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EXISTENCE OF SOLUTIONS FOR THE ONE-DIMENSIONAL
FOURTH-ORDER P-LAPLACIAN IMPULSIVE DIFFERENTIAL
EQUATION INVOLVING NONLINEAR STIELTJES INTEGRAL

BOUNDARY CONDITIONS
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ABSTRACT. In this paper, we present extended and improved results on the existence of solutions

for the one-dimensional p-Laplacian impulsive differential equation with nonlinear Stieltjes integral

boundary conditions, where the nonlinearity is a a. e. continuous function involving first order and

second order as well as third order derivative of the unknown abstract function. We also provide

examples to show the valid of our results. In particular, our results unify many known results.
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1. INTRODUCTION

In this paper, we investigate the existence of solutions for the following one-

dimensional singular p-Laplacian with nonlinear Stieltjes integral boundary condi-

tions 

(φp (y
′′′))′ = b(t)g (t, y, y′, y′′, y′′′) , t ∈ J ′ = J \ {t0, · · · , tm+1},

y
(
t+k
)
= y

(
t−k
)
+ Ik (y (tk)) , k = 1, 2, . . . ,m,

y′
(
t+k
)
= y′

(
t−k
)
+Nk (y

′ (tk)) , k = 1, 2, . . . ,m,

y′′
(
t+k
)
= y′′

(
t−k
)
+ Lk (y

′′ (tk)) , k = 1, 2 . . . ,m,

y′′′
(
t+k
)
= y′′′

(
t−k
)
+Rk (y

′′′ (tk)) , k = 1, 2, . . . ,m,

ηy(0)− λ1y
′(0) =

∫ 1

0
a1(s)y(s)dν(s),

ηy(1) + λ2y
′(1) =

∫ 1

0
a2(s)y(s)dν(s),

ηy′′(0)− λ3y
′′′(0) =

∫ 1

0
a3(s)y

′′(s)dν(s),

ηy′′(1) + λ4y
′′′(1) =

∫ 1

0
a4(s)y

′′(s)dν(s),

(1.1)

where ϕp(s) = |s|p−2s, p > 1, ϕq = (ϕp)
−1, 1

p
+ 1

q
= 1, η > 0, λi > 0 for i = 1, 2, 3, 4,

J = [0, 1], 0 = t0 < t1 < t2 < · · · < tm < tm+1 = 1, wherem is a fixed positive integer,

ν, Ik, Nk, Lk and Rk are continuous and nondecreasing functions for k = 1, · · · ,m,
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as well as y(t+k ) with y(t−k ) represent the right-hand limit and left-hand limit of y(t)

at t = tk, b ∈ C(0, 1), b(t) may be singular at t = 0 and/or t = 1, together with g > 0

is a. e. continuous on [0, 1]× (0,+∞)× (−∞,+∞)3.

Fourth-order p-Laplacian equations with nonlinear Stieltjes integral boundary

conditions play an important role in both theory and applications. They have been

attracted many people’s attention over the years, see ([1]−[32]) and the references

therein. They are often used to model various phenomena in physics, chemistry, bi-

ology, and infections diseases in the positive energy problems. However, in various

situations, including the cases just mentioned above, based on the method of upper

solution and lower solution, the existence of solution are easily established, one refers

the reader to see ([2]−[33]) for some references along this line. However, the existence

of solutions for p-Laplacian equations boundary value problems has been investigat-

ed by a lot of authors applying various nice methods such as topological degree,

the Leray- Schauder continuation theorem and coincidence degree theory, maximum

principle and so on, see ([9], [13], [22], [24]−[33]).

In [9](2004), He considered the existence of double positive solutions for the

following three-point boundary value problems

(1.2)

 (φp(z
′))′ + â(t)f̂(z(t)) = 0, 0 < t < 1,

z(0)−B0(z
′(ξ)) = 0, z(1)−B1(z

′(1)) = 0,

and

(1.3)

 (φp(z
′))′ + â(t)f̂(z(t)) = 0, 0 < t < 1,

z(0)−B0(z
′(0)) = 0, z(1)−B1(z

′(ξ)) = 0.

The author employed a fixed point theorem due to Avery and Henderson.

In [10](2004), He and Ge were concerned with the following two-point boundary

value problems

(1.4)

 (ϕp(z
′))′ + q̂(t)f̂(t, z(t)) = 0, 0 ≤ t ≤ 1,

z(0) = g1(z
′(0)), z(1) + g2(z

′(1)) = 0.

The main tool in the paper is the fixed point theorem in cones due to Krasnoselskii.

Vázquez [27](2022) obtained the existence, uniqueness together with quantitative

estimates of solutions for a class of the fractional nonlinear diffusion equation

(1.5) ∂tz +Υs,p(z) = 0,

where Υs,p = (−∆)sp is the standard fractional p-Laplacian operator, 0 < s < 1 and

1 < p < 2.

In [26] (2006), by making use of the weighted a priori estimate, vázquez (2006)

studied extinction in finite time of fast diffusion equations (1.5). In [22] (2017), Rynne
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pondered the following boundary value problem

(1.6)

 −
(
tN−1ϕp(y

′(t))
)′ − λ̃tN−1f̂(t, y(t)) = 0, 0 < t < 1,

BCN(y) = (0, 0),

where N ≥ 1 is an integer, ϕp(s) := |s|p−1signs, s ∈ R, p ∈ R satisfies p > 1 and

p ̸= 2, λ ≥ 0, with

BCN(y) =

{
(y(0), y(1)), if N = 1,

(y′(0), y(1)), if N > 1,
(1.7)

The author presented the results on simple bifurcation and existence of a curve of

positive solutions removing certain restriction.

In [16] (2012), by applying the analytic approaches such as comparison principle,

vector calculus on networks and maximum principle, etc., Lee and Chung established

the long time behaviors of nontrivial solutions for the p-Laplacian evolution zt = ∆pz,

with p > 1 and showed that the solution remains strictly positive for p ≥ 2 and became

extinct for 1 < p < 2.

In [31](2022), Wettstein investigated the fractional harmonic gradient flow on

S1 getting value in Sn−1 ⊂ Rn for all n ≥ 2, in particular establishing uniqueness

and regularity of solutions in the so-called class through small enough energy for the

weak fractional harmonic gradient flow: zt+(−∆)
1
2 z = z|d 1

2
z|2, satisfying z(0, ·) = z0

in the sense z(t, ·) → z0 in L2 as t → 0, putting the existence of solutions. The

author generalized and extended many known results (see [20]−[23]). Further, he

contemplated convergence properties for solutions to the fractional gradient flow as

t → ∞.

Motivated by the results mentioned above, in the paper we study the existence

of positive solutions for the problem (1.1). Usually, the problem (1.1) can be used

to consider the numerical solutions. In this paper, however, we apply the analytic

approaches, such as upper and lower solutions, comparison principle and uniqueness

of solution, instead of numerical ones. As far as we know, a lot of nice of works

of the problem (1.1) are concerned with the numerical approach, but few works are

constructed by the analytic method and fixed point theory. We should also assert

here that our results are new and generalize together with improve the results in

([2]−[10], [16]−[31]).

The rest of the paper is organized as follows. In Section 2, we first introduce

several lemmas and definitions with notations frequently exploited through the paper.

In Section 3, we foremost give a lemma and offer some key conditions. And then, we

derive the interesting properties of solutions of the problem (1.1). We also present

the main results as well as some their proofs. Finally, in Section 4, we supply some

examples to show the valid of the main results.
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2. PRELIMINARIES

Definition 2.1. [8] Let X be a real Banach space. A nonempty closed convex set

P ⊂ X is said to be a cone provided that

( i ) y ∈ P, τ ≥ 0 implies τy ∈ P;

( ii ) y ∈ P, −y ∈ P implies y = 0.

Definition 2.2. [8] Let X be a real Banach space and P be a cone in X. A mapping

α is called to be the nonnegative continuous concave functional on P if α : P −→
[0,+∞) is continuous and

α(τt+ (1− τ)s) ≥ τα(t) + (1− τ)α(s), s, t ∈ P, τ ∈ [0, 1].

Let X = C[0, 1] be a Banach space with the norm ∥ y ∥= sup
0≤t≤1

| y(t) |, and let

K = {y ∈ X : y(t) ≥ 0, 0 ≤ t ≤ 1}. Then K is a positive cone in X.

Throughout the paper, the partial ordering is always given byK. For the concepts

and properties of Krein-Kutmann theorems and fixed point index theory, one refers

the reader to see [8]. For θ ∈ (0, 1
2
), let

P = {y ∈ K | min
t∈[θ,1−θ]

y(t) ≥ θ∥y∥, y(τt+(1−τ)s) ≥ τy(t)+(1−τ)y(s), s, t ∈ [0, 1]}.

Denote

PC[J,R] =


y | y is a map from J ontoR such that y(t) is continuous at t ̸= tk,

left continuous at t = tk, and its right limit exists at t = tk

(denoted by) y(t+k ), for k = 1, · · · ,m.


