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ABSTRACT. For a parametric family of antagonistic games with two players, the problem is

considered of the equilibrium strategy existence preservation, under the changing of the parameter.

This issues are considered both in the case when the players’ strategy spaces are ordered sets, and
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1. SETTINGS AND PRELIMINARIES

The paper is devoted to the problem of the equilibrium strategy existence preser-

vation in a parametric family of antagonistic games with two players. We consider

this problem from the point of view of the fixed point theory of multivalued mappings.

We investigate here two different situations concerning strategy spaces of the players.

The first one is the case when the strategy spaces are ordered sets, and the second

one is the case when the strategy spaces are metric spaces.

As it is known, the game theory considers mathematical models of conflict situa-

tion. Several applications of the fixed point theory in the game theory are described

in the book [1] (see also [2] ). Recall that the participants of a conflict situation are

called players. On each step of the game, their behaviour is totally defined by the

strategy choice, that is by choosing a point from some set of available strategies. In

the case of the game with two participants, let X be the set of available strategies

of the Player 1, and Y be the set of available strategies of the Player 2. The game

rule for Player 1 is the mapping which takes any selected strategy y ∈ Y of Player
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2 to the set A(y) ⊆ X of that best strategies from which Player 1 will choose his

strategy in this case. Similarly, the game rule for Player 2 is the mapping which takes

any selected strategy x ∈ X of Player 1 to the set B(x) ⊆ Y of the best answers.

These rules can be mathematically described as multivalued mappings A : Y ⇒ X,

B : X ⇒ Y .

So, we consider the antagonistic game with two players. Suppose on the product

X × Y a game function f : X × Y → R is given. In this case, if Player 1 chooses a

strategy x ∈ X and Player 2 chooses a strategy y ∈ Y , the gain of Player 1 will be

equal to f(x, y), and the gain of Player 2 will be equal to −f(x, y) where f(x, y) is

the game function. The game rules of Players 1 and 2 can be described in the form of

the following multivalued mappings (if the corresponding minima and maxima exist):

(1.1) B(x) = {y|y ∈ Y, f(x, y) = min
ỹ∈Y

f(x, ỹ)};

(1.2) A(y) = {x|x ∈ X, f(x, y) = max
x̃∈X

f(x̃, y)}.

Definition 1.1. In the described situation the pair (x0, y0) is called an equilibrium

strategy if the following conditions hold:

(1.3)

{
x0 ∈ A(y0);

y0 ∈ B(x0).

It follows from the condition 1.3 of the definition of an equilibrium strategy that

the pair (x0, y0) is equilibrium if and only if the point (x0, y0) is a fixed point of the

multivalued mapping P = A×B : X × Y ⇒ X × Y , where

(1.4) P(x, y) = (A×B)(x, y) := A(y)×B(x).

It should be noticed that the described concept of an equilibrium strategy in the

antagonistic game is a partial case of the well-known more general concept of Nash

equilibrium in the game theory (see, for example, [7, 8, 10, 11]).

Now, one can see that the equilibrium strategy existence problem is equivalent

to the fixed point existence problem for a multivalued mapping. Therefore, to solve

this problem, people use methods of the fixed point theory.

In the next section, we consider this problem from the point of view of the fixed

point theory of multivalued self-mappings of ordered sets. We use some constructions

and results obtained recently in [9].

2. THE CASE OF ORDERED STRATEGY SPACES

We suppose that in an antagonistic game with two players, the strategy sets of

the players are ordered sets.
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So, let ordered strategy sets (X,≼X), (Y,≼Y ) be given. We define an order ≼ on

the product X × Y by the following rule. For any (x, y), (u, v) ∈ X × Y , put

(x, y) ≼ (u, v) ⇐⇒ (x ≼X u) ∧ (y ≼Y v).

Suppose the game rules for Players 1 and 2 are described with multivalued mappings

A : Y ⇒ X, B : X ⇒ Y defined by formulas 1.1 and 1.2.

We recall several definitions (see [9]).

Definition 2.1. Amultivalued mapping F : X ⇒ Y between two ordered sets (X,≼X

), (Y,≼Y ) is called isotone if for any x ∈ X, y ∈ F (x), and for any x′ ∈ X, x′ ≼X x,

there is an element y′ ∈ F (x′) such that y′ ≼Y y.

