oscillator

The Lagrangian L is defined as L = T − V , where T is the kinetic energy and V

the potential energy of the system. The Lagrangian function of a classical oscillator

is given by

(2.1) L(x, ẋ, t) = T − V (x) =
1

2
m(x)ẋ2 − V (x)

and the associated Lagrangian equation of motion with external contributions (Φ) to

the motion of the system can be written as

(2.2)
d

dt

(

∂L

∂ẋ

)

−
(

∂L

∂x

)

= Φ

Using the Lagrangian function (Eq.2.1) in the Euler-Lagrangian equation (Eq.2.2),

the corresponding equation of motion of classical oscillator can be written as

(2.3) m(x)ẍ+
1

2
m′(x)ẋ2 +

dV (x)

dx
= Φ,

where Φ is the external contributions to the motion from dissipative and driving

force (F (t)). The external driving force assumed here to be AM force. The analytical

expression for AM force is F (t) = (f + 2g cosΩt) sinωt with Ω >> ω. Hence the

external contributions to the motion Φ = −αẋ + F (t), where α is the damping
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coefficient, f and ω are the amplitude and frequency of the low-frequency component

and g and Ω are the amplitude and frequency of the high-frequency component of the

AM force. The prime in Eq.(2.3) implies differentiation with respect to space variable

x and the overdot indicates differentiation with respect to time. In the present work,

we consider a Duffing type oscillator potential

(2.4) V (x) =
1

2
m(x) ω20 x

2 +
1

4
β x4 ,

where ω0 is the oscillator’s natural frequency and β is the stiffness constant which

plays the role of the nonlinear parameter. The following mass function is used in the

present study.

(2.5) m(x) =
m0

1 + λx2
,

where m(x) is a variable mass with position, m0 is a constant mass, equivalent to

the mass amplitude and λ is the strength of the spatial nonlinearity in mass. This

mass function was first proposed by Mathews and Lakshmanan [24] in relation to

relativistic fields of elementary particles and it appears frequently in the modelling

of diverse nonlinear mechanical systems [25, 26]. Recently, using this mass function,

Roy-Layinde et al. [27] examined and analyzed the VR phenomenon in double-well

PDM-Duffing oscillator system driven by biharmonic force. In the present work, we

analyze both analytically and numerically the occurrence of VR in double-well PDM-

Duffing oscillator system driven by an AM force. From the above one can easily show

that the equation of motion of the PDM-Duffing oscillator can be written as

(2.6)

m(x) ẍ−m2(x)xγλẋ2 + αẋ+m2(x)γ ω20 x+ βx3 = (f + 2g cosΩt) sinωt, Ω >> ω.

With the use of the formula 2 cosΩt sinωt = sin(Ω + ω)t+ sin(Ω− ω)t, we arrive at

Eq.(2.6),

m(x) ẍ−m2(x)xγλẋ2 + αẋ+m2(x)γ ω20 x+ βx3 =

f sinωt+ g sin(Ω + ω)t+ g sin(Ω− ω)t, Ω >> ω.(2.7)

where γ = 1
m0

. For a unit mass amplitude, (m0 = 1) and negligible strength of

nonlinearity in mass, (λ = 0), Eq.(2.7) reduces to the well known Duffing oscillator

driven by an AM force. The physical system (Eq.2.7) describes a dual frequency

driven gas bubble in which the mass of the bubble is dependent on the bubble’s

radius, which is a spatial coordinate [27, 28]. In order to find the solution of Eq.(2.7),

we use the method of direct separation of motions (MDSM) described by Blekhman

[29] as it is the most effective formulation of vibrational mechanics to obtain the

equation of motion of the slow motion which can be modulated by parameters of

the fast driving force analytically. Eq.(2.7) can not fit into the general framework of
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Figure 1. Shape of the potential V (x) for (a) λ = 1.0,m0 =

0.5, 1.5, 2.0, 4.0 (b) m0 = 1.0, λ = 0, 1.0, 1.5, 2.0. The values of the

other parameters are β = 1 and ω20 = −1.

