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ABSTRACT. In this study, we analyse the nonautonomous multi-delay stochastic Liénard equa-

tion and develop sufficient conditions for the equation’s stability and boundedness. The Lyapunov

functional (LF) technique is used as the primary instrument in the proofs and we extend and enhance

some stability and boundedness conclusions from the literature through our work. Two examples

are used to support the correctness and efficacy of the results as an application. Finally, using

the Euler-Maruyama method (EM-method), numerical simulations are provided in the final part to

illustrate the approximative numerical solutions for the Liénard system under consideration.
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1. INTRODUCTION

The basic theory of stochastic delay differential equations (SDDEs) has been

systematically established in [20] and there are many interesting results on the qual-

itative properties (QP) of solutions for SDDEs in the literature, see, for example,

[7, 8, 10, 11, 14, 18, 19, 21, 22, 24, 26].

Liénard equations, which have been applied to describe fluid mechanical and

nonlinear elastic mechanical phenomena, have been the subject of extensive research.
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The Liénard equation is currently used in applied sciences to solve practical

issues in mechanics, engineering method domains, economy, control theory, physics,

chemistry, biology, medicine, automated energy, information theory, etc.

By this point, the literature has extensively explored and is still investigating the

QP of the Liénard equation with and without delays such that stability, boundedness,

convergence, existence and uniqueness of periodic solutions, for instance, [9, 12, 13,

27, 32, 42], and others.

It is worth noting that the problem of constructing IFs in the case of delay and

stochastic differential equations remains an intriguing and important area of research

in and of itself.

In addition, outstanding papers on QP of solutions for second-order differential

equations using the technique of LF, have been discussed by researchers, see foe

example, [28, 30, 31, 34, 35, 36, 38, 39, 40], and the references cited therein.

Due to its numerous applications to issues in control theory, chemistry, physics,

information theory and mechanics, second-order linear and nonlinear delay differen-

tial equations (DDEs) have been the subject of extensive study about their QP, for

example, [29, 33, 37], etc.

To the best of our knowledge, we only find a few papers in the literature on the

QP of second and third-order stochastic differential equations (SDEs) with or without

delay, such as [1− 6, 15− 17, 25, 41], and the references cited therein.

The QP of solutions for the multi-delay stochastic Liénard equation, on the other

hand, has not yet been discussed in the literature.

As a result, the goal of this research is to investigate the stability and boundedness

of solutions to the stochastic Liénard equation with multiple variable delays τi(t) (i =

1, 2, 3, ..., n) as follows:

(1.1) ẍ+ φ(t)f(x, ẋ)ẋ+
n∑
i=1

gi(x) +
n∑
i=1

ψi(t)hi(x(t− τi(t))) + ∆x(t)ϑ̇(t) = e(t, x, ẋ),

in which ∆ is a positive constant and τi(t) are positive bounded delays with 0 ≤
τ(t) = max1≤i≤n τi(t) ≤ γ, γ is a positive constant that will be determined later,

τ̇i(t) ≤ ω̄, ω̄ ∈ (0, 1).

The functions f, gi, hi and e are continuous in their respective arguments with gi(0) =

hi(0) = 0, for all (i = 1, 2, 3, ..., n), and ϑ(t) ∈ Rm is typical Brownian motion. The

functions φ(t) and ψi(t) (i = 1, 2, 3, ..., n) are positive and continuously differentiable

on [0,∞).
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Equation (1.1) can be expressed in the following system form

(1.2)

ẋ = y,

ẏ = −φ(t)f(x, y)y −
n∑
i=1

gi(x)−
n∑
i=1

ψi(t)hi(x)−∆x(t)ϑ̇(t)

+
n∑
i=1

ψi(t)

∫ t

t−τi(t)
h′i(x(s))y(s)ds+ e(t, x, y).

Further, it is supposed existence and continuity of the derivatives φ̇(t) = dφ(t)
dt

,

h′i(x) =
dh′i(x)

dx
, g′i(x) =

dg′i(x)

dx
and fy(x, y) = ∂f(x,y)

∂y
, for all x, y and i = 1, 2, 3, ..., n.

2. STOCHASTIC STABILITY RESULT

We introduce the following hypotheses before proving our main results.

For all i = 1, 2, 3, ..., n, we assume that there are positive constants φ0, φ1, a0, α, αi,

βi, δi, µi, ρi, bi and li. So that the following conditions are met:

(H1)
1
2
< φ0 ≤ φ(t) ≤ φ1, φ̇(t) ≤ α, for all t ∈ R+.

(H2) 1 ≤ f(x, y) ≤ a0, xfy(x, y) ≥ 0, for all x, y ∈ R.

(H3) gi(0) = 0, gi(x)
x
≥ αi, (x 6= 0) and 0 < g′(x) ≤ bi, for all x ∈ R.

