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ABSTRACT. Of concern is a wave equation which takes into account a discrete time delay in the

state itself (and not in its time derivative). It is also subject to impulses and a control given by

a finite memory term. We prove the well-posedness and exponential stability of our system. Our

stability result shows that the damping effect of the finite memory term is not destroyed neither by

the impulses nor by the delay.
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1. Introduction

Many researchers are devoting time and efforts in understanding the impact of impulses in

different processes. As a matter of fact, these impacts cannot be anticipated or predicted. They

may be the cause of stability as they may be the cause of instability. They may arise naturally and

they may be used as controls to drive the system to a desirable terminal state. The applications

are numerous [2, 3, 11, 16] and the mathematical challenges are considerable. Therefore, the study

of these processes are of the upmost importance nowadays. They are studied, together with many

similar problems dealing with short perturbations, in the context of Impulsive Differential Equations.

Let N ∈ N∗ := N\{0}, Ω ⊂ RN be a bounded domain with a smooth boundary Γ and a closure

Ω, a0, τ > 0, a1 ∈ R, {tk}k∈N ⊂ R+ := [0,+∞) such that

(1.1) 0 < t0 < t1 < · · · < tk < · · · , inf
k∈N

{tk+1 − tk} > τ and lim
k→+∞

tk = +∞,

g : R+ → R+ satisfying, for some ξ > 0,

(1.2) g ∈ C1(R+), 0 < g0 :=

∫ +∞

0

g(s)ds < a0 and g′ ≤ −ξg,
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and gk, fk : R → R, k ∈ N, satisfying, for some ξk, ξ̃k > 0,

(1.3) gk ∈ C1(R+), sup
k∈N

ξk < +∞, gk(0) = 0 and |g′k| ≤ ξk

and

(1.4) fk ∈ C(R+), sup
k∈N

ξ̃k < +∞ and |fk(s)| ≤ ξ̃k|s|, s ∈ R.

We consider the following system:

(1.5)



utt(x, t)− a0∆u(x, t) + a1u(x, t− τ)

+

∫ t

0

g(s)∆u(x, t− s)ds = 0,
x ∈ Ω, t ∈ R∗

+\{tk}k∈N,

u(x, t) = 0, x ∈ Γ, t > 0,

u(x, s) = u0(x, s), ut(x, 0) = u1(x), x ∈ Ω, s ∈ [−τ, 0],

u(x, tk) = gk(u(x, t
−
k )), ut(x, tk) = fk(ut(x, t

−
k )), x ∈ Ω, k ∈ N,

where u(x, t) is the unknown function, u0 and u1 are given functions (initial data), ∆ is the classical

Laplacian operator, the subscript t denotes the derivative with respect to t, and t−k denotes the limit

when t converges to tk from the left. The function g is the kernel of the considered finite memory

term, which plays the role of control for (1.5). The constant τ represents the considered discrete

time delay with a size a1. The impulses are taken in consideration thanks to the functions gk and

fk. In case of continuity and gk(s) = fk(s) = s, there will be no impulses.

So far as we know, this problem has not been investigated in the literature. We cite below the

very few papers on this subject but without impulsive conditions. We start by the work of Nicaise

and Pignotti [13] who proved exponential stability for the problem

wtt(x, t)−∆w(x, t) + η(x) [a1wt(x, t) + a2wt(x, t− τ)] = 0, x ∈ Ω, t > 0

w(x, t) = 0, x ∈ ΓD, t > 0,
∂w
∂ν (x, t) = 0, x ∈ ΓN , t > 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω,

wt(x, t− τ) = w2(x, t− τ), x ∈ Ω, t ∈ (0, τ),

and also for the problem where the control

a1wt(x, t) + a2wt(x, t− τ)

acts on the boundary. The main condition was that the amplitude of the delayed term must be

strictly smaller than the one of the frictional damping. Otherwise, the system is shown to be

unstable. By this work, they extended an earlier work of Xu et al. [17] from 1-d to any dimension.