MDSM. By suitable approximations as given in the ref.[27], the following equation of

motion can be used to apply the MDSM method,

ẍ− λ(x− λx3 + λ2 x5)ẋ2 + αγ(1 + λx2)ẋ+ ω20 x+ δx3 + ξx5 =

γ(1 + λx2) (f sinωt+ g sin(Ω + ω)t+ g sin(Ω− ω)t), Ω >> ω.(2.8)

where δ = βγ−λω20 and ξ = βγλ+λ2ω20. Eq.(2.8) is also known as the PDM-Duffing

oscillator equation. The corresponding potential of the system is

(2.9) V (x) =
ω20
2
x2 +

δ

4
x4 +

ξ

6
x6 .

In this study, we choose the mass parameter regimes within which the system potential

is double-well, so that 0 < m0 < 1.5 and 0 < λ < 1 for α = 0.2, ω20 = −1, β = 1 and

f = 0.05. The system potential shown in Figs.1(a) and 1(b) for different values of

the PDM parameters of the mass amplitude m0(= 0.5, 1.5, 2.0, 4.0) with λ = 1.0 and

the strength of the spatial nonlinearity in mass λ = (0, 1.0, 1.5, 2.0) with m0 = 1.0, is

computed from Eq.(2.9).

3. PDM-Duffing Oscillator with One High-Frequency Force

When ΩÀ ω, the AM force can be treated as consisting of a low-frequency force

f sinωt and two high-frequency forces, such as g sin(Ω+ω)t and g sin(Ω−ω)t. Firstly
we observed the system with the external force consisting of one low-frequency force

f sinωt and one high-frequency force g sin(Ω + ω)t, then the equation of the system

is expressed by

ẍ− λ(x− λx3 + λ2 x5)ẋ2 + dγ(1 + λx2)ẋ+ ω20 x+ δx3 + ξx5 =

γ(1 + λx2) (f sinωt+ g sin(Ω + ω)t), Ω >> ω.(3.1)

We observed the VR realized with this force through a theoretical approach. We

arrived at an analytical expression for the response amplitude Q and the value of
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the control parameter g at which VR occurs and verify these theoretical predictions

through numerical simulation. Then we take up the system with the AM force, to

illustrate that the theoretical procedure used to analyze VR in the case of the system

with one high-frequency force is not applicable for the system with two high-frequency

forces. Hence a numerical investigation for this case is performed.

3.1. Theoretical Description of VR. Owing to the presence of two different driv-

ing frequencies we expect that the system’s response can also been split up into two

distinct time scales, one slow and the other fast and accordingly we can write the

dynamical variable X ≡ X(t, ωt) with period (2π/ω) and a fast variable ψ ≡ ψ(t,Ωt)

with period (2π/(Ω + ω)):

(3.2) x(t) = X(t) + ψ(t, τ).

The mean value of the fast motion is

(3.3) ψ =
1

2π

∫ 2π

0

ψ dτ = 0.

Due to the rapid varying of ψ, we assume that ψ̈ À ψ̇, ψ, ψ2, ψ3, ψ4 and ψ5. This

approximation is called as inertial approximation which leads to the equation ψ̈ =

γg sin(Ω + ω)t which gives ψ̇ = − γg
(Ω+ω)

cos(Ω + ω)t; ψ = − γg
(Ω+ω)2

sin(Ω + ω)t, ψ2 =

γ2g2

2(Ω+ω)4
; ψ3 = 0; ψ4 = 3γ4g4

8(Ω+ω)8
; ψ̇2 = γ2g2

2(Ω+ω)2
and ψ5 = 0. When substituting the

solution Eq.(3.2) in Eq.(3.1) and using the values of ψ, ψ2, ψ3, ψ4 and ψ5, then the

equation for the slow motion is formulated

Ẍ − λ(C1X + C2X
3 + λ2X5)Ẋ2 + αγ(C3 + λX2)Ẋ +

η1X + η2X
3 + η3X

5 = γ(C3 + λX2)f sinωt(3.4a)

where,

C1 =
15λ2γ4g4

8

[

1

(Ω + ω)8

]

− 3λγ2g2

2

[

1

(Ω + ω)4

]

+ 1(3.4b)

C2 = 5λ2γ2g2
[

1

(Ω + ω)4

]

− λ,(3.4c)

C3 = 1 +
λγ2g2

2

[

1

(Ω + ω)4

]

(3.4d)

η1 =
λC1γ

2g2

2

[

1

(Ω + ω)2

]