Evidently, PC[J,R] is a Banach space with norm ∥y∥PC(J,R) = sup

t∈J
∥y(t)∥.

PC1[J,R] =


y | y is a map from J ontoR such that y′(t) is continuous at t ̸= tk,

left continuous at t = tk, and y(t−k ), y(t+k ), y′(t−k ), y
′(t+k ),

y(t−k ) = y(t+k ) = y(tk), exist for k = 1, · · · ,m.


Obviously, PC1[J,R] is a Banach space with norm

∥y∥PC1(J,R) = sup
t∈J

{∥y∥PC(J,R), ∥y′∥PC(J,R)}.

It is noticed thatP ⊂ K ⊂ X. Denote Pr = {y ∈ P : ∥y∥ < r}, ∂Pr = {y ∈ P : ∥y∥ =

r}, P r,R = {y ∈ P : r ≤ ∥y∥ ≤ R}, for any positive constants 0 < r < R < +∞. Let

y′ = v, y(0) = 0, y(s) =
∫ s

0
v(t)dt+ y(0) =

∫ s

0
v(t)dt.
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Now we study the following problem

y′′ + x(t) = 0, t ∈ J ′,

y
(
t+k
)
= y

(
t−k
)
+ Ik (y (tk)) , k = 1, . . . ,m,

y′
(
t+k
)
= y′

(
t−k
)
+Nk (y

′ (tk)) , k = 1, . . . ,m,

y(0)− λ1

η
y′(0) = 1

η

∫ 1

0
a1(s)y(s)dν(s),

y(1) + λ2

η
y′(1) = 1

η

∫ 1

0
a2(s)y(s)dν(s).

(2.1)

We easily obtain the following results (2.1).

Lemma 2.3. Let x ∈ C[0, 1] be positive on [0, 1]. Then the problem (2.1) admits a

unique solution y which is given by

y(t) = 1
η

{∫ 1

0
a1(s)x(s)dν(s) + δ(λ1 + ηt)

∫ 1

0
(a1(s)− a2(s))x(s)dν(s)

+
∫ 1

0
G(t, s)x(s)dν(s) +

∑
0<tk<t

[(t− tk)Nk(y
′(tk)) + Ik(y(tk))]

−δ(λ1 + ηt)
m∑
k=1

[ηIk(y(tk)) + (η − ηtk + λ2)Nk(y
′(tk))]

}(2.2)

where δ = 1
η+λ1+λ2

, and

G(t, s) =

{
δ(λ1 + ηs)(ηt− η − λ2) if 0 ≤ s < t ≤ 1,

δ(λ1 + ηt)(ηs− η − λ2) if 0 ≤ t ≤ s ≤ 1.
(2.3)

Proof. It is well known that the problem (2.1) is equivalent to the integral equation

(2.2).

Let

Ay(t) = 1
η

{∫ 1

0
a1(s)x(s)dν(s) + δ(λ1 + ηt)

∫ 1

0
(a1(s)− a2(s))x(s)dν(s)

+
∫ 1

0
G(t, s)x(s)dν(s) +

∑
0<tk<t

[(t− tk)Nk(y
′(tk)) + Ik(y(tk))]

−δ(λ1 + ηt)
m∑
k=1

[ηIk(y(tk)) + (η − ηtk + λ2)Nk(y
′(tk))]

}(2.4)

where G(t, s) is defined by (2.3). Obviously A : PC[0, 1] −→ PC[0, 1] is completely

continuous. We conclude that A has a unique nontrivial fixed point y(t) in PC[0, 1].

Therefore, the problem has a unique solution.

Lemma 2.4. Let y ∈ PC1(J, R) ∩ C2(J, R) and

y′′ ≤ 0, t ∈ J ′,

y
(
t+k
)
= y

(
t−k
)
+ Ik (y (tk)) , k = 1, . . . ,m,

y′
(
t+k
)
≤ y′

(
t−k
)
+Nk (y

′ (tk)) , k = 1, . . . ,m,

y(0)− λ1

η
y′(0) ≥ 0,

y(1) + λ2

η
y′(1) ≥ 0.

(2.5)

Then y(t) ≥ 0, for all t ∈ J .
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Proof. By simple computation, we can easily obtain the result. Noticing that the

graph of y(t) on [0, 1] is concave. The proof is omitted.

Throughout of the paper, we suppose that the following conditions hold:

(A0) g ∈ C(J × (0,+∞)× (−∞,+∞)3, [0,+∞)) for t ̸= tk, k = 1, · · · ,m with

lim
(s,x,ϱ,y,z)→(s,x0,ϱ0,y0,z0)

g(s, x, ϱ, y, z), exists for t = tk;

(A1) b ∈ L1((0, 1), [0,+∞)), b(t) may be singular at t = 1 and/or t = 0, and

(2.6) 0 <

∫ 1

0

b(s)dν(s) < +∞.

(A2) g (t, y, y′, y′′, y′′′) ≤ h(t, y), and h(t, y) ∈ C([0, 1] × (0,+∞), [0,+∞)), h(t, y)

may be singular at y = 0 and for any 0 < r < R < +∞, we have

lim
j→+∞

sup
y∈P r,R

∫
ϑ(j)

b(s)h(s, y(s))dν(s) = 0,

where ϑ(j) = [0, 1
j
] ∪ [ j−1

j
, 1], and j > 1 is a certain natural number.

Remark 2.5. It is easy to know that φq(s) = |s|q−2s. In fact, from 1
p
+ 1

q
= 1, we

can get (φqφp)(s) = |s|pq−2(p+q)+4|s|p+q−4s = |s|pq−(p+q)s = s. Thus φp(s) = φ−1
q (s).

Remark 2.6. By (A1), there exists t0 ∈ (0, 1) such that b(t0) > 0. Obviously, if

h(t, y) is nonsingular at y = 0, that is, h ∈ C([0, 1]× [0,+∞), [0,+∞)), then (A2) is

satisfied.

Now we investigate the existence of solutions for the following one-dimensional

singular p-Laplacian equation with nonlinear boundary conditions

(φp (y
′′′))′ = b(t)g (t, y, y′, y′′, y′′′) , t ∈ J ′ = J \ {t0, 1, · · · , tm+1},

y
(
t+k
)
= y

(
t−k
)
+ Ik (y (tk)) , k = 1, . . . ,m,

y′
(
t+k
)
= y′

(
t−k
)
+Nk (y

′ (tk)) , k = 1, . . . ,m,

y′′
(
t+k
)
= y′′

(
t−k
)
+ Lk (y

′′ (tk)) , k = 1, . . . ,m,

y′′′
(
t+k
)
= y′′′

(
t−k
)
+Rk (y

′′′ (tk)) , k = 1, . . . ,m,

ηy(0)− λ1y
′(0) =

∫ 1

0
a1(s)y(s)dν(s),

ηy(1) + λ2y
′(1) =

∫ 1

0
a2(s)y(s)dν(s),

ηy′′(0)− λ3y
′′′(0) =

∫ 1

0
a3(s)y

′′(s)dν(s),

ηy′′(1) + λ4y
′′′(1) =

∫ 1

0
a4(s)y

′′(s)dν(s),

(2.7)

where φp(s) = |s|p−2s, p > 1, φq = (φp)
−1, 1

p
+ 1

q
= 1, η > 0, λj > 0 for j = 1, 2, 3, 4,

J = [0, 1], 0 = t0 < t1 < t2 < · · · < tm < tm+1 = 1, where m is a fixed positive

integer, ν, Ik, Nk, Lk and Rk are continuous and nondecreasing functions for k =

1, · · · ,m, as well as y(t+k ) with y(t−k ) represent the right-hand limit and left-hand

limit of y(t) at t = tk, b ∈ C(0, 1), b(t) may be singular at t = 0 and/or t = 1,

g ∈ C([0, 1]× (0,+∞)× (−∞,+∞)3, (−∞,+∞)).
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Now we consider the following impulsive boundary value problem

(φp (y
′′′))′ − Cy′′ = b(t)H (t, y′′) , t ∈ J ′ = J \ {t0, · · · , tm+1},

y
(
t+k
)
= y

(
t−k
)
+ Ik (y (tk)) , k = 1, . . . ,m,

y′
(
t+k
)
= y′

(
t−k
)
+Nk (y

′ (tk)) , k = 1, . . . ,m,

y′′
(
t+k
)
= y′′

(
t−k
)
+ Lk (y

′′ (tk)) , k = 1, . . . ,m,

y′′′
(
t+k
)
= y′′′

(
t−k
)
+Rk (y

′′′ (tk)) , k = 1, . . . ,m,

ηy(0)− λ1y
′(0) =

∫ 1

0
a1(s)y(s)dν(s) , ā1,

ηy(1) + λ2y
′(1) =

∫ 1

0
a2(s)y(s)dν(s) , ā2,

ηy′′(0)− λ3y
′′′(0) =

∫ 1

0
a3(s)y

′′(s)dν(s) , ā3,

ηy′′(1) + λ4y
′′′(1) =

∫ 1

0
a4(s)y

′′(s)dν(s) , ā4,

(2.8)

where b(t) ∈ L1(J), H(t, v) is measurable function with respect to t ∈ J for a. e.

v ∈ R, and is Lebesgue integrable function with respect to v ∈ R for all t ∈ J ; as well

as ā1, ā2, ā3 and ā4 are real numbers with C > 0, J ′ = J \ {t0, · · · , tm+1}.