Time-varying delays have been treated in [14, 15]. There are other works dealing with the case

where one of the terms is in the equation and the other one in the boundary as in [13], we mention

only the work of Datko et al. [6]. The authors considered the internal terms

2bwt(x, t) + b2w(x, t)

and the boundary delayed control

wx(1, t) + ηwt(1, t− τ) = 0

and proved an exponential stability result when η is small enough.
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Now we pass to the case of a memory damping. We mention here that Kirane and Said-Houari

[10] added a viscoelastic term to the equation

wtt(x, t)−∆w(x, t) + a1wt(x, t) + a2wt(x, t− τ) +

∫ t

0

g(s)∆u(x, t− s)ds = 0

and proved a stability result when 0 ≤ a2 < a1 under a Dirichlet boundary condition. Moreover,

they showed that the exponential stability continues to hold when a2 = a1 because of the memory

dissipation. A couple of years later, Guesmia [8] investigated a similar problem but without the

frictional damping and with infinite memory in the abstract setting
wtt(t) +Aw(t) =

∫ +∞

0

h(s)Aw(t− s)ds− awt(t− τ), t > 0,

w(−t) = w0(t), t ∈ R+,

wt(0) = w1, wt(t− τ) = w2(t− τ), t ∈ (0, τ).

He proved the existence of a positive number λ such that the system is exponentially stable when

|a| < λ. Then, Alabau-Boussouira et al. [1] considered the problem
wtt(x, t) = ∆w(x, t)−

∫ ∞

0

h(s)∆w(x, t− s)ds− awt(x, t− τ), x ∈ Ω, t > 0,

w(x, t) = 0, x ∈ Γ, t > 0,

w(x, t) = w0(x, t), x ∈ Ω, t ∈ (−∞, 0]

and proved a similar result with an explicit estimate for the value of λ. In [9], Guesmia and Tatar

proved an exponential stability (and also arbitrary stability depending on the kernel of the viscoelas-

ticity) for the abstract problem
wtt(t) +Aw(t) =

∫ ∞

0

h(s)Bw(t− s)ds−
∫ ∞

0

k(s)wt(t− s)ds, t > 0,

w(−t) = w0(t), t ∈ R+,

wt(−t) = w1(t), t ∈ R+.

This is established under certain conditions on the operators A and B and the kernels h and k, and

provided that ∫ ∞

0

k(s)ds < µ,

for some positive constant µ. Here a distributed delay is considered generalizing the discrete delay.

We note here that the above problems without delays have been treated earlier in a good

number of papers. We refer the readers to the references in the above papers where many of them

are cited there. All the above results have been shown despite the damaging and harmful character

of delays in general [4, 5, 6, 12].

In this work, for problem (1.5), we assume the growth conditions (1.3) and (1.4) on the impulses

gk and fk, respectively. An exponential stability result will be proved for a certain range of values

of a1. This means that the dissipation effect of the memory damping resists to both the impulses as

well as the delay occuring in the state. To this end, we shall combine the multiplier technique with

an impulsive version of the Halanay inequality (see Lemma 3.3 below).

In the next section, we prove the well-posedness of our problem. Section 3 is devoted to the

statement and proof of our stability result which relies crucially on an impulsive version of the

well-known Halanay inequality. We end up the paper by few remarks.
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2. Well-posedness

In this paper, we shall state and prove our stability result together with the crucial impulsive

version of the Halanay inequality. Frequently in the sequel, C (resp. Cϵ) denotes a generic positive

constant (resp. depending on some ϵ > 0), which may be different from step to step. We use ∥ · ∥ to

denote both L2(Ω) and
(
L2(Ω)

)N
norms.

This section is devoted to the well-posedness issue. We shall start by proving the existence and

uniqueness of a solution to the problem without impulses, then use this result to establish a similar

result for the impulsive case. We introduce the traditional function

z(x, ρ, t) = u(x, t− ρτ), x ∈ Ω, ρ ∈ (0, 1), t > 0.

Obviously, this new function satisfies

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ Ω, ρ ∈ (0, 1), t > 0.

At t = 0, we denote

z0(x, ρ) = z(x, ρ, 0) = u(x,−ρτ).

We first consider the problem without impulses

(2.1)
wtt(x, t)− a0∆w(x, t) + a1w(x, t− τ) +

∫ t

0

g(s)∆w(x, t− s)ds = 0, x ∈ Ω, t > 0,

w(x, t) = 0, x ∈ Γ, t > 0,

w(x, s) = w0(x, s), w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω, s ∈ [−τ, 0].

Theorem 2.1. Let w0 ∈ H1
0 (Ω), w1 ∈ L2(Ω) and z0 ∈ L2(Ω × (0, 1)). For any T > 0, there exists

a unique weak solution (w, z) of (2.1) fulfilling

(2.2) w ∈ C
(
[0, T ],H1

0 (Ω)
)
∩ C1

(
[0, T ],H1

0 (Ω)
)
.