+ ω20 +
15ξγ4g4

8

[

1

(Ω + ω)8

]

+

3δγ2g2

2

[

1

(Ω + ω)4

]

(3.4e)

η2 =
λC2γ

2g2

2

[

1

(Ω + ω)2

]

+ 5ξγ2g2
[

1

(Ω + ω)4

]

+ δ(3.4f)

η3 =
λ3γ2g2

2

[

1

(Ω + ω)2

]

+ ξ(3.4g)
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and the effective potential is given by,

(3.5) Veff (x) =
η1
2
X2 +

η2
4
X4 +

η3
6
X6

The shape, the number of local maxima and minima and their location of the potential

V (x) (Eq.2.9) depends on the parameters ω20, δ and ξ but for the effective potential

(Veff) (Eq.3.5) these also depend on the force parameters g and Ω. Consequently,

by varying g or Ω new equilibrium states can be created whereas the number of

equilibrium states can also be reduced. The effective potential of the system (Eq.3.5)

is shown in Fig.2(a) for four values of g with m0 = 1, λ = 0.1 and in Figure 2(b) for

four values of λ with g = 100,m0 = 1. The other parameters values of the system are

set as ω20 = −1, β = 1, ω = 1.5,Ω = 15. In Fig.2(a), Veff is a single-well potential for

g = 0 and g = 60 while it becomes double-well for g = 100 and inverted single-well

potential for g = 150. Similarly in Fig.2(b), Veff is a single-well potential for λ = 0

and λ = 0.1 while it becomes a double-well potential for λ = 0.2 and λ = 0.3 with

g = 100 and m0 = 1. The equilibrium points of the oscillations which is slow that
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Figure 2. The effective potential Veff (x) for (a) λ = 0.1,m0 = 1.0

and g = 0, 50, 100, 150 (b) g = 100,m0 = 1.0 and λ = 0, 0.1, 0.2, 0.5.

The values of the other parameters are β = 1, f = 0.05, ω = 1.5,Ω = 15

and ω20 = −1.

can be calculated from Eq.(3.4). The equilibrium points of Eq.(3.4) are given by

(3.6)

X∗
1 = 0, X∗

2,3 = ±
[

−η2 +
√

η22 − 4η1η3
2η3

]1/2

, X∗
4,5 = ±

[

−η2 −
√

η22 − 4η1η3
2η3

]1/2

.

Suppose, we choose η3 > 0. Then we have the following cases:

Case (i): η1, η2 > 0 or η1 > 0, η2 < 0 with η22 < 4η1η3

X∗
1 = 0 is the only equilibrium point.

Case (ii): η1 < 0, η2−arbitrary
There are three equilibrium points and are X∗

1 , X
∗
2,3.

Case (iii): η1 > 0, η2 < 0 with η22 > 4η1η3
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There are five equilibrium points given by Eq.(3.6).

We obtain the equation for the deviation of the slow motion X from an equi-

librium point X∗. Introducing the change of variable Y = X − X∗ in Eq.(3.4) we

get

Ÿ − λ(α1 + α2Y + α3Y
2 + α4Y

3 + α5Y
4 + λ2Y 5)Ẏ 2 + αγ(σ1 + σ2Y + λY 2)Ẏ

+ρ1 + ρ2Y + ρ3Y
2 + ρ4Y

3 + ρ5Y
4 + η3Y

5 = γ(σ1 + σ2Y + λY 2)f sinωt ,(3.7a)

where

α1 = C1X
∗ + C2X

∗3 + λ2X∗5, α2 = C1 + 3C2X
∗2 + 5λ2X∗4

α3 = 3C2X
∗ + 10λ2X∗2, α4 = C2 + 10λ2X∗2 , α5 = 5λ2X∗

σ1 = C3 + λX∗2 , σ2 = 2λX∗

ρ1 = η1X
∗ + η2X

∗3 + η3X
∗5 ρ2 = η1 + 3η2X

∗2 + 5η3X
∗4

ρ3 = 3η2X
∗ + 10η3X

∗2 , ρ4 = η2 + 10η3X
∗2 , ρ5 = 5η3X

∗(3.7b)

For f ¿ 1 and in the limit t→∞ we assume that |Y | ¿ 1 and neglect the nonlinear

terms in Eq.(3.7). Then, the solution of linear version of Eq.(3.7) in the limit t→∞
is AL cos(ωt− φ) where

(3.8) AL =
F

[

(ω2r − ω2)2 + µ2ω2
]1/2

,

and the resonant frequency is ωr =
√
ρ2 ,µ = αγC3 and F = γC3f . When the slow

motion takes place around the equilibrium point X∗ = 0, then ωr =
√
η1 .