(H4) 0 < δi ≤ ψi(t) ≤ li and ψ̇i(t) ≤ µi, for all x ∈ R+.

(H5) hi(0) = 0, hi(x)
x
≥ βi, (x 6= 0) and 0 < h′i(x) ≤ ρi, for all x ∈ R.

(H6) 0 ≤ τi(t) ≤ γ and 0 ≤ τ̇i(t) ≤ ω̄, ω̄ ∈ (0, 1), for each i = 1, 2, 3, ..., n.

(H7) δiβi + αi + 1
2
φ0 > 1, for each i = 1, 2, 3, ..., n.

The following theorem is the first result of this paper.

Theorem 2.1. Let the conditions (H1)− (H7) be hold. If

γ < min

{
A0 − 1

2
αa0 −∆2

M
,
2φ0 − 1

B0M

}
,

with

M =
n∑
i=1

ρili > 0,
n∑
i=1

(δiβi + αi) +
1

2
φ0 > 1, A0 =

n∑
i=1

(αi + δiβi − µiρi) > 0,

B0 = 1 +
3

2(1− ω̄)
and 2A0 − αa0 > 2∆2.

Then, the zero solution of stochastic Liénard equation (1.1) with e(t, x, y) ≡ 0 is

stochastically asymptotically stable.

Proof. To demonstrate the preceding theorem, we define an LF as follows:

(2.1)

V1(t, xt, yt) =2
n∑
i=1

ψi(t)

∫ x

0

hi(ξ)dξ + 2
n∑
i=1

∫ x

0

gi(ξ)dξ + φ(t)

∫ x

0

f(ξ, 0)ξdξ

+ xy + y2 +
n∑
i=1

λi

∫ 0

−τi(t)

∫ t

t+s

y2(u)duds,
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where λi, i = 1, 2, 3, ..., n are positive scalars, which will be specified later. Using Itô

formula, the time derivative of the functional V1(t, xt, yt) along any solution (x(t), y(t))

of stochastic Liénard delay differential system (1.2) with e ≡ 0 gives as

(2.2)

LV1(t, xt, yt) = y2 +
n∑
i=1

λiτi(t)y
2 −

n∑
i=1

λi(1− τ̇i(t))
∫ t

t−τi(t)
y2(s)ds

+ ∆2x2 +
5∑
j=1

Uj,

where
U1 := −φ(t)f(x, y)xy + φ(t)f(x, 0)xy,

U2 := −2φ(t)f(x, y)y2,

U3 := −x
n∑
i=1

gi(x)− x
n∑
i=1

ψi(t)hi(x),

U4 := (x+ 2y)
n∑
i=1

ψi(t)

∫ t

t−τi(t)
h′i(x(s))y(s)ds,

and

U5 := φ̇(t)

∫ x

0

f(ξ, 0)ξdξ + 2
n∑
i=1

ψ̇i(t)

∫ x

0

hi(ξ)dξ.

Since xfy(x, y) ≥ 0 for all x, y ∈ R and applying the mean-value theorem, we get

U1 := −φ(t)

[
f(x, y)− f(x, 0)

y

]
xy2 = −φ(t)xfy(x, y)y2 ≤ 0.

Additionally, from the conditions (H1) and (H2) such that φ(t) ≥ φ0 and f(x, y) ≥ 1,

for every t ∈ R+ and x, y ∈ R, so that

U2 ≤ −2φ0y
2.

Moreover, gi(x) ≥ αix (x 6= 0), hi(x) ≥ βix and ψi(t) ≥ δi, we obtain

U3 ≤ −
n∑
i=1

αix
2 −

n∑
i=1

δiβix
2 = −

n∑
i=1

(αi + δiβi)x
2.

Furthermore, from the condition (H5) and (H6) with the inequality 2|mn| ≤ m2 +n2,

we get

U4 ≤
1

2

n∑
i=1

ρiliτi(t)x
2 +

n∑
i=1

ρiliτi(t)y
2 +

3

2

n∑
i=1

ρili

∫ t

t−τi(t)
y2(s)ds

≤ 1

2

n∑
i=1

(ρili)γ(x2 + 2y2) +
3

2

n∑
i=1

ρili

∫ t

t−τi(t)
y2(s)ds.

Finally, since ψ̇i(t) ≤ µi, h
′(x) ≤ ρi, φ̇(t) ≤ α and f(x, y) ≤ a0, for all t ∈ R+ and

x, y ∈ R, we find that

U5 ≤
1

2
αa0x

2 +
n∑
i=1

µiρix
2.
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Using the above estimates of Uj, j = 1, 2, 3, 4, 5 and condition (H6) such that

τ̇i(t) ≤ ω̄, we obtain

LV1(t, xt, yt) ≤− 2φ0y
2 +

1

2
αa0x

2 −
n∑
i=1

(αi + δiβi − µiρi)x2 + y2

+
1

2

n∑
i=1

(ρili)γ(x2 + 2y2) +
3

2

n∑
i=1

ρili

∫ t

t−τi(t)
y2(s)ds

+
n∑
i=1

λiγy
2 −

n∑
i=1

λi(1− ω̄)

∫ t

t−τi(t)
y2(s)ds+ ∆2x2.