We adopt the following assumptions for H, Ik, Nk, Lk and Rk, k = 1, · · · ,m:

(H1) H(t, v) is continuous with respect to t ∈ J for a. e. v ∈ R, and is decreasing

with respect to v ∈ R for all t ∈ J ;

(H2) Ik, Nk, Lk and Rk : R −→ R are nondecreasing for all k = 1, · · · ,m.

Lemma 2.7. Suppose that the conditions (H1) and (H2) hold. If there exist y1 and

y2 satisfies yi ∈ PC1(J, R) ∩ C4(J, R), (φp(y
′′′
i ))

′ ∈ PC1(J, R) for i = 1, 2, and



(φp (y
′′′
1 ))

′ − Cy′′1 − b(t)H(t, y′′1)

≤ (φp (y
′′′
2 ))

′ − Cy′′2 − b(t)H(t, y′′2), t ∈ J ′,

y1
(
t+k
)
− y1

(
t−k
)
− Ik (y1 (tk))

= y2
(
t+k
)
− y2

(
t−k
)
− Ik (y2 (tk)) , k = 1, . . . ,m,

y′1(t
+
k )− y′1(t

−
k )−Nk(y

′
1(tk))

≥ y′2(t
+
k )− y′2(t

−
k )−Nk(y

′
2(tk)), k = 1, . . . ,m,

y′′1(t
+
k )− y′′1(t

−
k )− Lk(y

′′
1(tk))

= y′′2(t
+
k )− y′′2(t

−
k )− Lk(y

′′
2(tk)), k = 1, . . . ,m,

y′′′1 (t
+
k )− y′′′1 (t

−
k )−Rk(y

′′′
1 (tk))

≥ y′′′2 (t
+
k )− y′′′2 (t

−
k )−Rk(y

′′′
2 (tk)), k = 1, . . . ,m,

ηy1(0)− λ1y
′
1(0) ≤ ηy2(0)− λ1y

′
2(0),

ηy1(1) + λ2y
′
1(1) ≤ ηy2(1) + λ2y

′
2(1),

ηy′′1(0)− λ3y
′′′
1 (0) ≥ ηy′′2(0)− λ3y

′′′
2 (0),

ηy′′1(1) + λ4y
′′′
1 (1) ≥ ηy′′2(1) + λ4y

′′′
2 (1).

(2.9)

Then y1(t) ≤ y2(t) and y′′1(t) ≥ y′′2(t) for all t ∈ J .
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Proof. Let xi = y′′i for i = 1, 2, and k = 1, · · · , m, then we have

(φp (x
′
1))

′ − Cx1 − b(t)H(t, x1)

≤ (φp (x
′
2))

′ − Cx2 − b(t)H(t, x2), t ∈ J ′,

x1(t
+
k )− x1(t

−
k )− Ik(x1(tk)) = x2(t

+
k )− x2(t

−
k )− Ik(x2(tk)),

x′
1(t

+
k )− x′

1(t
−
k )−Nk(x

′
1(tk)) ≥ x′

2(t
+
k )− x′

2(t
−
k )−Nk(x

′
2(tk)),

ηx1(0)− λ3x
′
1(0) ≥ ηx2(0)− λ3x

′
2(0),

ηx1(1) + λ4x
′
1(1) ≥ ηx2(1) + λ4x

′
2(1).

(2.10)

Thus, we easily get that x1(t) ≥ x2(t) for all t ∈ J , which implies that y′′1(t) ≥ y′′2(t).

Let ξ(t) = y2(t)− y1(t) for all t ∈ J . Then we have

ξ′′(t) ≤ 0, t ∈ J,

ξ
(
t+k
)
− ξ

(
t−k
)
− Ik (ξ (tk)) = 0, k = 1, . . . ,m,

ξ′
(
t+k
)
− ξ′

(
t−k
)
−Nk (ξ

′ (tk)) ≤ 0, k = 1, . . . ,m,

ηξ(0)− λ3ξ
′(0) ≥ 0,

ηξ(1) + λ4ξ
′(1) ≥ 0.

(2.11)

Thus, it follows from Lemma 2.2 that ξ(t) ≥ 0 for all t ∈ J . Consequently, we obtain

y1(t) ≤ y2(t) for all t ∈ J .

The following definitions and lemmas can be found in ([12]−[21]).

Definition 2.8. A function y is called a solution of the problem (2.8) if y ∈ PC1(J, R)∩
C4(J, R), as well as (φp (y

′′′))′ ∈ PC1(J, R) and y satisfies (2.2).

Definition 2.9. A function y∗ is called a lower solution of the problem (2.8) if

(i) y∗ ∈ PC1(J, R) ∩ C4(J, R) and (φp (y
′′′
∗ ))

′ ∈ PC1(J, R);

(ii) 

(φp (y
′′′
∗ ))

′ − Cy′′∗ ≤ b(t)H (t, y′′∗) , t ∈ J ′ = J \ {t0, t1, · · · , tm+1},
y∗

(
t+k
)
= y∗

(
t−k
)
+ Ik (y∗ (tk)) , k = 1, . . . ,m,

y′∗
(
t+k
)
≥ y′∗

(
t−k
)
+Nk (y

′
∗ (tk)) , k = 1, . . . ,m,

y′′∗
(
t+k
)
= y′′∗

(
t−k
)
+ Lk (y

′′
∗ (tk)) , k = 1, . . . ,m,

y′′′∗
(
t+k
)
≥ y′′′∗

(
t−k
)
+Rk (y

′′′
∗ (tk)) , k = 1, . . . ,m,

ηy∗(0)− λ1y
′
∗(0) ≤

∫ 1

0
a1(s)y∗(s)dν(s) , ā1,

ηy∗(1) + λ2y
′
∗(1) ≤

∫ 1

0
a2(s)y∗(s)dν(s) , ā2,

ηy′′∗(0)− λ3y
′′′
∗ (0) ≥

∫ 1

0
a3(s)y

′′
∗(s)dν(s) , ā3,

ηy′′∗(1) + λ4y
′′′
∗ (1) ≥

∫ 1

0
a4(s)y

′′
∗(s)dν(s) , ā4.

(2.12)

Definition 2.10. A function y∗ is called a upper solution of the problem (2.8) if

(i) y∗ ∈ PC1(J, R) ∩ C4(J, R) and (φp (y
∗′′′))′ ∈ PC1(J, R);
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(ii) 

(φp (y
∗′′′))′ − Cy∗′′ ≥ b(t)H (t, y∗′′) , t ∈ J ′ = J \ {t0, t1, · · · , tm+1},

y∗
(
t+k
)
= y∗

(
t−k
)
+ Ik (y

∗ (tk)) , k = 1, . . . ,m,

y∗′
(
t+k
)
≤ y∗′

(
t−k
)
+Nk (y

∗′ (tk)) , k = 1, . . . ,m,

y∗′′
(
t+k
)
= y∗′′

(
t−k
)
+ Lk (y

∗′′ (tk)) , k = 1, . . . ,m,

y∗′′′
(
t+k
)
≤ y∗′′′

(
t−k
)
+Rk (y

∗′′′ (tk)) , k = 1, . . . ,m,

ηy∗(0)− λ1y
∗′(0) ≥

∫ 1

0
a1(s)y

∗(s)dν(s) , ā1,

ηy∗(1) + λ2y
∗′(1) ≥

∫ 1

0
a2(s)y

∗(s)dν(s) , ā2,

ηy∗′′(0)− λ3y
∗′′′(0) ≤

∫ 1

0
a3(s)y

∗′′(s)dν(s) , ā3,

ηy∗′′(1) + λ4y
∗′′′(1) ≤

∫ 1

0
a4(s)y

∗′′(s)dν(s) , ā4.

(2.13)

Definition 2.11. We call that the function g : J×(0,+∞)×R3 −→ (0,+∞) satisfies

Nagumo-Wintner conditions corresponding to the couple of a lower solution y∗ and a

upper solution y∗, if there exist invertible functions φq and φ−1
q ∈ C([0,+∞), (0,+∞))

and functions b(t) ∈ L1([0, 1], (0,+∞)), K1(t), K2(t) ∈ L1([0, 1], (0,+∞)) such that

(2.14) | g(t, α, σ, β, γ) |≤ φ−1
q (|γ|)(K1(t) +K2(t))|b(t)|−1|γ|

1
q , for (t, α, σ, β, γ) ∈ D,

where

D = {(t, α, σ, β, γ) ∈ J × (0,+∞)×R3 | y∗(t) ≤ y(t) ≤ y∗(t), y∗′′(t) ≤ y′′(t) ≤ y′′∗(t)}

and

(2.15)

∫ +∞

0

φq(|s|q−1)dν(s) = +∞.