The response amplitude Q is

(3.9) Q =
AL

f
=

γC3
[

(ω2r − ω2)2 + µ2ω2
]1/2

.

3.2. Analysis of Vibrational Resonance. First we analyze the existence of VR

in the system for a particle with constant mass, ie., m(x) = m0 and λ = 0. We fix the

parameters as ω20 = −1, α = 0.2, β = 1 and f = 0.05. The dependence of the response

amplitude Q on the parameters m0, ω and Ω is illustrated in Fig.3. Along with

the increase of these parameters, resonances appear obviously in each plot. Figures

3(a),3(b) and 3(c) showQ versus g for three different values ofm0 = (0.5, 1.0, 1.4) with

ω = 1.5,Ω = 15, Q versus g for four different values of ω = (0.75, 1.5, 2.5, 3.0) with

m0 = 0.5,Ω = 15 and Q versus g for three different values of Ω = (7.5, 21.0, 30.0)

with m0 = 0.5, ω = 1.5. Continuous curves represent theoretical result obtained

from Eq.(3.9). Solid circles represent numerically calculated Q. From the numerical
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Figure 3. The variation of the response amplitude Q with (a) three

values of m0 = 0.5, 1.0, 1.4 for ω = 1.5,Ω = 15.0 (b) four values of

ω = 0.75, 1.5, 2.5, 3.0 for m0 = 0.5,Ω = 15.0 and (c) with g for three

values of Ω = 7.5, 21, 30 and m0 = 0.5, ω = 1.5. The values of the other

parameters are α = 0.2, β = 1, f = 0.05, λ = 0 and ω20 = −1.

solution of x(t) of Eq.(3.1), we have calculated Qs and Qc from the equation

Qs =
2

nT

∫ nT

0

x(t) sin(ωt)dt(3.10a)

Qc =
2

nT

∫ nT

0

x(t) cos(ωt)dt(3.10b)

with T = 2π/ω is the period of the response and n is taken as 200. Then,

(3.11) Q =

√

Q2
s +Q2

c

f

Numerically calculated Q agrees well with the theoretical approximation. In Fig.3(a),

for m0 = 0.5, 1.0 and 1.4 the response amplitude Q is found to be maximum at

g = 85.4, 225 and 425. In Fig.3(b) for ω = 0.75.2.5 and 3.0, resonance is found at

g = 75, 185 and 255. In Fig.3(c), for Ω = 7.5, 21 and 30 the response amplitude Q is

found to be maximum at g = 38, 150 and 300. Figure 4(a) shows the phase portrait

of slow motion for few values of g around the resonance occurs at m0 = 0.5 with

λ = 0, ω = 1.5 and Ω = 15 (Fig.3(a)). For g > gV R = 85.4 the slow motion oscillation

takes place around the origin while for other values of g the center of the orbit moves

towards the origin as g increases gV R. Figures 4(b-d) show the actual motion of the

system at the resonance occurred at m0 = 0.5 with λ = 0, ω = 1.5 and Ω = 15.
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of the system with one high-frequency force. The values of the other
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Figure 5. The variation of the response amplitude Q (a) with three

values of m0 = 0.5, 1.0, 1.4 for ω = 1.5,Ω = 15.0, λ = 0.1 and (b) with

three values of λ = 0.3, 0.5, 0.7 for m0 = 0.5, ω = 1.5,Ω = 15.0. The

values of the other parameters are α = 0.2, β = 1, f = 0.05 and ω20 =

−1.

From figs.4(b-d), we observed that as g increases, the width and size of the orbit also

increases.