With some rearrangement of terms, we can easily get

(2.3)

LV1(t, xt, yt) ≤−
{ n∑

i=1

(αi + δiβi − µiρi)−
1

2
αa0 −∆2 − 1

2

n∑
i=1

(ρili)γ

}
x2

−
{

2φ0 − 1−
n∑
i=1

(ρili + λi)γ

}
y2

+
n∑
i=1

{
3

2
(ρili)− λi(1− ω̄)

}∫ t

t−τi(t)
y2(s)ds.

If we let

λi =
3ρili

2(1− ω̄)
≥ 0, for all i = 1, 2, 3, ..., n.

It follows that

LV1(t, xt, yt) ≤−
{ n∑

i=1

(αi + δiβi − µiρi)−
1

2
αa0 −∆2 − 1

2

n∑
i=1

(ρili)γ

}
x2

−
{

2φ0 − 1−
n∑
i=1

ρili

(
1 +

3

2(1− ω̄)

)
γ

}
y2.

If, we now choose

M =
n∑
i=1

ρili > 0, A0 =
n∑
i=1

(αi + δiβi − µiρi) > 0 and B0 = 1 +
3

2(1− ω̄)
.

Then we can observe

LV1(t, xt, yt) ≤ −
{
A0 −

1

2
αa0 −∆2 − 1

2

n∑
i=1

(ρili)γ

}
x2 −

{
2φ0 − 1−B0Mγ

}
y2.

If, we take

γ < min

{
A0 − 1

2
αa0 −∆2

M
,
2φ0 − 1

B0M

}
, γ > 0.

Then there exists a positive constant K1 such that

(2.4) LV1(t, xt, yt) ≤ −K1(x
2 + y2), K1 ∈ R.

Thus, the inequality (2.4) establishes the condition

LV (t, x) ≤ −r3(|x|) for all (t, x) ∈ R+ × Rn.
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Since
∫ 0

−τi(t)

∫ t
t+s

y2(u)duds is non-negative, then we can write (2.1) as

V1(t, xt, yt) ≥ 2
n∑
i=1

ψi(t)

∫ x

0

hi(ξ)dξ + 2
n∑
i=1

∫ x

0

gi(ξ)dξ + xy + y2 + φ(t)

∫ x

0

f(ξ, 0)ξdξ.

From the assumptions (H1)− (H5), we obtain

V1(t, xt, yt) ≥
n∑
i=1

(δiβi)x
2 +

n∑
i=1

αix
2 + xy + y2 +

1

2
φ0x

2

≥
n∑
i=1

(δiβi + αi +
1

2
φ0 − 1)x2 + (x+

1

2
y)2 +

3

4
y2.

Since
∑n

i=1(δiβi + αi + 1
2
φ0) > 1, therefore there exists a positive constant K2, small

enough so that

(2.5) V1(t, xt, yt) ≥ K2(x
2 + y2), K2 > 0, K2 ∈ R.

For the terms included in (2.1), using the assumptions (H1) − (H5) of Theorem 2.1,

and the estimate 2|mn| ≤ m2 + n2, we have the following inequalities

xy ≤ 1

2
(x2 + y2), 2

n∑
i=1

ψi(t)

∫ x

0

hi(ξ)dξ ≤
n∑
i=1

(ρili)x
2,

2
n∑
i=1

∫ x

0

gi(ξ)dξ ≤ bix
2, φ(t)

∫ x

0

f(ξ, 0)ξdξ ≤ 1

2
φ1a0x

2,

n∑
i=1

λi

∫ 0

−τi(t)

∫ t

t+s

y2(u)duds ≤
n∑
i=1

λi

∫ t

t−τi(t)
(u− t+ τi(t))y

2(u)du

≤
n∑
i=1

λi‖y‖2
∫ t

t−τi(t)
(u− t+ τi(t))du

≤ 1

2

n∑
i=1

λiτ
2
i (t)‖y‖2.

It is clear from the above inequalities that

V1(t, xt, yt) ≤
{ n∑

i=1

(ρili + bi) +
1

2
φ1a0 +

1

2

}
x2 +

3

2
y2 +

1

2
‖y‖2

n∑
i=1

λiτ
2
i (t).

Let χ = 1
2

∑n
i=1 λiτ

2
i (t), then we can write the last inequality as

(2.6) V1(t, xt, yt) ≤ K3(x
2 + y2) + χ‖y‖2, K3 > 0, χ > 0, for all K3, χ ∈ R.