It should be noticed that, for a single-valued mapping f : X → Y , the isotone

property with respect to the given orders ≼X ,≼Y is equivalent to the isotone property

relative to the dual orders ≼∗
X ,≼∗

Y . But for multivalued mappings these properties

are clearly not equivalent. We recall that given an order ≼ on some set Z, the order

≼∗ is called dual to the order ≼ if a ≼ b ⇐⇒ b ≼∗ a

Let (Z,≼) be an ordered set. Given a multivalued mapping G : Z ⇒ Z, following

[9] we define below special sets of chains S(G;≼X), S∗(G;≼X), S(x0, G;≼X), and

S∗(x0, G;≼X).

We denote by S(G;≼X) the set of all pairs of the form (S, g) where S ⊆ Z is a

chain in Z, g : S → Z be a single-valued selection of the mapping G on the chain S,

that is for any z ∈ S it is true that g(z) ∈ G(z), and the following conditions hold:

1) for any z ∈ S it is true that g(z) ≼ z;

2) ∀u, v ∈ S, u ≺ v =⇒ u ≼ g(v).

Similarly, we denote by S∗(G;≼X) the set of pairs of the form (S, g) where S ⊆ X

is a chain in X, g : S → X is a single-valued selection of the multivalued mapping G

on the chain S, that is for any x ∈ S it is true that g(x) ∈ G(x), and the following

conditions hold:

1) for any element x ∈ S, g(x) ≼∗
X x;

2) ∀x, y ∈ S, x ≺∗
X y =⇒ x ≼∗

Y g(y).

Notice that S∗(G;≼X) = S(G;≼∗
X).

Given x0 ∈ X, we denote S(x0, G;≼X) := {(S, g) ∈ S(G;≼X)|S ⊆ T(X,≼X)(x0)},
where T(X,≼X)(x0) := {y ∈ X|y ≼X x0} Similarly, we denote S∗(x0, G;≼X) :=

{(S, g) ∈ S∗(G;≼X)|S ⊆ T ∗
(X,≼X)(x0)}, where T ∗

(X,≼X)(x0) := {y ∈ X|y ≼∗
X x0}

In addition, we consider the following denotations (introduced in [9]):

Ŝ(x0, G;≼X) := {(S, g) ∈ S∗(G;≼X)|g(S) ⊆ T(X,≼X)(x0)}.
Similarly Ŝ(x0, G;≼∗

X) := {(S, g) ∈ S(G;≼X)|g(S) ⊆ T ∗
(X,≼X)(x0)},

The following statement on the equilibrium strategy existence is true.
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Theorem 2.2. [9, theorem 5] Let antagonistic game with two players be given, with

ordered strategy spaces (X,≼X) and (Y,≼Y ), the game rules of the players be defined

by the above conditions 1.1, 1.2, and the game multivalued mapping P : X × Y ⇒
X × Y be defined by the above formulae 1.4. Suppose that the mapping P is isotone

with respect to the order ≼ on X×Y , and for some pair (a, b) ∈ X×Y , the following

conditions hold.

(i) There exists a pair (a′, b′) ∈ P(a, b) such that (a′, b′) ≼ (a, b);

(ii) for any pair (S, P ) ∈ S((a, b),P,≼) the chain S has a low bound (u,w) ∈
X × Y , and there exists an element (v, q) ∈ P(u,w), such that (v, q) ≼ (u,w), and

(v, q) is a low boundary of the chain P (S).

Then the mapping P has a fixed point (ξ, η) ∈ T(X×Y,≼)(a, b) ∩ Fix(P), which

is minimal in the indicated set. In other words, there exists an equilibrium strategy

(ξ, η) in the given game which is minimal relative to the order ≼, among all strategies

which are not greater than (a, b).

Definition 2.3. We say a multivalued mapping G : X ⇒ X (orderly) covers the

identical mapping IdX on X relative to the order ≼X iff for any point x ∈ X, such

that ∃u ∈ G(x), x ≼ u, there exists a point x′ ∈ X, x′ ≼ x, such that x ∈ G(x′).

The next statement is one more variant of the equilibrium strategy existence

theorem.

Theorem 2.4. [9] Let an antagonistic game with two players be given, with ordered

strategy spaces (X,≼X) and (Y,≼Y ), the game rules of the players be defined by the

above conditions 1.1, 1.2, and the game multivalued mapping P : X ×Y ⇒ X ×Y be

defined by the above formulae 1.4. Suppose that the mapping P covers the identical

mapping with respect to the order ≼ on X×Y , and for some initial pair (a, b) ∈ X×Y

the following conditions hold.