Figure 5(a) shows the dependence of the response amplitude Q on g for three

values of m0(= 0.5, 1.0, 1.4) with λ = 0.1, ω = 1.5 and Ω = 15.0. Resonance with

single peaks can be clearly seen for each value of m0. Although resonances can be

achieved by varying m0, there is no significant enhancement in the effect of m0 on Q,

which is a shift in the peak position in the direction of increasing g. In addition, by

examining the dependence ofQ on g for increasing mass nonlinearity λ = (0.3, 0.5, 0.7)

at m0 = 0.5, ω = 1.5 and Ω = 15.0, single resonance peaks are observed for each value

of λ. After activating the mass nonlinearity parameter λ, resonances occur earlier than

the constant mass (ie., λ = 0) as can be seen in the Figs.3 and 5.
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4. PDM-Duffing Oscillator with Two High-Frequency Forces

In the preceding section, we showed that the VR phenomenon can occur in the

system with one low- and one high-frequency forces. Next we proceed to verify the

existence of VR phenomenon in double-well system driven by an AM force, that is,

for the system governed by the Eq.(2.8). The theoretical value of Q is found to be

highly different from numerically computed Q. So the analytical expression of Q for

the case of system with one high-frequency force is now not applicable for the case

of the system with two high-frequency forces. Hence, we numerically integrate the

Eq.(2.8) with two high-frequency forces.
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Figure 6. Response amplitude Q curves for (a) Ω = 15 (b) Ω = 30

and (c) Q(ω) obtained by varying the control parameter g from 0 to

500 (continuous curve) and from 500 to 0 (dashed curve) for the PDM-

Duffing oscillator with AM force. Other parameters values are ω20 =

−1, β = 1, d = 0.2,m0 = 0.5, λ = 0.0, ω = 1.5 and f = 0.05.

First we examine the existence of VR phenomenon in the system with constant

mass (ie., λ = 0). The possibility of occurrence of VR through the variation of the

mass amplitude m0 with the high-frequency amplitude g is confirmed by the results

presented in Fig.6 for two values of frequency Ω of the high-frequency component

of the AM force. Fig.6(a) presents the numerically computed response amplitude Q

versus g for Ω = 15.0. When g < 125.25 single resonance is obtained and Q(ω) does

not decrease continuously beyond the first resonance peak. Q(ω) is maximum at more

than one value of g and dense resonance peaks are observed in the regions 140.5 < g <
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Figure 7. Bifurcation diagrams of the double-well PDM-Duffing os-

cillator driven by an AM force for (a) Ω = 15 and (b) Ω = 30. Phase

portraits of the system (c) periodic attractor and (d) chaotic attractor.

The parameters values of the system are as in Fig.6 and 6(b).
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Figure 8. The variation of the response amplitude Q with g for three

values of (a) mass amplitude m0 with λ = 0.5 and (b) mass spatial

nonlinearity λ with m0 = 0.5. Other parameters values of the system

are fixed as ω20 = −1, β = 1, d = 0.2, f = 0.05, ω = 1.5 and Ω = 30.0.

151.2 and 402.15 < g < 500. For Ω = 30, Q(ω) decays to zero as g increases beyond

gV R (at which resonance occurs) which is clearly shown in Fig.6(b). Here only one

resonance peak is possible. Hysteresis and a jump phenomenon are found in response

amplitude curves when g varies in forward and reverse directions. In Fig.6(c), Q is

found to follow different paths as indicated by dashed lines where g is varied in the

forward and reverse directions. Next we analyze the bifurcation structures of the

system (Eq.2.8) for the two values of Ω(= 15, 30) and the corresponding bifurcation

patterns is presented in Fig.7. The other parameters values of the system are as

in Fig.6. In Fig.7(a), for increasing values of g, the periodic orbit dominates the

dynamics in the high-frequency regime 0 < g < 402.5 from which the value of g was

chosen. For larger values of g, small periodic windows are sandwiched by chaotic

regimes . The bifurcation pattern for Ω = 30 is shown in Fig.7(b). For this case, only

periodic states appear in the system which is clearly shown in Fig.7(b). For clarity
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Figure 9. Variation of the response amplitude Q with g of the system

(Eq.2.8) for (a) four values of ω with Ω = 30 and (b) three values of Ω

with ω = 1.5. (c) Q(ω) is obtained by varying the control parameter g

from 0 to 350 (continuous curve) and from 350 to 0 (dashed curve) for

the system (Eq.2.8). Other parameters values of the system are fixed

as ω20 = −1, β = 1, d = 0.2,m0 = 0.5, λ = 0.1 and f = 0.05.

an example of periodic and chaotic attractor from Fig.7(a) is shown in Figs.7(c) and

7(d).