Proof. We give here the sketch of the proof. We shall adopt the Faedo-Galerkin method with the

appropriate changes and modifications in line with the new features of our problem. We denote by

{vκ}κ∈N∗ a basis of the space H1
0 (Ω) and

Vn = span{v1, ..., vn}, n ∈ N∗.

For the space L2(Ω× (0, 1)), we select a basis whose first n elements χ1(x, ρ), ..., χn(x, ρ) in L2(Ω×
(0, 1)) span the space Zn and such that χj(x, 0) = vj(x), j = 1, ..., n.

Let {w0n}n∈N∗ and {w1n}n∈N∗ be two sequences in Vn, and {z0n}n∈N∗ be a sequence in Zn such

that 
w0n → w0 strongly in H1

0 (Ω),

w1n → w1 strongly in L2(Ω),

z0n → z0 strongly in L2(Ω× (0, 1)).

We consider the expressions

wn(x, t) =

n∑
j=1

ωjn(t)vj(x) and zn(x, ρ, t) =

n∑
j=1

ξjn(t)χj(x, ρ)

solutions of the finite dimensional problems
∫
Ω

wnttvjdx+ a0

∫
Ω

∇wn∇vjdx+ a1

∫
Ω

zn(x, 1, t)vjdx−
∫ t

0

g(t− s)

∫
Ω

∇wn∇vjdxds = 0,

wn(0) = w0n, wnt(0) = w1n
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and 
∫
Ω

(τznt + znρ)χjdx = 0,

zn(x, ρ, 0) = z0n(x, ρ), zn(x, 0, t) = wn(x, t),

respectively. Obviously, these problems admit (ωjn(t), ξjn(t)) as solutions over the intervals [0, Tn).

Next, it will be shown that in fact these Tn are equal to T.

Using a suitable multiplier, the identity

(u ∗ v)t (t) = −1

2

d

dt

[
(u�v) (t)−

(∫ t

0

u(s)ds

)
|v(t)|2

]
− 1

2
u(t) |v(t)|2 + 1

2
(ut�v) (t),

where ∗ is for the usual convolution and

(u�v) (t) =

∫ t

0

u(t− s) |v(t)− v(s)|2 ds,

and integration by parts, we end up with

(2.3)

1
2

[
∥wnt∥2 +

(
a0 −

∫ t

0

g(s)ds

)
∥∇wn∥2 +

∫
Ω

(g�∇wn) dx

]
+ a1

∫ t

0

∫
Ω

zn(x, 1, s)wnt(x, s)dxds

+1
2

∫ t

0

g(s) ∥∇wn(s)∥2 ds−
1

2

∫ t

0

∫
Ω

(g′�∇wn) dxds =
1

2

[
a0 ∥∇w0n∥2 + ∥w1n∥2

]
and

(2.4)
τ

2

∫ 1

0

∫
Ω

z2n(x, ρ, t)dxdρ+

∫ 1

0

∫ t

0

∫
Ω

znρ(x, ρ, s)zn(x, ρ, s)dxdsdρ =
τ

2
∥z0n∥2L2(Ω×(0,1)) .

We denote by En(t) the expression

En(t) =
1

2

[
∥wnt∥2 +

(
a0 −

∫ t

0

g(s)ds

)
∥∇wn∥2 +

∫
Ω

(g�∇wn) dx

]
+

1

2
∥zn∥2L2(Ω×(0,1)) .

Then, by virtue of the two identities (2.3) and (2.4) and the remark∫ 1

0

∫ t

0

∫
Ω

znρ(x, ρ, s)zn(x, ρ, s)dxdsdρ =
1

2

∫ t

0

∫
Ω

[
z2n(x, 1, s)− z2n(x, 0, s)

]
dxds,

we may write

En(t) +
1
2

∫ t

0

g(s) ∥∇wn(s)∥2 ds−
1

2

∫ t

0

∫
Ω

(g′�∇wn) dxds−
1

2τ

∫ t

0

∥wn∥2 ds

+ 1
2τ

∫ t

0

∫
Ω

z2n(x, 1, s)dxds+ a1

∫ t

0

∫
Ω

zn(x, 1, s)wn(x, s)dxds ≤ En(0).

Young inequality implies that

En(t) +
1
2

∫ t

0

g(s) ∥∇wn(s)∥2 ds−
1

2

∫ t

0

∫
Ω

(g′�∇wn) dxds−
(

1

2τ
− |a1|δ

)∫ t

0

∫
Ω

z2n(x, 1, s)dxds

≤ En(0) +
(

1
2τ + |a1|

4δ

)∫ t

0

∥wn∥2 ds,

for δ > 0 which we choose satisfying 1
2τ − |a1|δ > 0. To fix ideas, take δ = 1

4τ |a1| . It is clear now that

we can appeal to Gronwall inequality to deduce that, for some C1 > 0,

En(t) ≤ En(0)e
C1t, t ≥ 0.