(i’) There exists a pair (a′, b′) ∈ P(a, b) such that (a, b) ≼ (a′, b′);

(ii’) for any pair (S, P ) ∈ Ŝ((a, b),P,≼) ( (S, P ) ∈ Ŝ((a, b),P ,≼∗), respectively)

the chain S has a low bound (u,w) ∈ X×Y (relative to the corresponding order), and

there exists an element (v, q) ∈ P(u,w), (u,w) ≼ (v, q) (respectively, (u,w) ≼∗ (v, q)),

and (v, q) is a low boundary of the chain P (S) (relative to the corresponding order).

Then the mapping P has a fixed point (ξ, η) ∈ T(X×Y,≼)(a, b)∩Fix(P) (respective-

ly, (ξ, η) ∈ T ∗
(X×Y,≼)(a, b) ∩ Fix(P)) which is minimal in the indicated set. In other

words, there exists an equilibrium strategy (ξ, η) in the given game which is minimal

relative to the order ≼, among all strategies which are not greater than (a, b) (relative

to the corresponding dual order).

Now, suppose that the game function f(x, y) : X × Y → R is changing. A

change of the game function f and the corresponding changes of the game rules of
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Player 1 and Player 2 defined by the mappings A : Y ⇒ X, B : X ⇒ Y , imply the

corresponding changes of the multivalued mapping P : X × Y ⇒ X × Y . In order to

obtain sufficient conditions for the equilibrium strategy existence preservation, under

changes of the mapping P , one can use results of [9] concerning multivalued homotopy

of mappings between ordered sets.

We need some definitions more.

Definition 2.5. [9] Let (X1,≼1), (X2,≼2) be two ordered sets. Given mappings

F, F ′ : X1 ⇒ X2, we say that F ′ majorizes (minorizes) F at a point x ∈ X1 (with

respect to the order ≼2) and write F ↗ F ′ (F ↘ F ′) at x if, for each v ∈ F (x),

there exists an element u ∈ F ′(x) such that v ≼2 u (u ≼2 v). We say that F ↗ F ′

(F ↘ F ′) on a subset D ⊆ X1 if F ↗ F ′ (F ↘ F ′) at each point x ∈ D.

Note that each of these partial binary relations↗ and↘ (with respect to the giv-

en order ≼2 on X2) on the totality of pairs of subsets (such as pairs (F (x), F ′(x)), x ∈
X1,) of X2 is obviously reflexive and transitive but in general is not symmetric or

antisymmetric. In addition, it is clear that the binary relations ↗ and ↘ are not

dual to each other. It should be also noticed that the assertion F ′ majorizes F at

a point x ∈ X1 (on a set D ⊆ X1) with respect to the order ≼2 is equivalent to the

assertion F ′ minorizes F at the point x ∈ X1 (on the set D ⊆ X1) with respect to the

dual order ≼∗, and vice versa.

Definition 2.6. [9] Let (X1,≼1), (X2,≼2) be two ordered sets. Given multivalued

mappings F, F ′ : X1 ⇒ X2, a multivalued homotopy connecting the mappings F and

F ′ is a finite family of multivalued mappings of the form H = {H0, H1, ..., Hn} where

Hk : X1 ⇒ X2, k = 0, 1, ..., n, H0 = F , Hn = F ′, and Hk ↗ Hk+1 either relative to

the order ≼X2 , or relative to the dual order ≼∗
X2
.

In order to proceed, we need to adapt some previous concepts and definitions to

the game situation described above.

So, let the game function f(x, y) go through discrete changes, and we have a

finite sequence F := {fk}1≤k≤n of game functions fk : X × Y → R, 1 ≤ k ≤ n, where

f1 = f , fn = f̃ . In this sense, we have a discrete parametric family (with parameter

k, 1 ≤ k ≤ n) of antagonistic games.

Let the corresponding game rules of the game function fk for Players 1 and 2

be described with multivalued mappings Ak : Y ⇒ X, Bk : X ⇒ Y defined by

formulas 1.1 and 1.2, respectively, 1 ≤ k ≤ n. Consequently, we have the following

sequence of multivalued game mappings Pk = Ak × Bk : X × Y ⇒ X × Y , where

Pk(x, y) = (Ak ×Bk)(x, y) := Ak(y)×Bk(x), 1 ≤ k ≤ n.