Lemma 2.12. Assume that the conditions (H0) and (H1) hold. Let b ∈ L1(J, (0,+∞))

and g : [0, 1]× (0,+∞)× R3 −→ [0,+∞) satisfy Nagumo-Wintner conditions (2.14)

and (2.15) in D. Then there exists a constant M > 0 such that every solution of

problem (1.1) confirming y∗(t) ≤ y(t) ≤ y∗(t) and y∗′′(t) ≤ y′′(t) ≤ y′′∗(t) for all

t ∈ J , satisfies ∥y′′′∥PC(J,R) ≤ M .

Proof. Suppose that there exists s ∈ J such that ∥y′′′(s)∥PC(J,R) > M . Then we have

the following two cases:

Case A: There exists k0 ∈ {0, 1, · · · ,m} such that s ∈ (tk0 , tk0+1].

Case B: There exists k0 ∈ {0, 1, · · · ,m} such that s = tk+0 .

We only consider Case B. A similar argument holds for Case A. Since y′′′(t) ∈
C3(J) and y∗′′(t) ≤ y′′(t) ≤ y′′∗(t), thus we have

sup
t∈[t+k0 , t

−
k0+1]

| y′′′(t) |, lk0 .

Let M∗ > max
{
lk0 , ∥y′′′∗ ∥PC(J,R), ∥y∗′′′∥PC(J,R)

}
such that

(2.16)

∫ φp(M∗)

φp(lk0 )

φq(|s|q−1)dν(s) > ∥K1∥L1 + ∥K2∥Lpω
1
q ,
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with ω := max{y′′(t2) − y′′(t1) | t1, t2 ∈ [t+k0 , t
−
k0+1]}. By the continuity of y′′′(t),

we can find a constants such that s1, s2 ∈ [t+k0 , t
−
k0+1] such that ∥y′′′(s1)∥PC(J,R) =

lk0 , ∥y′′′(s2)∥PC(J,R) = M∗. Then we have one of the following situations

(i) y′′′(s1) = lk0 , y
′′′(s2) = M∗ and lk0 ≤ y′′′(t) ≤ M∗ for all t ∈ (s1, s2).

(ii) y′′′(s1) = lk0 , y
′′′(s2) = M∗ and lk0 ≤ y′′′(t) ≤ M∗ for all t ∈ (s2, s1).

(iii)y′′′(s1) = −lk0 , y
′′′(s2) = −M∗ and −M∗ ≤ y′′′(t) ≤ −lk0 for all t ∈ (s1, s2).

(iv) y′′′(s1) = −lk0 , y
′′′(s2) = −M∗ and −M∗ ≤ y′′′(t) ≤ −lk0 for all t ∈ (s2, s1).

Assume that the case (i) holds. The other can be handed in similar way. Since

y is a solution of the problem (1.1) and by Nagumo Wininer conditions (2.14), thus

we have

(2.17) (φp (y
′′′))

′
(t) ≤ φq (y

′′′)
(
K1(t) +K2(t) | y′′′(t) |

1
q

)
for all t ∈ (s1, s2).

If we put s = φp (y
′′′(t)), thus we have∫ φp(M∗)

φp(lk0 )

φq(|s|q−1)dν(s) =

∫ s2

s1

(φp (y
′′′(t)))

′
dν(t).

Then by (2.17), we have∫ φp(M∗)

φp(lk0 )

φq

(
|s|q−1

)
dν(s) ≤

∫ s2

s1

(φp (y
′′′(t)))

′
φq (y

′′′(t)) dν(t)

≤
∫ s2

s1

b(t)g(t, y, y′, y′′, y′′′)φq (y
′′′(t)) dν(t)

≤
∫ s2

s1

φ−1
q (y′′′(t))φq (y

′′′(t))
(
K1(t) +K2(t) | y′′′(t) |

1
q

)
dν(t)

≤
∫ s2

s1

[
K1(t) +K2(t) | y′′′(t) |

1
q

]
dν(t)

≤
∫ s2

s1

K1(t)dν(t) +

∫ s2

s1

K2(t) | y′′′(t) |
1
q dν(t)

≤ ∥K1∥L1 +

(∫ s2

s1

(K2(t))
pdν(t)

) 1
p
(∫ s2

s1

(
(y′′′(t))

1
q

)q

dν(t)

) 1
q

≤ ∥K1∥L1 + ∥K2∥Lp

(∫ s2

s1

y′′′(t)dν(t)

) 1
q

≤ ∥K1∥L1 + ∥K2∥Lp (y′′(s2)− y′′(s1))
1
q

≤ ∥K1∥L1 + ∥K2∥Lpω
1
q ,

which is a contradiction with (2.16), where ∥K1∥L1 =
∫ 1

0
K1(t)dν(t).

Lemma 2.13. Suppose that condition (A1) holds. Then there exists a constant θ ∈
(0, 1

2
) satisfies

0 <

∫ 1−θ

θ

b(s)dν(s) < +∞.
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Proof. It follows from (A1) and (2.6) that

0 <

∫ 1−θ

θ

b(s)dν(s) <

∫ 1

0

b(s)dν(s) < +∞.

The proof is completed.

Lemma 2.14. Suppose that conditions (A0) as well as (A1) and (A2) hold. Then

T : P r,R → P is completely continuous.

Proof. It is easily to show that T : P r,R → P. Next, for any positive constants

0 < r < R < +∞, we will show

(2.18) sup
y∈∂P r,R

∫
[0,1]

b(s)h(s, y(s))dν(s) < +∞,

which implies that T : P\{0} → P is well defined.

By (A2), for any 0 < r < R < +∞, there exists a natural number j such that

(2.19) sup
y∈∂P r,R

∫
ϑ(j)

b(s)h(s, y(s))dν(s) < 1.

For any y ∈ ∂Pr, let y(t0) = max
t∈[0,1]

|y(t)| = r, t0 ∈ [0, 1]. Denote

χϑ[a, b](t) =

{
1, t ∈ [a, b],

0, t ̸∈ [a, b]

is the eigenvalue function of the set ϑ[a, b] = {t | a ≤ t ≤ b}. Denote

(2.20) Θ> = max

{
h(t, y) | (t, y) ∈ ([0, 1] \ ϑ(j))×

[
r

j
, R

]
, j ∈ Z+

}
.

It follows from (A1) and (A2) with (2.19) −(2.20) that

(2.21)

sup
y∈∂P r,R

∫
[0,1]

b(s)h(s, y(s))dν(s) ≤ sup
y∈∂P r,R

∫
ϑ(j)

b(s)h(s, y(s))dν(s)

+ sup
y∈∂P r,R

∫
[0,1]\ϑ(j)

b(s)h(s, y(s))dν(s) ≤ 1 + Θ>
∫ 1

0

b(s)dν(s) < +∞

i. e., (2.18) holds. This also implies T : P r,R → P is well defined and T (Q) is

uniformly bounded for any bounded set Q ⊂ P r,R.

By simple computing and deducing, we can see that T (P r,R) is equicontinuous.

Thus, by the Ascoli-Arzela theorem, we know that T : P r,R → P is compact.

Finally we known that T : P r,R → P is continuous. In fact, for any yn, y0 ∈ P r,R

and ∥yn − y0∥ → 0 (n → ∞). Then ∥Tyn − Ty0∥ → 0 (n → ∞). This completes the

proof.
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3. MAIN RESULTS

In this section, we present and prove our main results.

We will assume that the existence of an ordered pair of lower and upper solutions

y∗ and y∗ satisfying y∗(t) ≤ y∗(t) and y∗′′(t) ≤ y′′∗(t), for all t ∈ J , and on the

nonlinearity g, we shall impose the following additional conditions.

(A3) b(t)(g(t, y1, σ, β, γ)− g(t, y2, 1, β, γ)) ≤ 0 for all t ∈ J ,

y∗(t) ≤ y1(t) ≤ y2(t) ≤ y∗(t), y∗′′(t) ≤ β(t) ≤ y′′∗(t) and σ, γ ∈ R;

(A4) There exists a real number C > 0 such that the function β 7→ b(t)g(t, y, σ, β, γ)−
Cβ is decreasing for all t ∈ J ,

y∗(t) ≤ y(t) ≤ y∗(t), y∗′′(t) ≤ β(t) ≤ y′′∗(t) and σ, γ ∈ R.

Let γ∗(t), γ
∗(t) ∈ PC1(J, R) ∩ C4(J, R) be fixed such that

(i) φp(γ
′′′
∗ ), φp(γ

∗′′′) ∈ PC1(J,R).

(ii) y∗ ≤ γ∗ ≤ γ∗ ≤ y∗ in J .

(iii) y∗′′ ≤ γ∗′′ ≤ γ′′
∗ ≤ y′′∗ in J .

Denote

M0 > max
{
M∗, ∥y′′′∗ ∥PC(J,R), ∥y∗′′′∥PC(J,R)

}
.