If En(0) ≤ r, for some r > 0, then we can find C > 0 depending on T, τ, a1,... such that

∥wnt∥ ≤ C.

The rest of the proof is standard (see, for instance Theorem 3.1 in [10]).
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Let H be a Hilbert space. We introduce the spaces

PC(R+,H) =

{
v ∈ C(R+\{tk}k∈N, H), v(x, t+k ), v(x, t

−
k ) exist

and v(x, tk) = v(x, t+k ) = gk(v(x, t
−
k )), k ∈ N

}
and

PC1(R+,H) =

{
v ∈ C1(R+\{tk}k∈N,H), v(x, t+k ), v(x, t

−
k ), vt(x, t

+
k ), vt(x, t

−
k ) exist,

v(x, tk) = v(x, t+k ) = gk(v(x, t
−
k )) and vt(x, tk) = vt(x, t

+
k ) = fk(vt(x, t

−
k )), k ∈ N

}
.

Theorem 2.2. For any

(2.5) (u0(·, 0), u1, z0) ∈ H1
0 (Ω)× L2(Ω)× L2(Ω× (0, 1)),

the problem (1.5) admits a unique weak solution

(2.6) u ∈ PC(R+,H
1
0 (Ω)) ∩ PC1(R+, L

2(Ω)).

Proof. We proceed in several steps.

Step 1: Let w0 be the restriction on [0, t1) of the solution of (2.1) corresponding to the initial

data (2.5). Thanks to (2.2), it is easy to see that(
w0(·, t−1 ),

∂w0

∂t
(·, t−1 ), w0(·, t1 − τp)

)
∈ H1

0 (Ω)× L2(Ω)× L2(Ω× (0, 1)).

Step 2: According to (1.3) and (1.4), we have

(2.7)

(
g1(w0(·, t−1 )), f1

(
∂w0

∂t
(·, t−1 )

)
, z1

)
∈ H1

0 (Ω)× L2(Ω)× L2(Ω× (0, 1)),

where z1(x, p) = w0(x, t1 − τp). So let u1 be the restriction on [t1, t1 + τ ] of the solution of (2.1)

corresponding to the initial data (2.7) instead of (w0(·, 0), w1, z0). In fact, the equation reads

wtt(x, t)− a0∆w(x, t) + a1w0(x, t− τ) +

∫ t1

0

g(s)∆w0(x, t− s)ds

+

∫ t

t1

g(s)∆w(x, t− s)ds = 0.

Notice that for t ∈ [t1, t1 + τ), we have 0 < t1 − τ ≤ t− τ < t1 and therefore w(x, t − τ) is well-

defined, continuous and equal to w0(x, t− τ). The limit of the solution and its time-derivative exist

at (t1 + τ)
−
.

Step 3: Consider the interval [t1+ τ, t1+2τ). We may assume, without loss of generality, that

t2 ∈ (t1+τ, t1+2τ ], otherwise, we perform an extension of the solution w1 with the help of Theorem

2.1 from t1 + τ up to t1 +2τ and consider the next intervals [t1 +2τ, t1 +3τ), ... untill we reach the

one containing t2. So, if t1 + τ < t2 ≤ t1 + 2τ, we discuss two cases

(a) On the interval [t1 + τ, t2), we extend normally the solution to w̃1 (also denoted simply by

w1). This is possible as t1 + τ ≤ t < t2 implies t1 ≤ t− τ < t2 − τ < t1 +2τ − τ = t1 + τ. Therefore,

w(x, t− τ) is well-defined, continuous and equal to w1(x, t− τ). Clearly(
w1(·, t−2 ),

∂w1

∂t
(·, t−2 ), w1(·, t2 − τp)

)
∈ H1

0 (Ω)× L2(Ω)× L2(Ω× (0, 1)).

(b) Next, we start from(
g2(w0(·, t−2 )), f2

(
∂w0

∂t
(·, t−2 )

)
, z2

)
∈ H1

0 (Ω)× L2(Ω)× L2(Ω× (0, 1)),
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where z2(x, p) = w1(x, t1 − τp) and construct our solution w2 on [t2, t1 + 2τ) for the problem with

equation

wtt(x, t)− a0∆w(x, t) + a1w1(x, t− τ) +

∫ t1

0

g(s)∆w0(x, t− s)ds

+

∫ t2

t1

g(s)∆w1(x, t− s)ds+

∫ t

t2

g(s)∆w(x, t− s)ds = 0.