Take a strategy (a, b) ∈ X×Y . Denote T(X×Y,≼)((a, b)) := {(c, d) ∈ X×Y |(c, d) ≼
(a, b)}, T ∗

(X×Y,≼)((a, b)) := {(u, v) ∈ X × Y |(u, v) ≼∗ (a, b)}. One can notice that for
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any (a, b) ∈ X × Y it is true that T ∗
(X×Y,≼)((a, b)) = T(X×Y,≼∗)((a, b)) where ≼∗ is the

dual order relative to ≼.

The next theorems 2.7 and 2.8 represent some development of the paper [9].

Theorem 2.7. In the described situation, let (x1, y1) ∈ Fix(P1) ̸= ∅, that is (x1, y1)

is an equilibrium strategy for the game function f1 = f . In addition, suppose the

following conditions (a),(b),(c) simultaneously hold either relative to the given orders

≼X ,≼Y ,≼X×Y , or relative to the dual orders ≼∗
X ,≼∗

Y ,≼∗
X×Y .

(a) Ak, Bk are isotone mappings, 1 ≤ k ≤ n;

(b) Ak−1 ↘ Ak, Bk−1 ↘ Bk, 1 < k ≤ n;

(c) for any pair (S,Pk) = ((SX , SY ), (ak, bk)) ∈ S((xk, yk), (Ak, Bk),≼X×Y ) (or,

in the dual case, (S,Pk) =

= ((SX , SY ), (ak, bk)) ∈ S((xk, yk), (Ak, Bk),≼∗
X×Y )) the chain S = (SX , SY ) has a

low boundary (u, v) ∈ X × Y , and there is an element (w, h), w ∈ Ak(v), h ∈ Bk(u),

w ≼X u, h ≼Y v (or, in the dual case, w ≼∗
X u, h ≼∗

Y v.) In addition, the elements

w, h are low boundaries of the chains ak(SY ), bk(SX) that is w ≼X ak(y), ∀y ∈ SY ,

h ≼Y bk(x), ∀x ∈ SX (or, in the dual case, w ≼∗
X ak(y), ∀y ∈ SY , h ≼∗

Y bk(x),

∀x ∈ SX . Here ak : SY → X, bk : SX → Y stand for single-valued selections of the

mappings Ak, Bk, respectively.

Then every multivalued mapping Pk has a fixed point xk, 1 ≤ k ≤ n, that is every

game function fk, 1 ≤ k ≤ n, and in particular fn = f̃ , has an equilibrium strategy

(xk, yk). So, the property of having equilibrium strategy is preserved.

Proof. The statement is implied by theorem 2.2. The reasonings are quite similar to

that of the proof of the first part of [9, theorem 4].

Let the conditions (a)–(c) of the theorem be fulfilled relative to the initial orders

≼X ,≼Y ,≼X×Y .

It is not difficult to see that the condition (a) of the theorem provides that the

mapping Pk is isotone, 1 ≤ k ≤ n. As (x1, y1) ∈ Fix(P1), the condition (b) implies

that there is an element (x2, y2) ∈ P2((x1, y1)) such that (x2, y2) ≼ (x1, y1). As

the mapping P2 is isotone, there exists an element (x3, y3) ∈ P2((x2, y2)) such that

(x3, y3) ≼ (x2, y2). So, we have a chain S = {(x1, y1), (x2, y2)} with a single-valued

selection P2 = {(x2, y2), (x3, y3)} of the mapping P2 on S. It is easy to see that a pair

(S, P2) ∈ S((x1, y1),P2,≼) ̸= ∅.

Elements of the set S((x1, y1),P2,≼) are arranged by inclusion, that is we write

(S, P ) ⊑ (S ′, P ′) for two pairs (S, P ), (S ′, P ′) ∈ S((x1, y1),P2,≼) if and only if the

chain S is an initial segment of the chain S ′ and the selection P ′ is a continuation

of the section P that is, P ′|S = P . By Zorn lemma applied to the partially ordered

set (S((x1, y1), P2,≼)),⊑), there exists a maximal pair (Ŝ, P̂ ) ∈ S((x1, y1), P2,≼)).
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According to condition (c), the chain Ŝ has a lower bound (u, v) ∈ X × Y , and

there exists an element (w, h) ∈ P2((u, v)) such that (w, h) ≼ (u, v). In addition,

(w, h) is a low bound of the chain P̂ (Ŝ). If (w, h) = (u, v), it means that (u, v) ∈
Fix(P2). If (w, h) ≺ (u, v), then according to the condition (a), one can find a pair

(ξ, η) ∈ P2((w, h)), such that (ξ, η) ≼ (w, h). If (ξ, η) = (w, h), it means again that

(w, h) ∈ Fix(P2). If (ξ, η) ≺ (w, h), then (Ŝ, P̂ ) @ (S̄, P̄ ), where S̄ = Ŝ ∪ (ξ, η),

P̄ ((w, h) := (ξ, η). And (S̄, P̄ ) ∈ S((x1, y1), P2,≼). This contradicts the maximality

of the pair (Ŝ, P̂ ).