We consider the following problems



(φp (y
′′′))′ − Cy′′ = b(t)g (t, γ∗, 1, γ∗′′, M0)− Cγ∗′′, t ∈ J ′,

y
(
t+k
)
= y

(
t−k
)
+ Ik (y (tk)) , k = 1, . . . ,m,

y′
(
t+k
)
= y′

(
t−k
)
+Nk (y

′ (tk)) , k = 1, . . . ,m,

y′′
(
t+k
)
= y′′

(
t−k
)
+ Lk (y

′′ (tk)) , k = 1, . . . ,m,

y′′′
(
t+k
)
= y′′′

(
t−k
)
+Rk (y

′′′ (tk)) , k = 1, . . . ,m,

ηy(0)− λ1y
′(0) =

∫ 1

0
a1(s)γ

∗(s)dν(s),

ηy(1) + λ2y
′(1) =

∫ 1

0
a2(s)γ

∗(s)dν(s),

ηy′′(0)− λ3y
′′′(0) =

∫ 1

0
a3(s)γ

∗′′(s)dν(s),

ηy′′(1) + λ4y
′′′(1) =

∫ 1

0
a4(s)γ

∗′′(s)dν(s)

(3.1)
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and 

(φp (y
′′′))′ − Cy′′ = b(t)g (t, γ∗, 1, γ

′′
∗ , M0)− Cγ′′

∗ , t ∈ J ′,

y
(
t+k
)
= y

(
t−k
)
+ Ik (y (tk)) , k = 1, . . . ,m,

y′
(
t+k
)
= y′

(
t−k
)
+Nk (y

′ (tk)) , k = 1, . . . ,m,

y′′
(
t+k
)
= y′′

(
t−k
)
+ Lk (y

′′ (tk)) , k = 1, . . . ,m,

y′′′
(
t+k
)
= y′′′

(
t−k
)
+Rk (y

′′′ (tk)) , k = 1, . . . ,m,

ηy(0)− λ1y
′(0) =

∫ 1

0
a1(s)γ∗(s)dν(s),

ηy(1) + λ2y
′(1) =

∫ 1

0
a2(s)γ∗(s)dν(s),

ηy′′(0)− λ3y
′′′(0) =

∫ 1

0
a3(s)γ

′′
∗ (s)dν(s),

ηy′′(1) + λ4y
′′′(1) =

∫ 1

0
a4(s)γ

′′
∗ (s)dν(s)

(3.2)

The following preliminary Lemma will play a key role to prove our main results.

Lemma 3.1. Let γ∗ and γ∗ be a lower and upper solutions respectively of problem

(1.1) such that γ∗ ≤ γ∗ and γ∗ ≤ 1, γ∗′′ ≤ γ′′
∗ in J . Assume that the hypothesis

(Ai) for i = 0, 1, 2, 3, 4 and (H1) with (H2) hold, as well as the Nagumo Wintner

conditions (2.14) with (2.15) relative to a lower solution y∗ and upper solution y∗

respectively of problem (1.1) are satisfied. Then there exists a unique solutions yf

and yg respectively for the problems (3.1) and (3.2) such that

(3.3) y∗ ≤ γ∗ ≤ yg ≤ yf ≤ γ∗ ≤ y∗ in J,

and

(3.4) y∗′′ ≤ γ∗′′ ≤ yf′′ ≤ y′′g ≤ γ′′
∗ ≤ y′′∗ in J.

Proof. The proof will be given in two steps.

Step I. γ∗ is a lower solution of the problem (3.1).

If t ∈ J ′, then by using (A3) and (A4), we have

(3.5)
(φp (γ

′′′
∗ ))

′ − Cγ′′
∗ ≤ b(t)g (t, γ∗, γ

′
∗, γ

′′
∗ , γ

′′′
∗ )− Cγ′′

∗

≤ b(t)g (t, γ∗, γ
′
∗, γ

∗′′, γ′′′
∗ )− Cγ∗′′ ≤ b(t)g (t, γ∗, γ′

∗, γ
∗′′, γ′′′

∗ )− Cγ∗′′.

That is

(3.6) (φp (γ
′′′
∗ ))

′ − Cγ′′
∗ ≤ b(t)g (t, γ∗, γ′

∗, γ
∗′′, γ′′′

∗ )− Cγ∗′′.

Now since γ∗ is a lower solution of the problem (1.1) and y∗ ≤ γ∗ ≤ y∗ in J , then by

using a similar proof to that of Lemma 2.12, we have ∥γ′′′
∗ ∥PC(J,R) ≤ M∗. Then by

(3.6) and (A3) together with (A4), we get

(3.7) (φp (γ
′′′
∗ ))

′ − Cγ′′
∗ ≤ b(t)g(t, γ∗, 1, γ∗′′, ∥γ′′′

∗ ∥PC(J,R))− Cγ∗′′, ∀ t ∈ J.



116 YAN SUN

In addition, we have

γ∗
(
t+k
)
= γ∗

(
t−k
)
+ Ik (γ∗ (tk)) , if t = tk, k = 1, . . . ,m,

γ′
∗
(
t+k
)
≥ γ′

∗
(
t−k
)
+Nk (γ

′
∗ (tk)) , if t = tk, k = 1, . . . ,m,

γ′′
∗
(
t+k
)
= γ′′

∗
(
t−k
)
+ Lk (γ

′′
∗ (tk)) , if t = tk, k = 1, . . . ,m,

γ′′′
∗
(
t+k
)
≥ γ′′′

∗
(
t−k
)
+Rk (γ

′′′
∗ (tk)) , if t = tk, k = 1, . . . ,m,

ηγ∗(0)− λ1γ
′
∗(0) =

∫ 1

0
a1(s)γ∗(s)dν(s) ≤

∫ 1

0
a1(s)γ

∗(s)dν(s),

ηγ∗(1) + λ2γ
′
∗(1) =

∫ 1

0
a2(s)γ∗(s)dν(s) ≤

∫ 1

0
a2(s)γ

∗(s)dν(s),

ηγ′′
∗ (0)− λ3γ

′′′
∗ (0) =

∫ 1

0
a3(s)γ

′′
∗ (s)dν(s),

ηγ′′
∗ (1) + λ4γ

′′′
∗ (1) =

∫ 1

0
a4(s)γ

′′
∗ (s)dν(s)

(3.8)

Then, it follows (3.7) and (3.8) that γ∗ is a lower solution of the problem (3.1).

Step II. γ∗ is a upper solution of the problem (3.1). The proof is similar to that

of Step I., so it is omitted.

By Step I. and Step II. since b(t) ∈ L1(J), g(t, γ∗, 1, γ∗′′, ∥γ∗′′′∥PC(J,R)) and

∥y′′′∥PC(J,R) are bounded, then by Lemma 2.7, there exists a unique solution yf of the

problem (3.1) such that γ∗ ≤ yf ≤ γ∗ and γ∗′′ ≤ yf′′ ≤ γ′′
∗ .

Similarly, we can prove that the problem (3.2) admits unique solution yg such

that γ∗ ≤ yg ≤ γ∗ and γ∗′′ ≤ y′′g ≤ γ′′
∗ .

Finally by using a proof similar to that of Lemma 2.7, we obtain yg ≤ yf and

yf′′ ≤ y′′g in J . The proof of Lemma 3.1 is complete.

The main result of this work is as the following:

Theorem 3.2. Let y∗(t) and y∗(t) be a lower and upper solution respectively for prob-

lem (1.1) such that y∗(t) ≤ y∗(t) and y′′∗(t) ≥ y∗′′(t) in J . Assume that the conditions

(Ai) for i = 0, 1, 2, 3, 4 and (H1) with (H2) hold, and the Nagumo Wintner conditions

(2.14) with (2.15) relative to a lower solution y∗ and upper solution y∗ respectively

of problem (1.1) are satisfied. Then the problem (1.1) has maximal solution y♯ and

minimal solution y♯ such that for every solution y of (1.1) with y∗(t) ≤ y(t) ≤ y∗(t)

in J , satisfying

(3.9) y∗(t) ≤ y♯(t) ≤ y(t) ≤ y♯(t) ≤ y∗(t), t ∈ J

and

(3.10) y∗′′(t) ≤ y′′♯ (t) ≤ y′′(t) ≤ y♯′′(t) ≤ y′′∗(t), t ∈ J.

Proof. There are three steps. We take z∗, z
∗ ∈ PC1(J,R) fixed such that

(i) (φp (z
′′′
∗ ))

′ , (φp (z
∗′′′))′ ∈ PC1(J,R).