Again this is possible via Theorem 2.1 as t2 ≤ t < t1+2τ implies t1 = t1+τ−τ < t2−τ ≤ t−τ < t1+τ.

Step 4: An induction argument leads to the existence of a unique solution

u(x, t) =



w0(x, t), t ∈ [0, t1),

w1(x, t), t ∈ [t1, t2),

...

wk(x, t), t ∈ [tk, tk+1),

...

of (1.5) having the regularity (2.6). The proof is complete.

3. Stability

The energy E corresponding to (1.5) is equal to

(3.1)
E(t) = 1

2 (a0 − g̃(t))∥∇u∥2 + 1
2∥ut∥2 + 1

2

∫ t

0

g(s) ∥∇(u(t)− u(t− s))∥2 ds

+ |a1|
2

∫ t

t−τ

g(t− s)∥∇u(s)∥2ds, t ∈ R+,

where

(3.2) g̃(t) =

∫ t

0

g(s)ds, t ∈ R+.

Because 0 ≤ g̃(t) ≤ g0 < a0 (see (1.2)), the following relations (equivalence) hold:

(3.3) α2E0(t) ≤ E(t) ≤ α1E0(t), t ∈ R+,

where α1 = 1
2 max{a0, 1}, α2 = 1

2 min{a0 − g0, 1} (α1 and α2 are positive) and

(3.4)

E0(t) = ∥∇u∥2 + ∥ut∥2 +
∫ t

0

g(s) ∥∇(u(t)− u(t− s))∥2 ds+ |a1|
∫ t

t−τ

g(t− s)∥∇u(s)∥2ds, t ∈ R+.

We start by estimating the derivative of E.

Lemma 3.1. The energy functional E satisfies

(3.5)

E′(t) ≤ c0g(τ)

2
|a1|∥ut∥2 +

|a1|g(0)
2

∥∇u∥2 + 1

2

∫ t

0

g′(s) ∥∇(u(t)− u(t− s))∥2 ds, t ∈ R+\{tk}k∈N,

where c0 is the Poincar’s constant defined by

(3.6) ∥v∥2 ≤ c0∥∇v∥2, v ∈ H1
0 (Ω).

Proof. Let t ∈ R+\{tk}k∈N. It is clear that

(3.7)
d

dt

(∫ t

t−τ

g(t− s)∥∇u(s)∥2ds
)

= g(0)∥∇u∥2 − g(τ)∥∇u(t− τ)∥2 +
∫ t

t−τ

g′(t− s)∥∇u(s)∥2ds.

≤ g(0)∥∇u∥2 − g(τ)∥∇u(t− τ)∥2.



RETARDED IMPULSIVE WAVE EQUATION 75

By differentiating with respect to t, integrating by parts and using (1.5)1 and (1.5)2, we arrive at

(3.8)

1
2

d
dt

(
a0∥∇u∥2 + ∥ut∥2

)
=

∫
Ω

(a0∇u · ∇ut + ututt) dx =

∫
Ω

ut(utt − a0∆u)dx

= −a1

∫
Ω

utu(t− τ)dx+

∫
Ω

∇ut ·
∫ t

0

g(s)∇u(t− s)dsdx.

Similarly, we have

(3.9) − 1

2

d

dt

(
g̃(t)∥∇u∥2

)
= −1

2
g(t)∥∇u∥2 − g̃(t)

∫
Ω

∇u · ∇utdx

and, using a change of variable,

(3.10)
d

dt

(
1

2

∫ t

0

g(s) ∥∇(u(t)− u(t− s))∥2 ds
)

=
1

2

d

dt

(∫ t

0

g(t− s) ∥∇(u(t)− u(s))∥2 ds
)

=
1

2

∫ t

0

g′(t− s) ∥∇(u(t)− u(s))∥2 ds+
∫
Ω

∇ut ·
∫ t

0

g(t− s)∇(u(t)− u(s))dsdx

=
1

2

∫ t

0

g′(s) ∥∇(u(t)− u(t− s))∥2 ds+
∫
Ω

∇ut ·
∫ t

0

g(s)∇(u(t)− u(t− s))dsdx

=
1

2

∫ t

0

g′(s) ∥∇(u(t)− u(t− s))∥2 ds+ g̃(t)

∫
Ω

∇ut · ∇udx−
∫
Ω

∇ut ·
∫ t

0

g(s)∇u(t− s)dsdx.