So, one can see that the conditions of the theorem 2.7 (relative to the initial

orders ≼X ,≼Y ,≼X×Y ) imply all conditions of theorem 2.2. By virtue of theorem 2.2,

the mapping P2 has a fixed point. Repeating the above reasonings with respect to

the mappings Pk, 2 ≤ k ≤ n, we obtain the fixed point existence property for every

mapping Pk, 2 ≤ k ≤ n. So, for the concerned case, the theorem is proved.

For the case when the conditions (a)–(c) of the theorem are fulfilled relative to

the dual orders ≼∗
X ,≼∗

Y ,≼∗
X×Y , the reasonings are quite similar.

Basing on theorem 2.4, we present one more variant of a fixed point existence

preservation theorem.

Theorem 2.8. Let in the situation described above (x1, y1) ∈ Fix(P1) ̸= ∅, that is
(x1, y1) is an equilibrium strategy for the game function f1 = f . In addition, suppose

the following conditions (a’), (b’), (c’) simultaneously hold relative either to the initial

orders on X, Y,X × Y , or to the dual orders.

(a’) the mapping Pk = (Ak, Bk) covers the identical mapping IdX×Y , that is for

any point (x, y) ∈ X × Y such that ∃u ∈ A(y), x ≼ u, ∃v ∈ B(x), y ≼ v, there exists

a point (x′, y′) ∈ X × Y, (x′, y′) ≼ (x, y), such that x ∈ A(y′), y ∈ B(x′), 1 ≤ k ≤ n;

(b’) Ak−1 ↗ Ak, Bk−1 ↗ Bk, 1 < k ≤ n;

(c’) ∀(S, Pk) = ((SX , SY ), Pk) ∈ Ŝ((x1, y1),Pk,≼X×Y )

(∀(S, Pk) ∈ Ŝ((x1, y1)Pk,≼∗
X×Y )) the chain S has a low (relative to the corresponding

order) bound (u, v) ∈ X × Y , and there is an element (w, h), w ∈ Ak(v), h ∈ Bk(u),

w ≼X u, h ≼Y v (or w ≼∗
X u, h ≼∗

Y v.) In addition, the elements w, h are low bounds

of the chains ak(SY ), bk(SX) that is w ≼X ak(y), ∀y ∈ SY , h ≼Y bk(x), ∀x ∈ SX (or,

in the dual case, w ≼∗
X ak(y), ∀y ∈ SY , h ≼∗

Y bk(x), ∀x ∈ SX .)

Then every multivalued mapping Pk has a fixed point xk, 1 ≤ k ≤ n, that is every

game function fk, 1 ≤ k ≤ n, and in particular fn = f̃ , has an equilibrium strategy

(xn, yn). So, the property of having equilibrium strategy is preserved.

Proof. Similarly to the previous theorem, we have the equilibrium strategy (x1, y1)

of the game function f1 which is a fixed point of the mapping P1. Let all conditions

of theorem 2.8 be fulfilled relative to the initial orders ≼X ,≼Y ,≼X×Y . Then, the
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condition (a’) of theorem 2.8 clearly coincides with the corresponding condition of

theorem 2.4, for the mapping P2. The condition (b’) of theorem 2.8 provides the

condition (i’) of theorem 2.4, for P2. And finally, it is easy to see that the condition

(c’) of theorem 2.8 coincides with the condition (ii’) of theorem 2.4, for P2. So, by

virtue of theorem 2.4, the mapping P2 has a fixed point (x2, y2). Repeating the above

reasonings with respect to every mapping Pk, 2 ≤ k ≤ n, we prove that every mapping

Pk has a fixed point (xk, yk), 1 ≤ k ≤ n. In means that in the case of initial orders,

theorem is proved.

As for the case when all conditions of theorem 2.8 hold relative to the dual orders,

one can similarly obtain that all conditions of theorem 2.4 are also fulfilled relative

to the dual orders, for Pk, 1 ≤ k ≤ n. Consequently, by virtue of theorem 2.4, every

mapping Pk has a fixed point (xk, yk) that is every game function fk(x, y) has an

equilibrium strategy (xk, yk).