So far we have investigated the occurrence of VR in the system with constant mass

(λ = 0). Further in order to know the contributions of the mass spatial nonlinearity

parameter λ to VR, we also consider the effect of λ on the observed resonances. First

we showed that the resonances for λ = 0.5 which is presented in Fig.8(a) for varying

g and three values of m0(= 0.5, 1, 1.5) with ω = 1.5,Ω = 30. It is observed that the

Qmax is almost the same in all curves. But gmax and width of the resonance curve

increases with increasing m0. In Fig.8(b), Q(ω) is plotted for different values of λ and

with ω = 1.5,Ω = 30. With increasing λ, double peak resonances occur at λ = 0.2

and 0.3 and single peak resonance at λ = 0.1, Qmax is different for single and double

peak resonances and gmax (at which Q is maximum) and width of the resonance curve

decreases with increasing λ, which is clearly shown in Fig.8(b).

Finally we study the dependence of Q on the frequencies ω and Ω of the driving

forces.In Fig.9(a) Q(g) is plotted for different values ω, namely, ω = 0.75, 1, 2, 3 with

Ω = 30,m0 = 0.5, λ = 0.1. With increasing ω, Qmax increases. Fig.9(a) has double
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Figure 10. Bifurcation diagrams of the PDM-Duffing oscillator driven

by an AM force for (a) m0 = 0.5, λ = 0.1, ω = 1.5 and Ω = 30. (b)

Magnification of a part of bifurcation diagram in Fig.10(a). Phase

portraits of the system (c) periodic attractor and (d) chaotic attractor.

The parameters values of the system are as in Fig.9.

peaks for ω = 0.75 and ω = 1 while single peaks for ω = 2 and ω = 3. Width of the

resonance curve and gmax values increase with increasing ω values. In Fig.9(b) the

resonance curve is plotted for three different values of Ω for ω = 1.5 with m0 = 0.5

and λ = 0.1. Here we again observe that single and double resonances occur for

different values of Ω. Qmax of the first and second resonances are almost the same in

all cases. But gmax and width of the resonance curve increases with Ω. The hysteresis

and a jump phenomenon in the system is confirmed by Fig.9(c) for m0 = 0.5, λ =

0.1, ω = 1.5 and Ω = 30. Sharp jumps are seen in both Figs.8 and 9. This is caused

by nonlinear phenomena such as cyclic fold bifurcation and parameter resonance. For

certain cases of the parametric choices, in our study the chaotic motion is found for

sufficiently large values of the control parameter g, particularly far after resonance.

An example is given in Fig.10(a) for m0 = 0.5, λ = 0.1, ω = 1.5 and Ω = 30. For

0 < g < 330.12, a period-T solution is found. When g is varied further, reverse period-

doubling phenomena leads to chaotic motion, intermittency and periodic windows

occur and are clearly shown in Fig.10(b) which is a magnification of a small part of

the bifurcation diagram Fig.10(a). For clarity, an example of periodic and chaotic

orbits from Fig.10(b) is shown in Figs.10(c) and 10(d).

5. Conclusion

In this paper, the VR in a position-dependent mass (PDM)-Duffing oscillator

system driven by an amplitude modulated (AM) force is investigated. The amplitude

modulated force can be recast into the form F (t) = f sinωt+g sin(Ω+ω)t+g sin(Ω−
ω)t. We have analyzed and compared the VR in the system induced by one and two
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high-frequency forces. Unlike traditional VR theory, VR effects are not only analyzed

by signal parameters but also by PDM parameters. The VR phenomenon induced by

the two high-frequency forces has certain notable features over the case of only one

high-frequency force. Particularly, a higher number of resonance peaks, an enhanced

response amplitude Q and non-decaying behaviour of Q(ω) and hysteresis and a

jump phenomenon even for large values of the control parameter g are realized. Our

discovery in this paper has potential applications in some fields such as rocket science,

tethered satellite dynamics, meteorites, aerology and oceanography. Analysis of VR

in the PDM systems with physically interesting forces including frequency modulated

force, pulse modulated force and multi external forces may not only give rise to

fascinating results but also scope for future research studies
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