Summing (3.7)-(3.10), we find

E′(t) = −a1

∫
Ω

utu(t− τ)dx− 1

2
g(t)∥∇u∥2

+1
2

∫ t

0

g′(s) ∥∇(u(t)− u(t− s))∥2 ds+ |a1|
2

(
g(0)∥∇u∥2 − g(τ)∥∇u(t− τ)∥2

)
.

It suffices to take into account (1.2) and apply Young’s and Poincar’s inequalities to utu(t− τ) and

∥u(t− τ)∥2, respectively, to achieve (3.5).

Lemma 3.2. Let λ0, λ1, λ2 > 0 and

(3.11)
L(t) = λ0E(t) + λ1

∫
Ω

utudx+ λ2

∫ t

0

g(t− s) ∥∇u(s))∥2 ds

−
∫
Ω

ut

∫ t

0

g(s)(u(t)− u(t− s))dsdx, t ∈ R+.

Then, there exist M1, M2, c1, c2 > 0 (independent of a1) such that

(3.12) M1E(t) ≤ L(t) ≤ M2E(t), t ∈ R+

and

(3.13) L′(t) ≤ −c1L(t) + c2|a1| sup
t−τ≤s≤t

L(s), t ∈ [τ,+∞)\{tk}k∈N.

Proof. Let t ∈ [τ,+∞)\{tk}k∈N. A differentiation with respect to t, integration by parts and use of

(1.5)1 and (1.5)2, leads to

(3.14)
d

dt

(∫
Ω

utudx

)
= ∥ut∥2 +

∫
Ω

u

[
a0∆u− a1u(t− τ)−

∫ t

0

g(s)∆u(t− s)ds

]
dx

= ∥ut∥2 − [a0 − g̃(t)] ∥∇u∥2 − a1

∫
Ω

u(t)u(t− τ)dx−
∫
Ω

∇u ·
∫ t

0

g(s)∇(u(t)− u(t− s))dsdx.
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Next, an application of Young’s, Poincar’s and Hlder’s inequalities to the last two integrals in the

above relation and observing that g̃(t) ≤ g0, we find, for any ϵ > 0,

(3.15)

d
dt

(∫
Ω

utudx

)
≤ − (a0 − g0(1 + ϵ)− ϵ|a1|) ∥∇u∥2 + ∥ut∥2

+C
ϵ |a1|∥∇u(t− τ)∥2 + C

ϵ

∫ t

0

g(s)∥∇(u(t)− u(t− s))∥2ds.

Similarily, we have

(3.16)
d

dt

∫ t

0

g(t− s) ∥∇u(s))∥2 ds = g(0) ∥∇u∥2 +
∫ t

0

g′(t− s) ∥∇u(s))∥2 ds ≤ g(0) ∥∇u∥2

and

− d
dt

(∫
Ω

ut

∫ t

0

g(s)(u(t)− u(t− s))dsdx

)
=

∫
Ω

(
a1u(t− τ) +

∫ t

0

g(s)∆(u(t− s)− u(t) + u(t))ds

)∫ t

0

g(s)(u(t)− u(t− s))dsdx

+a0

∫
Ω

∇u

∫ t

0

g(s)∇(u(t)− u(t− s))dsdx−
∫
Ω

ut
d

dt

(∫ t

0

g(t− s)(u(t)− u(s))ds

)
dx.

Since
d

dt

(∫ t

0

g(t− s)(u(t)− u(s))ds

)
=

∫ t

0

g′(t− s)(u(t)− u(s))ds+ g̃(t)ut,

and g̃(t) ≥ g̃(τ) > 0, for t ≥ τ , it is clear that in view of (1.2), for any ϵ > 0,

− d
dt

(∫
Ω

ut

∫ t

0

g(s)(u(t)− u(t− s))dsdx

)
≤ ϵ∥∇u∥2 − (g̃(τ)− ϵ)∥ut∥2 + ϵ|a1|∥∇u(t− τ)∥2

+C
(

|a1|+1
ϵ + 1

)∫ t

0

g(s)∥∇(u(t)− u(t− s))∥2ds− C

ϵ

∫ t

0

g′(s)∥∇(u(t)− u(t− s))∥2ds.