Remarks.

1. Using remarks after [9, theorem 4], one can specify the minimality (maxi-

mality) property of the fixed points (xk, yk) obtained in theorems 2.7 and 2.8, with

respect to the whole set of fixed points of the mappings Pk contained in TX(xk−1) (or

respectively, in T ∗
X(xk−1)), 1 ≤ k ≤ n.

2. The conditions of theorems 2.7 and 2.8 may be combined, for different values

of k. Therefore, it follows that the property of having an equilibrium strategy is

preserved for a game function f(x, y), under any order homotopy which meets the

conditions of theorems 2.7 and 2.8 or their combinations.

In the next section we shall consider the same problem of the equilibrium strategy

existence preservation in an antagonistic game with two players, but in quite another

situation.

3. THE CASE OF METRIC STRATEGY SPACES

Below we shall suppose that the players’ strategy spaces are metric spaces. To

investigate such a game situation, we shall use some constructions and results obtained

in [12], basing on the zero search principle for multivalued (α, β)-search functionals

introduced earlier by the author.

At first, we present some necessary definitions and the formulation of the above-

mentioned search principle for zeros (see [3, 4, 5, 6]).

Definition 3.1. Let (X, d) be a metric space, and let φ : X ⇒ R+ be a set-valued

functional onX. The graphGraph(φ) := {(x, c) ∈ X×R+|c ∈ φ(x)} of the functional
φ is said to be 0-complete iff any Cauchy sequence (xn, cn) ⊆ Graph(φ) such that

cn → 0, converges to some element (ξ, 0) ∈ Graph(φ), i.e., 0 ∈ φ(ξ).
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Now, let us consider the notion of an (α, β)-search functional.

Definition 3.2. Let (X, d) be a metric space, and let 0 ≤ β < α. A set-valued

functional φ : X ⇒ R+ is called (α, β)-search on X if and only if, for any point

x ∈ X and any c ∈ φ(x), there exists a point x′ ∈ X and a number c′ ∈ φ(x′) such

that d(x, x′) ≤ c
α
, and c′ ≤ β

α
.

Here we need the more general notion of a functional which is (α, β)-search on a

given open subset of the metric space (X, d).

Definition 3.3. [12] Let (X, d) be a metric space, U ⊂ X be an open subset, and

0 ≤ β < α. A set-valued functional φ : U ⇒ R+ is called an (α, β)-search on U iff,

for any point x ∈ U and any r > 0, c ∈ φ(x) such that B(x; r) ⊂ U , c ≤ (α − β)r,

there exist a point x′ ∈ B(x; c
α
) and a value c′ ∈ φ(x′) with c′ ≤ β

α
c.

Theorem 3.4. [12] Let (X, d) be a metric space, U ⊂ X be an open subset, and

φ : U ⇒ R+ be a set-valued functional, which is an (α, β)-search on U , with 0-

complete graph, 0 ≤ β < α. Let there be given x0 ∈ U, c0 ∈ φ(x0), and r > 0 such

that B(x0, r) ⊂ U ; c0 ≤ (α− β)r.

Then there exists a point ξ ∈ B(x0, r) for which 0 ∈ φ(ξ).

Definition 3.5. [12]. Let (X, d) be a metric space, U ⊂ X. Let θ : [0; 1] → R be

a continuous increasing function. A one-parameter family Φ = {Φt : U ⇒ R+}t∈[0;1,
of set-valued functionals is said to be θ-continuous on U iff, for each x ∈ U , any

t′, t′′ ∈ [0; 1], and any c′ ∈ Φt′(x), there exists a value c′′ ∈ Φt′′(x) for which |c′− c′′| ≤
|θ(t′)− θ(t′′)|.

We introduce the following notation, for any subsets Z and Y , Z ⊆ Y ⊆ X, and

any family Φ = {Φt : Y ⇒ R+}t∈[0;1 of set-valued functionals:

MZ(Φ) := {(x, t) ∈ Z × [0; 1]|0 ∈ Φt(x)}.

On the space X × [0; 1] (in particular, on U × [0; 1]), we consider the metric D :

(X × [0; 1])2 → R+ defined by the rule:

D((x′, t′), (x′′, t′′)) = d(x′, x′′) + |t′ − t′′|,

for all x′, x′′ ∈ X and any t′, t′′ ∈ [0; 1]. Convergence in this metric is obviously

equivalent to component-wise convergence.