Therefore, by combining the inequalities (2.5) and (2.6), we get

(2.7) K2(x
2 + y2) ≤ V1(t, xt, yt) ≤ K3(x

2 + y2) + χ‖y‖2.

Therefore from (2.7), we note that the LF V1 satisfies the inequalities

r1(|x|) ≤ V (t, x) ≤ r2(|x|).
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Hence, by noting the discussion proceeded above, that is, by the inequalities (2.4)

and (2.7), establish the hypotheses of theorems stability in [7, 20, 41].

Then, we can conclude that the zero solution of Liénard stochastic differential

equation with multiple delays (1.1) is stochastically asymptotically stable.

The proof of Theorem 2.1 is finished.

3. STABILITY EXAMPLE

In this section, we display an example of how to illustrate the stability result for

stochastic Liénard equation with the multiple variable delays, that we obtained in

the previous section.

We consider the special case of Liénard stochastic equation (1.1) with variable delay

τ1(t) such that n = 1 and e(t, x, y) ≡ 0, as shown below

(3.1)

ẍ+

(
4 +

1

10
e−

10
3
t

)(
1 +

1

1 + x2

)
ẋ+

(
x

1 + x2
+ x

)
+

(
1 +

1

1 + t

)(
2x(t− τ1(t)) +

x(t− τ1(t))
1 + |x(t− τ1(t))|

)
+ ∆x(t)ϑ̇(t) = 0.

Then we can express (3.1) as the equivalent system:

(3.2)

ẋ = y,

ẏ = −
(

4 +
1

10
e−

10
3
t

)(
1 +

1

1 + x2

)
y −

(
x

1 + x2
+ x

)
−
(

1 +
1

1 + t

)(
2x+

x

1 + |x|

)
−∆x(t)ϑ̇(t)

+

(
1 +

1

1 + t

)∫ t

t−τ1(t)

(
2 +

1

(1 + |x(s)|)2

)
y(s)ds.

When we compare the systems (3.2) and (1.2), we see the following relationships:

φ(t) = 4 +
1

10
e−

10
3
t, φ0 = 4 ≤ φ(t) ≤ 5 = φ1,

φ̇(t) = | − 1

3
e−

10
3
t| ≤ 1

3
= α, for all t ≥ 0.

Figure 1, depict the functions φ(t) and the derivative φ̇(t) on the interval t ∈ [0, 50].

Next, the function

f(x, y) = 1 +
1

1 + x2
,

it follows that

1 ≤ f(x, y) ≤ 2 = a0, fy(x, y) = 0, xfy(x, y) ≥ 0, for all x, y.

The function f(x, y) is shown in Figure 2.

The function

g1(x) =
x

1 + x2
+ x, clearly g1(0) = 0, and that

g1(x)

x
= 1 +

1

1 + x2
≥ 1 = α1.
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Figure 1. The paths of the functions φ(t) and φ̇(t) for t ∈ [0, 50].

Figure 2. The path of the function f(x, y) for x ∈ [−40, 40].

Then, we have

0 < g′1(x) = 1 +
1− x2

(1 + x2)2
≤ 2 = b1.

The coinciding paths of g1(x)
x

and g′1(x) are presented in Figure 3.

Moreover, the function

ψ1(t) =
1

1 + t
, since δ1 = 1 ≤ ψ1(t) ≤ 2 = l1,

furthermore, the derivative of the function ψ1(t) with respect to t is

ψ̇1(t) =
−1

(1 + t)2
≤ 0, for all t ≥ 0,

See the bounds on the functions ψ(t) and ψ̇(t) for t ∈ [0, 50] in Figure 4.

We can choose µ1 = 1
1000

.

Also, we get

h1(x) = 2x+
x

1 + |x|
, h1(0) = 0, it tends to

h1(x)

x
= 2 +

1

1 + |x|
≥ 2 = β1.
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Figure 3. The behaviours of the functions g1(x)
x

and g′1(x) for x ∈ [−40, 40].

Figure 4. The trajectories of the functions ψ(t) and ψ̇(t) for t ∈ [0, 50].

Since 0 ≤ 1
1+|x| ≤ 1, for all x. So, the derivative of the function h1(x) with respect to

x is

0 ≤ h′1(x) = 2 +
1

(1 + |x|)2
≤ 3 = ρ1.

The behaviour of the functions h1(x)
x

and h′1(x) for x ∈ [−40, 40] are considered in

Figure 5.

If we let the variable delay τ1(t) = 1
16

sin2 t ≤ 1
16

= γ, with

τ̇1(t) =
1

8
sin t cos t ≤ 1

8
= ω̄.

Taking ∆ = 1, we can get the following estimates:

2φ0 − 1 = 7 > 0, δ1β1 + α1 +
1

2
φ0 = 5 > 1,

A0 = α1 + δ1β1 − µ1ρ1 = 2.997 > 0,

M = ρ1l1 = 6 > 0,
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Figure 5. The paths of the functions h1(x)
x

and h′1(x) for x ∈ [−40, 40].