Now, when summing up (3.5), (3.14), (3.15), (3.16) and (3.17), we find

L′(t) ≤ λ0c0g(τ)
2 |a1|∥ut∥2 + λ0

|a1|g(0)
2 ∥∇u∥2 + λ0

2

∫ t

0

g′(s) ∥∇(u(t)− u(t− s))∥2 ds

+λ2g(0) ∥∇u∥2 − λ1 [a0 − g0(1 + ϵ)− ϵ|a1|] ∥∇u∥2 + λ1∥ut∥2 + λ1C
ϵ |a1|∥∇u(t− τ)∥2

+λ1C
ϵ

∫ t

0

g(s)∥∇(u(t)− u(t− s))∥2ds+ ϵ∥∇u∥2 − (g̃(τ)− ϵ)∥ut∥2 + ϵ|a1|∥∇u(t− τ)∥2

+C
(

|a1|+1
ϵ + 1

)∫ t

0

g(s)∥∇(u(t)− u(t− s))∥2ds− C

ϵ

∫ t

0

g′(s)∥∇(u(t)− u(t− s))∥2ds

or

L′(t) ≤
[
λ0c0g(τ)

2 |a1|+ λ1 − g̃(τ) + ϵ
]
∥ut∥2 + |a1|

(
λ1C
ϵ + ϵ

)
∥∇u(t− τ)∥2

+
[
λ0|a1|g(0)

2 + λ2g(0) + ϵ− λ1 [a0 − g0(1 + ϵ)− ϵ|a1|]
]
∥∇u∥2

+C
(

λ1

ϵ + |a1|+1
ϵ + 1

)∫ t

0

g(s)∥∇(u(t)− u(t− s))∥2ds+
(
λ0

2
− C

ϵ

)∫ t

0

g′(s)∥∇(u(t)− u(t− s))∥2ds.

Exploiting (1.2), we get, for all λ0 ≥ 2C
ϵ ,

(3.17)
L′(t) ≤ −I1∥∇u∥2 − I2∥ut∥2 − I3

∫ t

0

g(s)∥∇(u(t)− u(t− s))∥2ds

+|a1|Cϵ,λj sup
t−τ≤s≤t

(
∥∇u(s)∥2 + ∥ut(s)∥2

)
,

where

I1 = λ1 [a0 − g0(1 + ϵ)]−λ2g(0)−ϵ, I2 = g̃(τ)−ϵ−λ1 and I3 =
λ0ξ

2
−C

(
λ1

ϵ
+

|a1|+ 1

ϵ
+ 1

)
.

In order to get Ij > 0, we choose ϵ such that

0 < ϵ < min

{
g̃(τ),

a0
g0

− 1

}
and

ϵ

a0 − g0(ϵ+ 1)
< g̃(τ)− ϵ,
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which is possible according to (1.2). This choice of ϵ guarantees the existence of λ1 satisfying

ϵ

a0 − g0(ϵ+ 1)
< λ1 < g̃(τ)− ϵ.

After, we observe that the choice of λ1 allows us to pick λ2 sufficiently small so that

0 < λ2 <
λ1 [a0 − g0(1 + ϵ)]− ϵ

g(0)
.

Finally, using the property ∫ t

t−τ

∥∇u(s)∥2ds ≤ τ sup
t−τ≤s≤t

∥∇u(s)∥2,

we see that, for any λ0 satisfying

(3.18) λ0 > max

{
2C

ϵ
,
2C

ξ

(
λ1

ϵ
+

|a1|+ 1

ϵ
+ 1

)}
,

one can conclude from (3.3) and (3.17) that there exists M0 > 0 (not depending on a1) such that

(3.19) L′(t) ≤ −M0E(t) + C|a1| sup
t−τ≤s≤t

E(t), t ∈ [τ,+∞)\{tk}k∈N.

On the other hand, as

(3.20)

∫ t

0

g(t− s) ∥∇u(s))∥2 ds =
∫ t

0

g(t− s) ∥∇u(s)−∇u(t) +∇u(t)∥2 ds

≤ 2

∫ t

0

g(t− s) ∥∇u(s)−∇u(t)∥2 ds+ 2g0 ∥∇u(t)∥2

≤ CE0(t),

then, using (3.3) and applying Hlder’s, Young’s and Poincar’s inequalities, we see that

|L(t)− λ0E(t)| ≤ C(λ1 + λ2 + 1)E0(t) ≤ C(λ1 + λ2 + 1)E(t), t ∈ R+.

Therefore, by fixing λ0 satisfying (3.18) and, if needed, λ0 > C(λ1 + λ2 + 1), we obtain (3.12) with

M1 = λ0 − C(λ1 + λ2 + 1) and M2 = λ0 + C(λ1 + λ2 + 1).