Theorem 3.6. [12] Let (X, d) be a metric space, U ⊂ X be an open subset of X, and

θ : [0; 1] → R be a continuous increasing function. Let there be given a parametric

family Φ = {Φt : U ⇒ R+}t∈[0;1] of set-valued functionals with 0-complete graphs,

θ-continuous on the set MU(Φ), which are (α, β)-search on U , for any t ∈ [0; 1]. Let

also the set MU(Φ) be closed.
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Then, if there exists an element of the form (x0, 0) ∈ MU(Φ), then there exists

an element of the form (x1, 1) ∈ MU(Φ).

Now, we can apply theorem 3.6 to the problem under consideration.

Recall that we consider antagonistic games with two players and suppose now

that the strategy spaces of Player 1 and Player 2 are metric spaces.

Let a parametric family of antagonistic game functions F = {ft}t∈[0;1] be given,

where ft(x, y) : X × Y → R. So, we have a parametric family of game mappings

P = {Pt}t∈[0;1], where the mapping Pt is defined by the above condition 1.4, ∀t ∈ [0; 1].

Let us notice that as opposed to the previous case (with a discrete parameter)

considered in section 2, here we consider a parametric family of antagonistic games

with the continuous real parameter t ∈ [0; 1]

Let U ⊂ X × Y be an open subset. We are to find sufficient conditions for the

fixed point existence preservation in the given family P = {Pt}t∈[0;1] of multivalued

game mappings, under changing the parameter, on the open subset U .

We recall that the game rules of the players can be described in the form of the

multivalued mappings A : Y ⇒ X, B : X ⇒ Y , defined by the above formulas 1.1,

1.2. An equilibrium strategy of the game is a point (x0, y0) which is a fixed point of

the multivalued game mapping P = A× B : X × Y ⇒ X × Y defined by the above

formulas 1.3, 1.4.

Below we denote MU(Φ) := {((x, y), t) ∈ X × Y × [0; 1]|(x, y) ∈ Φt(x, y)}.

The following statement is true.

Theorem 3.7. Let the strategy spaces (X, dX), (Y, dY ) be complete, U ⊂ X × Y be

an open subset. Suppose a parametric family of game mappings P = {Pt}t∈[0;1] be
given where Pt : U → CB(X × Y ) (here CB(X × Y ) stands for the totality of closed

bounded subsets of X × Y ). Let, for some α, β, 0 ≤ β < α < 1, and 1 < q < α/β,

and some continuous increasing function θ : [0; 1] → R, the following conditions hold

(below H(U, V ) stands for the Hausdorff distance between subsets U and V ):

(1) for any t ∈ [0; 1] and any (x′, y′), (x′′, y′′) ∈ U ,

H(Pt(x
′, y′),Pt(x

′′, y′′)) ≤ β

αγq
D((x′, y′), (x′′, y′′));

(2) for any pair ((x, y), t) ∈ MU(Φ), and any t′ ∈ [0; 1],

H(Pt(x, y),Pt′(x, y)) ≤ |θ(t′)− θ(t)|;

(3) for any t ∈ [0; 1], there are no fixed points of the mapping Pt on the boundary

of U that is Fix(Pt) ∩ ∂U = ∅, where Fix(Pt) := {(x, y) ∈ U |(x, y) ∈ Pt((x, y))}.

Then, Fix(P0) ∩ U ̸= ∅ =⇒ Fix(P1) ∩ U ̸= ∅.
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Proof. for each t ∈ [0; 1], we consider on U the set-valued functional Φt : U ⇒ R+

defined by the rule: Φt((x, y)) = {D((x, y), (u, v))|(u, v) ∈ Pt((x, y)))}. The choice

of a concrete value c ∈ Φt((x, y)) means the choice of an element (u, v) ∈ Pt((x, y)).

Then, 0 ∈ Φt((x, y)) if and only if (x, y) ∈ Pt((x, y)).

Let us show that, for any t ∈ [0; 1], the functional Φt has 0-complete graph. Let

((xn, yn), cn) ⊆ Graph(Φt) be an arbitrary Cauchy sequence, where cn → 0. Each cn

corresponds to some (un, vn) ∈ Pt((xn, yn)) such that cn = D((xn, yn), (un, vn)). As

cn → 0 the sequences {(xn, yn)} and {(un, vn)} draw together, and it follows that the

sequence {(un, vn)} is also Cauchy. As the space (X×Y,D) is complete, the sequence

{(xn, yn)} converges to some element (ξ, η) ∈ X ×Y . Consequently (un, vn) → (ξ, η),

too.