B0 =

{
1 +

3

2(1− 1
8
)

}
∼= 2.7,

and

A0 −
1

2
αa0 ∼= 1.67 ≥ 1 = ∆2.

Thus, the Liénard stochastic equation with variable delay (3.1) verifies all the hy-

potheses of Theorem 2.1.

Finally, if

γ =
1

16
< min{0.43, 0.11} ∼= 0.11.

Then the zero solution of (3.1) is stochastically asymptotically stable.

4. STOCHASTIC BOUNDEDNESS RESULT

Theorem 4.1. In addition to the conditions (H1)− (H7) in Theorem 2.1, we assume

that m and β̄ are positive constants such that:

(H8) |e(t, x, y)| ≤ m.

(H9) 2A0 + 2φ0

∑n
i=1(αi + δiβi)− β̄2−αa0− (1 + β̄)

∑n
i=1 bi +

∑n
i=1 µiρi > (3 + β̄)∆2.

(H10) 2φ0(2 + β̄)− (2 + β̄2)− (1 + β̄)
∑n

i=1 bi > 0.

Then all the solutions of (1.1) are uniformly stochastically bounded, provided that

γ < min

[
2A0 + 2φ0

∑n
i=1(αi + δiβi)− β̄2 − αa0 − (1 + β̄)

∑n
i=1 bi +

∑n
i=1 µiρi − (3 + β̄)∆2

(1 + φ0)M
,

{2φ0(2 + β̄)− (2 + β̄2)− (1 + β̄)
∑n

i=1 bi}(1− ω̄)

{(3 + β̄)(1− ω̄) + (4 + β̄ + φ0)}M

]
.

Proof. It should be emphasised that in order to establish the uniform stochastic

boundedness of solutions to the equation (1.1), we employ a methodology similar to

that employed by [14, 17, 23].
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Consider the boundedness of all (1.1) solutions. Assume e(t, x, y) is bounded by

a bound m and all conditions of Theorem 2.1 are met.

Consider the LF as

(4.1) V (t, xt, yt) = V1(t, xt, yt) + V2(t, xt, yt),

where V1 is defined as (2.1) and V2 is defined as the following

(4.2)

V2(t, xt, yt) =
1

2
(φ0x+ y)2 +

1

2
β̄2x2 +

1

2
β̄y2 + (1 + β̄)

n∑
i=1

xgi(x)

+ (1 + β̄)
n∑
i=1

δi

∫ x

0

hi(η)dη.

From the conditions (H3) and (H5), we have

n∑
i=1

xgi(x) ≥
n∑
i=1

αix
2 and

n∑
i=1

hi(x)

x
≥

n∑
i=1

βi,

it follows that

V2(t, xt, yt) ≥
1

2
(φ0x+ y)2 +

1

2
β̄2x2 +

1

2
β̄y2 + (1 + β̄)

n∑
i=1

αix
2 +

1

2
(1 + β̄)

n∑
i=1

(δiβi)x
2.

Hence, we get

(4.3) V2(t, xt, yt) ≥
1

2
(φ0x+ y)2 +

1

2

{
β̄2 + (1 + β̄)

n∑
i=1

(2αi + δiβi)

}
x2 +

1

2
β̄y2.

Then (2.6) and (4.3), show that there exists a positive constant D1 such that

(4.4) V (t, xt, yt) ≥ D1(x
2 + y2).

From the conditions (H3) and (H5), we are able to rewrite (4.2) as the following

formula

V2(t, xt, yt) ≤
1

2
(φ0x+ y)2 +

1

2
β̄2x2 +

1

2
β̄y2 + (1 + β̄)

n∑
i=1

bix
2 +

1

2
(1 + β̄)

n∑
i=1

(δiρi)x
2.

Then, using the Cauchy-Schwarz inequality

(4.5) V2(t, xt, yt) ≤
1

2

{
φ2
0 + β̄2 + φ0 + (1 + β̄)

n∑
i=1

(2bi + δiρi)

}
x2 +

1

2
(β̄ + φ0 + 1)y2.

So, from the inequalities (2.6) and (4.5) it is clear that there exists a positive constant

D2 such that

(4.6) V (t, xt, yt) ≤ D2(x
2 + y2) + χ‖y‖2.

Going back to the above discussion, that is, from the inequalities (4.4) and (4.6), we

can conclude that V (t, xt, yt) satisfies the condition after

‖x‖q1 ≤ V (t, x) ≤ ‖x‖q2 ,



92 QUALITATIVE PROPERTIES FOR STOCHASTIC LIÉNARD EQUATION

where q1 and q2 are two positive constants, such that q1 ≥ 1.