(ii) y∗ ≤ z∗ ≤ z∗ ≤ y∗ and y∗′′ ≤ z∗′′ ≤ z′′∗ ≤ y′′∗ in J .
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We define the sequences {y∗n}n∈N and {y∗n}n∈N by

y
{0}
∗ = y∗,(
φp

(
y′′′∗n+1

))′
(t)− Cy′′∗n+1

(t) = b(t)gfn (t), t ∈ J ′,

y∗n+1

(
t+k
)
= y∗n+1

(
t−k
)
+ Ik

(
y∗n+1 (tk)

)
, k = 1, . . . ,m,

y′∗n+1

(
t+k
)
= y′∗n+1

(
t−k
)
+Nk

(
y′∗n+1

(tk)
)
, k = 1, . . . ,m,

y′′∗n+1

(
t+k
)
= y′′∗n+1

(
t−k
)
+ Lk

(
y′′∗n+1

(tk)
)
, k = 1, . . . ,m,

y′′′∗n+1

(
t+k
)
= y′′′∗n+1

(
t−k
)
+Rk

(
y′′′∗n+1

(tk)
)
, k = 1, . . . ,m,

ηy∗n+1(0)− λ1y
′
∗n+1

(0) =
∫ 1

0
a1(s)y∗n(s)dν(s),

ηy∗n+1(1) + λ2y
′
∗n+1

(1) =
∫ 1

0
a2(s)y∗n(s)dν(s),

ηy′′∗n+1
(0)− λ3y

′′′
∗n+1

(0) =
∫ 1

0
a3(s)y

′′
∗n(s)dν(s),

ηy′′∗n+1
(1) + λ4y

′′′
∗n+1

(1) =
∫ 1

0
a4(s)y

′′
∗n(s)dν(s)

(3.11)

and 

y∗{0} = y∗,(
φp

(
y∗′′′n+1

))′
(t)− Cy∗′′n+1(t) = b(t)ggn (t), t ∈ J ′,

y∗n+1

(
t+k
)
= y∗n+1

(
t−k
)
+ Ik

(
y∗n+1 (tk)

)
, k = 1, . . . ,m,

y∗′n+1

(
t+k
)
= y∗′n+1

(
t−k
)
+Nk

(
y∗′n+1 (tk)

)
, k = 1, . . . ,m,

y∗′′n+1

(
t+k
)
= y∗′′n+1

(
t−k
)
+ Lk

(
y∗′′n+1 (tk)

)
, k = 1, . . . ,m,

y∗′′′n+1

(
t+k
)
= y∗′′′n+1

(
t−k
)
+Rk

(
y∗′′′n+1 (tk)

)
, k = 1, . . . ,m,

ηy∗n+1(0)− λ1y
∗′
n+1(0) =

∫ 1

0
a1(s)y

∗
n(s)dν(s),

ηy∗n+1(1) + λ2y
∗′
n+1(1) =

∫ 1

0
a2(s)y

∗
n(s)dν(s),

ηy∗′′n+1(0)− λ3y
∗′′′
n+1(0) =

∫ 1

0
a3(s)y

∗′′
n (s)dν(s),

ηy∗′′n+1(1) + λ4y
∗′′′
n+1(1) =

∫ 1

0
a4(s)y

∗′′
n (s)dν(s),

(3.12)

where

gfn (t) = g
(
t, y∗n , y

′
∗n+1

, y′′∗n , ∥y
′′′
∗n+1

∥PC(J,R)
)
− Cy′′∗n(t)

and

ggn (t) = g
(
t, y∗n, y

∗′
n+1, y

∗′′
n , ∥y∗′′′n+1∥PC(J,R)

)
− Cy∗′′n (t).

Noticing that by lemma 2.7., the sequences {y∗n}n∈N and {y∗n}n∈N are well defined.

Step I⋆. For all n ∈ N, we have

y∗(t) ≤ y∗1(t) ≤ · · · ≤ y∗n(t) ≤ y∗n+1(t) ≤ y∗n+1(t) ≤ y∗n(t) ≤ · · · ≤ y∗1(t) ≤ y∗(t),

for all t ∈ J

and

y∗′′(t) ≤ y∗′′1 (t) ≤ · · · ≤ y∗′′n (t) ≤ y∗′′n+1(t) ≤ y′′∗n+1
(t) ≤ y′′∗n(t) ≤ · · · ≤ y′′∗1(t) ≤ y′′∗(t),

for all t ∈ J.
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For n = 0, we have

(
φp

(
y′′′∗1

))′
(t)− Cy′′∗1(t)

= b(t)g
(
t, y∗, y

′
∗, y

′′
∗ , ∥y′′′∗1∥PC1(J,R)

)
− Cy′′∗(t), t ∈ J ′

y∗1
(
t+k
)
= y∗1

(
t−k
)
+ Ik (y∗1 (tk)) , k = 1, . . . ,m

y′∗1
(
t+k
)
= y′∗1

(
t−k
)
+Nk

(
y′∗1 (tk)

)
, k = 1, . . . ,m

y′′∗1
(
t+k
)
= y′′∗1

(
t−k
)
+ Lk

(
y′′∗1 (tk)

)
, k = 1, . . . ,m

y′′′∗1
(
t+k
)
= y′′′∗1

(
t−k
)
+Rk

(
y′′′∗1 (tk)

)
, k = 1, . . . ,m

ηy∗1(0)− λ1y
′
∗1(0) =

∫ 1

0
a1(s)y∗(s)dν(s),

ηy∗1(1) + λ2y
′
∗1(1) =

∫ 1

0
a2(s)y∗(s)dν(s),

ηy′′∗1(0)− λ3y
′′′
∗1(0) =

∫ 1

0
a3(s)y

′′
∗(s)dν(s),

ηy′′∗1(1) + λ4y
′′′
∗1(1) =

∫ 1

0
a4(s)y

′′
∗(s)dν(s)

(3.13)

and 

(φp (y
∗′′′
1 ))′ (t)− Cy∗′′1 (t)

= b(t)g
(
t, y∗, y∗′, y∗′′, ∥y∗′′′1 ∥PC1(J,R)

)
− Cy∗′′, t ∈ J ′

y∗1
(
t+k
)
= y∗1

(
t−k
)
+ Ik (y

∗
1 (tk)) , k = 1, . . . ,m

y∗′1
(
t+k
)
= y∗′1

(
t−k
)
+Nk (y

∗′
1 (tk)) , k = 1, . . . ,m

y∗′′1

(
t+k
)
= y∗′′1

(
t−k
)
+ Lk (y

∗′′
1 (tk)) , k = 1, . . . ,m

y∗′′′1

(
t+k
)
= y∗′′′1

(
t−k
)
+Rk (y

∗′′′
1 (tk)) , k = 1, . . . ,m

ηy∗1(0)− λ1y
∗′
1 (0) =

∫ 1

0
a1(s)y

∗(s)dν(s),

ηy∗1(1) + λ2y
∗′
1 (1) =

∫ 1

0
a2(s)y

∗(s)dν(s),

ηy∗′′1 (0)− λ3y
∗′′′
1 (0) =

∫ 1

0
a3(s)y

∗′′(s)dν(s),

ηy∗′′1 (1) + λ4y
∗′′′
1 (1) =

∫ 1

0
a4(s)y

∗′′(s)dν(s).

(3.14)

Since y∗ and y∗ are respectively lower and upper solutions of the problem (1.1), then

by the Lemma 3.1, we have

y∗(t) ≤ y∗1(t) ≤ y∗1(t) ≤ y∗(t), for all t ∈ J

and

y∗′′(t) ≤ y∗′′1 (t) ≤ y′′∗1(t) ≤ y′′∗(t), for all t ∈ J.

Assume that for a fixed n > 1, we have

y∗(t) ≤ y∗n−1(t) ≤ y∗n(t) ≤ y∗n(t) ≤ y∗n−1(t) ≤ y∗(t), for all t ∈ J

and

y∗′′(t) ≤ y∗′′n−1(t) ≤ y∗′′n (t) ≤ y′′∗n(t) ≤ y′′∗n−1
(t) ≤ y′′∗(t), for all t ∈ J.

Thus we prove that

y∗(t) ≤ y∗n(t) ≤ y∗n+1(t) ≤ y∗n+1(t) ≤ y∗n(t) ≤ y∗(t), for all t ∈ J

and

y∗′′(t) ≤ y∗′′n (t) ≤ y∗′′n+1(t) ≤ y′′∗n+1
(t) ≤ y′′∗n(t) ≤ y′′∗(t), for all t ∈ J.
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Then we show that

y∗(t) ≤ y∗n(t) ≤ y∗n+1(t) ≤ y∗n+1(t) ≤ y∗n(t) ≤ y∗(t), for all t ∈ J

and

y∗′′(t) ≤ y∗′′n (t) ≤ y∗′′n+1(t) ≤ y′′∗n+1
(t) ≤ y′′∗n(t) ≤ y′′∗(t), for all t ∈ J.

If t ∈ J ′, we have

(φp (y
∗′′′
n ))

′
(t)− Cy∗′′n (t) = b(t)g(t, y∗n−1, y

∗′
n , y

∗′′
n−1, ∥y∗′′′n ∥PC(J,R))− Cy∗′′n−1(t), t ∈ J ′.