It remains to show that (ξ, η) ∈ Pt((ξ, η)) that is (ξ, η) ∈ Fix(Pt).

One can estimate the distance D((ξ, η),Pt((ξ, η))). Using the triangle inequality

and condition (1) of the theorem we obtain

D((ξ, η),Pt((ξ, η))) ≤ D((ξ, η), (un, vn)) +D((un, vn),Pt((xn, yn))+

+H(Pt((xn, yn)),Pt((ξ, η))) ≤ D((ξ, η), (un, vn)) +
β

αγq
D((xn, yn), (ξ, η)) → 0.

So, D((ξ, η),Pt((ξ, η))) = 0. As the images of Pt are closed, it means that (ξ, η) ∈
Pt((ξ, η)). Thus, for any t ∈ [0; 1], the graph of the functional Φt is {0}-complete.

Let us show that, for any t ∈ [0; 1], the functional Φt is an (α, β)-search on U .

Let (x, y) ∈ U, c ∈ Φt((x, y)), r > 0 be such that B((x, y), r) ⊂ U and c ≤ (α − β)r.

The value c corresponds to the element (x, y) and some element (x′, y′) ∈ Pt((x, y)),

for which c = D((x, y), (x′, y′)). We notice that the point (x′, y′) (trivially) meets the

conditionD((x, y), (x′, y′)) ≤ 1
α
c. In addition, (x′, y′) ∈ U becauseD((x, y), (x′, y′)) ≤

1
α
c < r and B((x, y), r) ⊂ U .

Further, it is not difficult to show that as the sets Pt((x, y)),Pt(x
′, y′)) are closed

and bounded, there exists an element (x′′, y′′) ∈ Pt((x
′, y′)) such that

D((x′, y′), (x′′, y′′)) ≤ qH(Pt((x, y)),Pt((x
′, y′))) ≤ q

β

αq
D((x, y), (x′, y′)) =

β

α
c.

So, taking c′ = D((x′, y′), (x′′, y′′)), we have c′ ≤ (β/α)c.

Thus, for any t ∈ [0; 1], the functional Φt is (α, β)-search on U .

Now we verify that the condition (2) of the theorem implies that the func-

tional Φt is qθ-continuous on the set MU(Φ). Take any pair ((x, y), t) ∈ MU(Φ)

and any t′ ∈ [0; 1]. Then there exists an element (x′, y′) ∈ Pt′(x, y) such that

D((x, y), (x′, y′))) ≤ qH(Pt(x, y),Pt′(x, y)). Using the condition (2) of the theorem

and taking c′ = D((x, y), (x′, y′)), we have

c′ ≤ qH(Pt(x, y),Pt′(x, y)) ≤ q|θ(t′)− θ(t)|.



66 TATIANA N.FOMENKO

It means that the family Φ = {Φt}t∈[0;1] is qθ-continuous on the set MU(Φ).

Finally, one can show that as there are no fixed points of Φt, t ∈ [0; 1], on the

boundary ∂U , the set MU(Φ) is closed (see [12] for the proof).

Thus, all conditions of theorem 3.6 are fulfilled. By virtue of theorem 3.6, if there

exists an element of the form ((x0, y0), 0) ∈ MU(Φ), then there exists an element of

the form ((x1, y1), 1) ∈ MU(Φ). As the set of zeros of the functional Φt coincides with

the fixed point set of the mapping Pt, ∀t ∈ [0; 1], it completes the proof.

It should be noticed that in fact theorem 3.7 may be considered as a consequence

of the more general statements (see [12, theorem 7, corollary 1, theorem 8]). But,

such a consequence was not explicitly formulated in [12]. Therefore we presented it

here with the detailed proof.

4. CONCLUSION

In this paper, we considered the problem of the equilibrium strategy existence

preservation, under the changing the parameter, in a parametric antagonistic game

with two players. We investigated this problem from the point of view of fixed point

theory of multivalued mappings. These issues were considered both in the case when

the players’ strategy spaces are ordered sets and the parameter possesses the values

in the discrete finite set {1, 2, ..., n}, and in the case of metric players’ strategy spaces

when the parameter possesses any value t ∈ [0; 1]. We essentially used some previous

results. In the case of ordered strategy spaces, the main results are above theorems

2.3 and 2.4. For the case of metric strategy spaces our main result is theorem 3.7. In

all these main theorems we present sufficient conditions for the equilibrium strategy

existence preservation, under changing the parameter, in a parametric antagonistic

game with two players.
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