Applying the Itô formula, the derivative of the functional V2(t, xt, yt) along the system

(1.2), gives that

(4.7)

LV2(t, xt, yt) =(φ0x+ y)

{
φ0y − φ(t)f(x, y)y −

n∑
i=1

gi(x)−
n∑
i=1

ψi(t)hi(x)

+
n∑
i=1

ψi(t)

∫ t

t−τi(t)
h′i(x(s))y(s)ds+ e(t, x, y)

}
+ β̄2xy

+ β̄y

{
− φ(t)f(x, y)y −

n∑
i=1

gi(x)−
n∑
i=1

ψi(t)hi(x)

+
n∑
i=1

ψi(t)

∫ t

t−τi(t)
h′i(x(s))y(s)ds+ e(t, x, y)

}

+ (1 + β̄)

{ n∑
i=1

gi(x)y +
n∑
i=1

g′i(x)xy +
n∑
i=1

δihi(x)y +
1

2
∆2x2

}
.

Since f(x, y) ≥ 1 and φ(t) ≥ φ0, it follows that

−φ(t)f(x, y)y ≤ −φ0y.

Consequently, by the conditions (H1)− (H5) and using the fact 2mn ≤ m2 + n2, we

obtain the following inequalities

φ0x
n∑
i=1

gi(x) ≥ φ0

n∑
i=1

αix
2, −

n∑
i=1

ψi(t)hi(x) ≤ −δihi(x),

φ0x
n∑
i=1

ψi(t)hi(x) ≥ φ0

n∑
i=1

(δiβi)x
2, β̄2xy ≤ 1

2
β̄2(x2 + y2),

(1 + β̄)
n∑
i=1

g′i(x)xy ≤ (1 + β̄)
n∑
i=1

bixy ≤
1

2
(1 + β̄)

n∑
i=1

bi(x
2 + y2).

Then we can write (4.7) as the following form

LV2(t, xt, yt) ≤−
1

2

{
2φ0

n∑
i=1

(αi + δiβi)− β̄2 − (1 + β̄)
n∑
i=1

bi − (1 + β̄)∆2

}
x2

− 1

2

{
2β̄φ0 − β̄2 − (1 + β̄)

n∑
i=1

bi

}
y2

+ (φ0x+ y + β̄y)

{ n∑
i=1

ψi(t)

∫ t

t−τi(t)
h′i(x(s))y(s)ds+ e(t, x, y)

}
.
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Since |e(t, x, y)| ≤ m, h′i(x) ≤ ρi, τi(t) ≤ γ and using the Cauchy-Schwarz inequality,

we can write the above inequality as

(4.8)

LV2(t, xt, yt) ≤−
1

2

{
2φ0

n∑
i=1

(αi + δiβi)− β̄2 − (1 + β̄)
n∑
i=1

bi − (1 + β̄)∆2

}
x2

− 1

2

{
2β̄φ0 − β̄2 − (1 + β̄)

n∑
i=1

bi

}
y2 +mφ0|x|+ (1 + β̄)m|y|

+
1

2
(1 + β̄)γ

n∑
i=1

liρiy
2 +

1

2
(1 + β̄)

n∑
i=1

(liρi)

∫ t

t−τi(t)
y2(s)ds

+
1

2
φ0γ

n∑
i=1

(liρi)x
2 +

1

2
φ0

n∑
i=1

liρi

∫ t

t−τi(t)
y2(s)ds.

Now, we can deduce from the system (1.2), (2.3) and the condition (H8) that

(4.9)

LV1(t, xt, yt) ≤−
1

2

{ n∑
i=1

(2αi + 2δiβi − µiρi)− αa0 −
n∑
i=1

(ρili)γ − 2∆2

}
x2

− 1

2

{
4φ0 − 2− 2

n∑
i=1

(ρili + µi)γ

}
y2 +m|x|+ 2m|y|

+
n∑
i=1

{
3

2
(ρili)− λi(1− ω̄)

}∫ t

t−τi(t)
y2(s)ds.

Hence, by combining two inequalities (4.8) and (4.9), we have

LV ≤− 1

2

{
2(φ0 + 1)

n∑
i=1

(αi + δiβi)− β̄2 − αa0 − (1 + β̄)
n∑
i=1

bi − (φ0 + 1)γ
n∑
i=1

(ρili)

−
n∑
i=1

(µiρi)− (3 + β̄)∆2

}
x2 + (1 + φ0)m|x|+ (3 + β̄)m|y|

− 1

2

{
2(2 + β̄)φ0 − (2 + β̄2)− (1 + β̄)

n∑
i=1

bi − (3 + β̄)γ
n∑
i=1

(ρili)− 2
n∑
i=1

µiγ

}
y2

+
n∑
i=1

{
1

2
(4 + β̄ + φ0)liρi − λi(1− ω̄)

}∫ t

t−τi(t)
y2(s)ds.