Since y∗n(t) ≤ y∗n−1(t) and y∗′′n−1 ≤ y∗′′n and by using the hypothesis (A3) and (A4), we

obtain
b(t)g

(
t, y∗n−1, y

∗′
n , y

∗′′
n−1, ∥y∗′′′n ∥PC(J,R)

)
− Cy∗′′n−1

≥ b(t)g
(
t, y∗n, y

∗′
n , y

∗′′
n−1, ∥y∗′′′n ∥PC(J,R)

)
− Cy∗′′n−1

≥ b(t)g
(
t, y∗n, y

∗′
n , y

∗′′
n , ∥y∗′′′n ∥PC(J,R)

)
− Cy∗′′n

which implies that

(3.15) (φp (y
∗′′′
n ))

′
(t) ≥ b(t)g

(
t, y∗n, y

∗′
n , y

∗′′
n , ∥y∗′′′n ∥PC(J,R)

)
.

Now by using a proof similar to that of Lemma 2.12., we have ∥y′′′n ∥PC(J,R) ≤ M∗,

then by making use of (3.15), it follows that

(3.16) (φp (y
∗′′′
n ))

′
(t) ≥ b(t)g

(
t, y∗n, y

∗′
n , y

∗′′
n , ∥y∗′′′n ∥PC(J,R)

)
, t ∈ J ′.

On the other hand, for k = 1, · · · ,m, we have
y∗n

(
t+k
)
= y∗n

(
t−k
)
+ Ik (y

∗
n (tk)) , k = 1, . . . ,m,

y∗′n
(
t+k
)
= y∗′n

(
t−k
)
+Nk (y

∗′
n (tk)) , k = 1, . . . ,m,

y∗′′n

(
t+k
)
= y∗′′n

(
t−k
)
+ Lk (y

∗′′
n (tk)) , k = 1, . . . ,m,

y∗′′′n

(
t+k
)
= y∗′′′n

(
t−k
)
+Rk (y

∗′′′
n (tk)) , k = 1, . . . ,m

(3.17)

and 
ηyn(0)− λ1y

∗′
n (0) =

∫ 1

0
a1(s)y

∗
n−1(s)dν(s) ≥

∫ 1

0
a1(s)y

∗
n(s)dν(s),

ηyn(1) + λ2y
∗′
n (1) =

∫ 1

0
a2(s)y

∗
n−1(s)dν(s) ≥

∫ 1

0
a2(s)y

∗
n(s)dν(s),

ηy∗′′n (0)− λ3y
∗′′′
n (0) =

∫ 1

0
a3(s)y

∗′′
n−1(s)dν(s) ≤

∫ 1

0
a3(s)y

∗′′
n (s)dν(s),

ηy∗′′n (1) + λ4y
∗′′′
n (1) =

∫ 1

0
a4(s)y

∗′′
n−1(s)dν(s) ≤

∫ 1

0
a4(s)y

∗′′
n (s)dν(s)

(3.18)

Then by (3.16) with (3.17) and (3.18), it follows that y∗n is a upper solution of the

problem the problem (1.1).

Similarly, we show that y∗n is a lower solution of the problem (1.1) and conse-

quently by Lemma 3.1, there exist a lower solution y∗n+1 and a upper solution y∗n+1

of the problem (3.11) and (3.12) respectively such that

y∗(t) ≤ y∗n(t) ≤ y∗n+1(t) ≤ y∗n+1(t) ≤ y∗n(t) ≤ y∗(t), for all t ∈ J

and

y∗′′(t) ≤ y∗′′n (t) ≤ y∗′′n+1(t) ≤ y′′∗n+1
(t) ≤ y′′∗n(t) ≤ y′′∗(t), for all t ∈ J
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which implies that for all n ∈ N, we have

y∗(t) ≤ y∗n(t) ≤ y∗n+1(t) ≤ y∗n+1(t) ≤ y∗n(t) ≤ y∗(t), for all t ∈ J

and

y∗′′(t) ≤ y∗′′n (t) ≤ y∗′′n+1(t) ≤ y′′∗n+1
(t) ≤ y′′∗n(t) ≤ y′′∗(t), for all t ∈ J.

Step II⋆. The sequences {y∗n}n≥1 converges to a maximal solution of the problem

(1.1).

By Step I⋆., and since ∥y∗′′′n ∥PC(J,R) ≤ M∗, for all n ∈ N, it is clear that the

sequence {y∗′′′n }n∈N is uniformly bounded in PC1(J,R). We put J1 = [0, t1], J2 =

(t1, t2], · · · , Jm = (tm−1, tm], Jm+1 = (tm, 1], then J =
m+1∪
k=1

Jk.

Let ε > 0 and t, s ∈ J1, such that t < s, then for all n ∈ N, and by (A4) we have(
φp

(
y∗′′′n+1(s)

))′ − (
φp

(
y∗′′′n+1(t)

))′
≤

∣∣∣∣∫ s

t

[
b(τ)g

(
τ, y∗n(τ), y

∗′
n (τ), y

∗′′
n (τ), ∥y∗′′′n ∥PC(J,R)

)
− C

(
y∗′′n (τ)− y∗′′n+1

)]
dν(τ)

∣∣∣∣
≤ (C1(g) + 2CC2)|s− t|,

where

C1(g) := max{|b(t)g(t, α, σ, β, γ)| | t ∈ J, y∗ ≤ y ≤ y∗, y∗′′(t) ≤ β ≤ y′′∗(t), |γ| ≤ M0}

and

C2 = max{y′′(t), y∗ ≤ y ≤ y∗, y∗′′(t) ≤ y′′(t) ≤ y′′∗(t)}.

If we put M1 = (C1(g) + 2CC2), one has∣∣∣(φp

(
y∗′′′n+1(s)

))′ − (
φp

(
y∗′′′n+1(t)

))′∣∣∣ ≤ M1|s− t|.

Then if we take |s− t| ≤ ε
M1+1

, we get∣∣∣(φp

(
y∗′′′n+1(s)

))′ − (
φp

(
y∗′′′n+1(t)

))′∣∣∣ < ε.

Therefore the sequence (φp (y
∗′′′
n (t)))′n∈N is equi-continuous on J1.

Now since φ−1
p is an increasing homecomorphism from R to R, we infer from∣∣y∗′′′n+1(s)− y∗′′′n+1(t)

∣∣ = ∣∣φ−1
p

(
φp(y

∗′′′
n+1(s))

)
− φ−1

p

(
φp(y

∗′′′
n+1(t))

)∣∣ < ε

that the sequence {y∗′′′n }n∈N is equicontinuous on J1 and it is not difficult to prove

that {y∗n}n∈N is uniformly bounded in C3(J1).

Hence by Ascoli-Arzela’s theorem there exists a subsequence
{
y
∗{a1}
n

}
n∈N

of

{y∗n}n∈N which converges in C3(J1).

Consider the subsequence
{
y
∗{a1}
n

}
n∈N

on the interval J2. On this interval the

subsequence
{
y
∗{a1}
n

}
n∈N

is uniformly bounded and equicontinuous. So, it has a

subsequence
{
y
∗{a2}
n

}
n∈N

will converge uniformly on the interval (t1, t2].
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Continuing this process for the intervals (t2, t3], · · · , (tm, tm+1], we see that the

sequence {y∗n}n∈N has a subsequence
{
y
∗{am+1}
n

}
n∈N

which will converge uniformly on

the interval J . Let yam+1 = lim
n→∞

y
∗{am+1}
n . Then (yam+1)(i) = lim

n→∞

(
y
∗{am+1}
n

)(i)

for

i = 1, 2, 3.

But by Step I⋆. the sequence {y∗n}n∈N is decreasing and bounded from below,

then the pointwise limit of this sequence exists and it is denoted by y♯. Hence, we

have yam+1 = y♯.

Let k ∈ {0, 1, · · · ,m} be fixed, and t, s ∈ (tk, tk+1), we obtain

φp

(
y∗′′′n+1(s)

)
= φp

(
y∗′′′n+1(t)

)
+

∫ s

t

Gn(τ)dν(τ),

where

Gn(t) = b(t)g
(
τ, y∗n(τ), y

∗′
n (τ), y

∗′′
n (τ), ∥y∗′′′n+1(τ)∥PC(J,R)

)
− C(y∗′′n (τ)− y∗′′n+1(τ)).

Now, as n −→ +∞, we obtain

Gn(t) −→ b(t)g
(
τ, y♯(τ), y

′
♯(τ), y

′′
♯ (τ), ∥y∥′′′♯ (τ)∥PC(J,R)

)
.

Also, there exists a positive number L4 > 0 such that for n ∈ N and τ ∈ J , we have

∥Gn(t)∥ ≤ L4.

Hence, the dominated convergence theorem of Lebesgue implies that

φp (y♯(t)
′′′) = φp

(
y′′′♯ (s)

)
+

∫ t

s

b(τ)g
(
τ, y♯(τ), y

′
♯(τ), y

′′
♯ (τ), ∥y′′′♯ (τ)∥PC(J,R)

)
dν(τ).