Consequently, (3.12) and (3.19) lead to (3.13) with c1 = M0

M2
and c2 = C

M1
.

Lemma 3.3. [18] Let {tk}k∈N ⊂ R+ such that

0 < t0 < t1 < · · · < tk < · · · and lim
k→+∞

tk = +∞.

Let {ak}k∈N ⊂ R+, {bk}k∈N ⊂ R+, a > 0, b ≥ 0, δ > 1 and τ > 0 such that

(3.21) a > b and inf
k∈N

{tk+1 − tk} > δτ.

Let η be the unique solution of the equation η = a − beητ and rk = max{1, ak + bke
ητ} such that

there exist M, ρ > 0 satisfying

(3.22) r0r1 · · · rk+1e
kητ ≤ Meρ(tk−t0), k ∈ N.

Let h be a nonnegative function continuous except at the jump discontinuity points {tk}k∈N solution

of 
h′(t) ≤ −ah(t) + b sup

t−τ≤s≤t
h(s), t ∈ R+\{tk}k∈N,

h(tk) ≤ akh(t
−
k ) + bk sup

tk−τ≤s≤tk

h(s), k ∈ N.

Then

h(t) ≤ M sup
t0−τ≤s≤t0

h(s)e−(η−ρ)(t−t0), t ∈ R+.
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Moreover, for ω = sup
k∈N

{1, ak + bke
ητ}, we have

h(t) ≤ ω sup
t0−τ≤s≤t0

h(s)e
−
(
η− ln[ωeητ ]

δτ

)
(t−t0)

, t ∈ R+.

Theorem 3.4. Assume that (3.22) holds and

(3.23) |a1| <
c1
c2

,

where c1 and c2 are given in Lemma 3.2, a = c1, b = c2|a1|, ak = Ck, bk = 0 and Ck is defined in

(3.25) below. Then, there exist c3, c4 > 0 such that

(3.24) E(t) ≤ c3e
−c4t, t ∈ [τ,+∞).

Proof. By virtue of (1.3), (1.4) and (1.5)4, it is clear that, for any k ∈ N,

∥∇u(tk)∥2 = ∥∇(gk(u(t
−
k )))∥

2 ≤ ∥g′k∥2∞∥∇u(t−k )∥
2 ≤ ξ2k∥∇u(t−k )∥

2,

∥ut(tk)∥2 = ∥fk(ut(t
−
k ))∥

2 ≤ ξ̃2k∥ut(t
−
k )∥

2,∫ tk

tk−τ

g(tk − s)∥∇u(s)∥2ds =
∫ t−k

t−k −τ

g(t−k − s)∥∇u(s)∥2ds,

and ∫ tk

0

g(s) ∥∇(u(tk)− u(tk − s))∥2 ds ≤ 2g0∥∇u(tk)∥2 + 2

∫ tk

0

g(s) ∥∇u(tk − s))∥2 ds

≤ 2g0ξ
2
k∥∇u(t−k )∥2 + 2

∫ t−k

0

g(t−k − s) ∥∇u(s))∥2 ds.

Therefore, using (3.20), we deduce that

E0(tk) ≤ C̃kE0(t
−
k ).

Then, using (3.3) and (3.12), we get

(3.25) L(tk) ≤ CkL(t
−
k ).

Consequently, according to Lemma 3.3 (with h = L), (3.13) and (3.25) lead to (3.24).

4. General remarks

1. The argument above in the previous section may be employed for other problems as well

such as for different kinds of beams and in thermoelasticity.

2. It can also be adapted for other types of kernels which may be found in the literature. Here

we assumed (1.2) only for simplicity (see [9] in case of absence of impulses).

3. Other types of time delays can be considered for which our approach can be also adapted

like, for example, variable discrete time delays, multiple time delays and distributed time delays (in

u or in ut).

4. It is also possible to adapt our arguments to the case where impulses are present in both

(u(x, t−k ), ut(x, t
−
k )) and (u(x, t−k − τ1), ut(x, t

−
k − τ2)).

5. Our stability result (3.24) holds true if we replace the finite memory by an infinite one;

that is,
∫ t

0
and [−τ, 0] in (1.5) are replaced by

∫ +∞
0

and (−∞, 0], respectively. The well-posedness

question in case of absence of impulses can be treated using the semigroups approach (see, for
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example, [7]) instead of the arguments used for the proof of Theorem 2.1. The well-posedness and

stability problems for (1.5) can be solved using similar arguments as in the proofs of Theorem 2.2

and Theorem 3.4.
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