If we choose

λi =
(4 + β̄ + φ0)liρi

2(1− ω̄)
.
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Since M =
∑n

i=1 ρili > 0 and A0 =
∑n

i=1(αi + δiβi − µiρi) > 0, then we can rewrite

the above inequality as

LV ≤− 1

2

{
2A0 + 2φ0

n∑
i=1

(αi + δiβi)− β̄2 − αa0 − (1 + β̄)
n∑
i=1

bi − (φ0 + 1)γM

+
n∑
i=1

(µiρi)− (3 + β̄)∆2

}
x2 + (1 + φ0)m|x|+ (3 + β̄)m|y|

− 1

2

{
2(2 + β̄)φ0 − (2 + β̄2)− (1 + β̄)

n∑
i=1

bi − (3 + β̄)γM − (4 + β̄ + φ0)M

2(1− ω̄)
γ

}
y2.

By taking

γ < min

[
2A0 + 2φ0

∑n
i=1(αi + δiβi)− β̄2 − αa0 − (1 + β̄)

∑n
i=1 bi +

∑n
i=1 µiρi − (3 + β̄)∆2

(1 + φ0)M
,

{2φ0(2 + β̄)− (2 + β̄2)− (1 + β̄)
∑n

i=1 bi}(1− ω̄)

{(3 + β̄)(1− ω̄) + (4 + β̄ + φ0)}M

]
.

Consequently, we have

LV (t, xt, yt) ≤ −D3(x
2 + y2 + z2) +D3σ(|x|+ |y|)

= −D3

2
(x2 + y2)− D3

2

{
(|x| − σ)2 + (|y| − σ)2

}
+D3σ

2

≤ −D3

2
(x2 + y2) +D3σ

2, for some D3, σ > 0,

where

σ = mmax{1 + φ0, 3 + β̄}.

Taking ν(t) = D3
2 , ζ(t) = D3σ

2 and r = 2, therefore the derivative of LF V (t, xt, yt) is

fulfilled the following condition

LV (t, x) ≤ −ν(t)‖x‖r + ζ(t), for all (t, x) ∈ R+ × R+.

We can also see that the condition

V (t, x)− V r/q2(t, x) ≤ κ,

is satisfied with q1 = q2 = r = 2 and κ = 0.

Then, according to [14, 17, 23], all hypotheses of Theorem 2.2 hold. As a result of using

ν(t) = D3
2 , ζ(t) = D3σ

2 and κ = 0, we find that

(4.10)

∫ t

t0

{κν(θ) + ζ(θ)}e−
∫ t
θ ν(φ)dφdθ = D3σ

2

∫ t

t0

e−
D3
2

∫ t
θ dφdθ

≤ 2σ2, for all t ≥ t0 ≥ 0,
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We now have the following relationships

gT = (0 −∆x),

Vx = (V1)x + (V2)x = 2
n∑
i=1

ψi(t)hi(x) + 2
n∑
i=1

gi(x) + φ(t)f(x, 0) + y + (φ0x+ y)φ0

+ β̄2x+ (1 + β̄)
n∑
i=1

gi(x) + (1 + β̄)
n∑
i=1

xg′i(x) + (1 + β̄)
n∑
i=1

δihi(x),

Vy = (V1)y + (V2)y = (1 + φ0)x+ (3 + β̄)y.

Then, we have∣∣Vxi(t, xt)gik(t, x(t))
∣∣ ≤∆

{
1

2

(
5 + 2φ0 + β̄

)
x2 +

1

2

(
3 + β̄

)
y2
}

:= N (t).

Therefore, all solutions to equation (1.1) are uniformly asymptotically bounded and satisfied

according to Lemma 2.4 [14, 17]

Ex0‖x(t, t0, x0)‖ ≤ {Cx20 + 2σ2}1/2, for all t ≥ t0 ≥ 0 and C is a constant.

This concludes the proof of Theorem 4.1.

Next ∫ t

t0

{κν(s) + ζ(s)}e−
∫ s
t0
ν(u)du

ds = D3σ
2

∫ t

t0

e
D3
2

∫ s
t0
du
ds

= 2σ2(e
D3
2

(t−t0) − 1) ≤M, for all t ≥ t0 ≥ 0,

where M is a positive constant.

Hence by Lemma 2.5 [14, 17, 23], the zero solution of (1.1) is α-uniformly exponentially

asymptotically stable in probability with N = 1
q1

= 1
2 .

5. BOUNDEDNESS EXAMPLE

In this section, we will show an example of how to apply the boundedness result ob-

tained in the previous section.

Let β̄ = 2 and m = 0.02, therefore from the example in section 3, we obtain the following

relations

2A0 + 2φ0(α1 + δ1β1)− β̄2 − αa0 − (1 + β̄)b1 + µ1ρ1 ∼= 19.330 > (3 + β̄)∆2 = 5,

2φ0(2 + β̄)− (2 + β̄2)− (1 + β̄)b1 = 20 > 0.

So, we get

γ =
1

16
< min{0.478, 0.203} ∼= 0.203,

also, it follows that

σ = 0.02 max{5, 5} = 0.1,

LV (t, xt, yt) ≤ −4.12x2 − 6.92y2 + 0.1|x|+ 0.1|y|.

If we take

D3 = 2.7085, σ = 0.1, ν(t) = 2.06, ζ(t) = 0.412 and r = 2.
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Thus all conditions of Theorem 2.2 [14, 17, 23] are satisfied with q1 = q2 = r = 2 and κ = 0.

It is clear that

|Vxi(t, xt)gik(t, x(t))| ≤ 15

2
x2 +

5

2
y2 := N (t).∫ t

t0

{κν(θ) + ζ(θ)}e−
∫ t
θ ν(φ)dφdθ ≤ 0.02, for all t ≥ t0 ≥ 0.

As a result, according to Lemma 2.4 [14, 17, 23], all solutions of (3.1) are uniformly asymp-

totically bounded and satisfied

Ex0‖x(t, t0, x0)‖ ≤ {x20 + 0.02}1/2, for all t ≥ t0 ≥ 0, and C is a constant.

Next ∫ t

t0

{κν(s) + ζ(s)}e−
∫ s
t0
ν(u)du

ds = 0.02(e2.06(t−t0) − 1) ≤M, for all t ≥ t0 ≥ 0,

where M is a positive constant.

As a result of Lemma 2.5 [14, 17, 23], the zero solution of (3.1) is α-uniformly exponentially

asymptotically stable in probability with N = 1
q1

= 1
2 .

6. NUMERICAL SIMULATIONS

In this section, we investigate the behaviour of the solution for equation (3.1) using

an EM-based numerical method that allows us to obtain approximate numerical solutions

for the considered system. We demonstrate the stability of the solutions for various values

of the numerical method’s step size h, and we can choose the initial solution of (x(t), y(t))

to be (x(0) = 1, y(0) = 1).

Figure 6 depicts the behaviour of the solutions with h = 0.1, ∆ = 0.5 and the error

value ε = 0.0073, indicating that we have a stable system.

Figure 6. Trajectory of the solution for (3.1) with ε = 0.0073, h =

0.1,∆ = 0.5.

Figures 7, 8, 9 are obtained by varying the value of h as h = 0.2, h = 0.3, h = 0.5 with

ε = 0.0804, ε = 0.0198, ε = 0.3473 and ∆ = 0.5.

As can be seen, all of the solutions are stable. Figures 10 and 11 show the behaviour of

solutions with ∆ = 10 and two different values of h as h = 0.1, h = 0.3 and ε = 0.0084, ε =

0.6683, respectively.

It is possible to see that the stochastic increases as the noise level increases and the

error decreases as the noise level decreases.
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Figure 7. The solution’s trajectory for (3.1) with ε = 0.0804, h =

0.2,∆ = 0.5.

Figure 8. Trajectories of equation (3.1) with ε = 0.0198, h = 0.3,∆ = 0.5.

Figure 9. The path of the solution for (3.1) with ε = 0.3473, h =

50,∆ = 0.5.

Figure 10. The behaviour of the solution for (3.1) with ε =

0.0084, h = 0.2,∆ = 10.

Figure 12, on the other hand, depicts the behaviour of the solutions when h = 1.5 and

∆ = 0.5. We can see that as the value of h increases, so does the value of ε, and we no

longer have a stable system.
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Figure 11. Stability diagram for (3.1) with ε = 0.6683, h = 0.3,∆ = 10.

Figure 12. Trajectory of the solution for (3.1) with ε = Inf., h =

1.5,∆ = 0.5.

Figure 13. The diagram of stability for (3.1) with ε = 0,∆ = 0.

Finally, Figure 13 gives the behaviour of the solutions for (3.1) when ∆ = 0, noting

that in this case ε = 0 and the system is stable.

7. CONCLUSIONS

In this study, we analyse the uniformly stochastically boundedness and stochastically

asymptotically stability of the underlying equation and the suggested numerical approach

for the non-autonomous multi-delay stochastic Liénard equation. Here, some new sufficient

conditions for the stability and boundedness in probability of solutions are discovered by

defining appropriate LFs and using the EM-method with the sufficiently small step size to

simulate the stability of solutions for stochastic Liénard equation with multiple delays. Our

findings add to numerous excellent earlier discoveries in the literature. We will keep re-

searching other qualitative characteristics of stochastic delay differential equation solutions

in the future.
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[33] C. Tunç, On the qualitative behaviors of a functional differential equation of second-order,

Applications and Applied Mathematics, 12(2): 813–842, 2017.
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