Thus, for k = 0, 1, · · · , m, we get

(3.19)
(
φp

(
y′′′♯

))′
= b(t)g

(
t, y♯(t), y

′
♯(t), y

′′
♯ (t), ∥y′′′♯ (t)∥PC(J,R)

)
, t ∈ (tk, tk+1).

That is

(3.20)
(
φp

(
y′′′♯

))′
= b(t)g(t, y♯(t), y

′
♯(t), y

′′
♯ (t), ∥y′′′♯ (t)∥PC(J,R)), t ∈ J ′.

On the other hand, since the functions aj (j = 1, 2, 3, 4) are continuous, we have
ηy♯(0)− λ1y

′
♯(0) =

∫ 1

0
a1(s)y♯(s)dν(s)

ηy♯(1) + λ2y
′
♯(1) =

∫ 1

0
a2(s)y♯(s)dν(s)

ηy′′♯ (0)− λ3y
′′′
♯ (0) =

∫ 1

0
a3(s)y

′′
♯ (s)dν(s)

ηy′′♯ (1) + λ4y
′′′
♯ (1) =

∫ 1

0
a4(s)y

′′
♯ (s)dν(s)

(3.21)

Similarly since the functions Ik, Nk, Lk and Rk are continuous for k = 1, · · · ,m. Thus

we have 
y♯
(
t+k
)
= y♯

(
t−k
)
+ Ik (y♯ (tk)) , k = 1, . . . ,m

y′♯
(
t+k
)
= y′♯

(
t−k
)
+Nk

(
y′♯ (tk)

)
, k = 1, . . . ,m

y′′♯
(
t+k
)
= y′′♯

(
t−k
)
+ Lk

(
y′′♯ (tk)

)
, k = 1, . . . ,m

y′′′♯
(
t+k
)
= y′′′♯

(
t−k
)
+Rk

(
y′′′♯ (tk)

)
, k = 1, . . . ,m

(3.22)
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Now using a proof similar to that of Lemma 2.12., we prove that ∥y′′′♯ ∥PC(J,R) ≤ M∗.

Hence, y♯ is a solution of the problem (1.1).

Now, we prove that if yg is another lower solution of problem (1.1) such that

y∗ ≤ yg ≤ y∗ and y∗′′ ≤ y′′g ≤ y′′∗ in J , then yg ≤ y♯ and y′′♯ ≤ y′′g in J . Since yg is

a lower solution of problem (1.1), then by Step I⋆. we obtain yg ≤ y∗n and y∗′′n ≤
y′′g, ∀n ∈ Z+. Letting n −→ +∞, we obtain yg ≤ lim

n→+∞
y∗n and lim

n→+∞
y∗′′n ≤ y′′g,

which means that y♯ is a maximal solution of the problem (1.1).

Step III⋆. The sequence {y∗n}n∈N converges to minimal solution y♯(t) of problem

(1.1).

Similar to the proof of the part of Step II⋆., we make a little change to get

a conclusion. What needs special explanation is that we have to construct sub-

sequence {y∗n{am+1}}n∈N of the sequence {y∗n}n∈N which is increasing and bound-

ed, then the pointwise limit of this sequence exists and it is denoted by y♯. Let

yam+1 = lim
n→∞

y∗n{am+1}. Hence, we have yam+1 = y♯. The remaining parts of descrip-

tion is omitted. Consequently, the proof of our main result is complete.

Remark 3.3. It follows from Theorem 3.1 we know that the maximal solution y♯

and minimal solution y♯ for the problem (1.1) have been obtained by constructing

the iterative sequence {y∗n}n∈N and {y∗n}n∈N with y∗ and y∗ respectively as the initial

value.

4. EXAMPLES AND DISCUSSIONS

In this section, we would like to use the previous result to present the following

examples. We would also give some discussions.

Example 4.1. We consider the following boundary value problem

(φp (y
′′′))′ = b(t)g (t, y, y′, y′′, y′′′) , t ∈ J ′ = [0, 1] \ {1

3
},

y
(

1
3

+
)
= y

(
1
3

−
)
+ 4, y′

(
1
3

+
)
= y′

(
1
3

−
)
,

y′′
(

1
3

+
)
= y′′

(
1
3

−
)
, y′′′

(
1
3

+
)
= y′′′

(
1
3

−
)
,

ηy(0)− λ1y
′(0) = 4

3

∫ 1

0
1
s
y(s)dν(s),

ηy(1) + λ2y
′(1) = 1

2

∫ 1

0
s2y(s)dν(s),

ηy′′(0)− λ3y
′′′(0) = −1

2

∫ 1

0
s3y′′(s)dν(s),

ηy′′(1) + λ4y
′′′(1) = 1

6

∫ 1

0
s4y′′(s)dν(s),

(4.1)

where φp(s) = |s|p−2s, p > 1, ν(s) = s2, η, λ1, λ2, λ3 and λ4 are positive real numbers

such that η = 6, 0 < λ1 ≤ 28
27
, 2273

1215
≤ λ2 ≤ 2, 0 < λ3 = 73

84
, 0 < λ4 ≤ 1

90
and

f : J −→ R is a function defined by

f(t) =

{
2t+ 1

3
, if t ∈ [0, 1

3
],

1−cos 2(t− 1
3
)

(t− 1
3
)2

+ 2, if t ∈ (1
3
, 1].
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The function f : J −→ R is continuous for t ̸= 1
3
, f

(
1
3

−
)
= 1 and f

(
1
3

+
)
= 4. We

put by definition

(4.2) b(t)g (t, y, y′, y′′, y′′′) = f(t) (3t+ 2y − ty′ − ty′′ + 8y′′′)

Let

y∗(t) =

{
−3t, if t ∈ [0, 1

3
],

−3t+ 4, if t ∈ (1
3
, 1]

and

y∗(t) =

{
−t5 − t4 − t3 + t+ 16, if t ∈ [0, 1

3
],

−t5 − t4 − t3 + t+ 20, if t ∈ (1
3
, 1].

We have y∗(t) ≤ y∗(t) and y∗′′(t) ≤ y′′∗(t) for all t ∈ J . It is easy to check that

(φp (y
′′′(t)))′ = 0 for all t ∈ J ′, and

b(t)g (t, y∗, y
′
∗, y

′′
∗ , y

′′′
∗ ) =

{
0, if t ∈ [0, 1

3
],

8f(t), if t ∈ (1
3
, 1].

Then we have

(4.3) (φp (y
′′′
∗ (t)))

′ ≤ b(t)g (t, y∗, y
′
∗, y

′′
∗ , y

′′′
∗ ) , for all t ∈ J ′

Also we have

y∗

(
1
3

+
)
= y∗

(
1
3

−
)
+ 4, y′∗

(
1
3

+
)
= y′∗

(
1
3

−
)
,

y′′∗

(
1
3

+
)
= y′′∗

(
1
3

−
)
, y′′′∗

(
1
3

+
)
= y′′′∗

(
1
3

−
)
,

ηy∗(0)− λ1y
′
∗(0) = 3λ1 ≤ 4

3

∫ 1

0
1
s
y∗(s)dν(s) =

28
9
,

ηy∗(1) + λ2y
′
∗(1) = 6− 3λ2 ≤ 1

2

∫ 1

0
s2y∗(s)dν(s) =

157
405

,

ηy′′∗(0)− λ3y
′′′
∗ (0) = 0 ≥ −1

2

∫ 1

0
s3y′′∗(s)dν(s) = 0,

ηy′′∗(1) + λ4y
′′′
∗ (1) = 0 ≥ 1

6

∫ 1

0
s4y′′∗(s)dν(s) = 0.

(4.4)

Then by (4.3) and (4.4), it follows that y∗ is a lower solution of problem (4.1).

Similarly, we have (φp (y
∗′′′(t)))′ = 0 for all t ∈ J ′, and

b(t)g (t, y∗, y∗′, y∗′′, y∗′′′) =
1

t

{
(−t4 + 3t3 + 6t2 − 10t)f(t), if t ∈ [0, 1

3
],

(−t4 + 2t3 + 3t2 − 11t)f(t), if t ∈ (1
3
, 1].

Thus, we obtain

(4.5) (φp (y
∗′′′(t)))

′ ≥ b(t)g (t, y∗, y∗′, y∗′′, y∗′′′) , for all t ∈ J ′
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Also, we have

y∗
(

1
3

+
)
= y∗

(
1
3

−
)
+ 4, y∗′

(
1
3

+
)
= y∗′

(
1
3

−
)
,

y∗′′
(

1
3

+
)
= y∗′′

(
1
3

−
)
, y∗′′′

(
1
3

+
)
= y∗′′′

(
1
3

−
)
,

ηy∗(0)− λ1y
∗′(0) = 96− λ1 ≥ 4

3

∫ 1

0
1
s
y∗(s)dν(s) = 742

15
,

ηy∗(1) + λ2y
∗′(1) = 108− 11λ2 ≥ 1

2

∫ 1

0
s2y∗(s)dν(s) ≥ 109061

22680
,

ηy∗′′(0)− λ3y
∗′′′(0) = 6λ3 ≤ −1

2

∫ 1

0
s3y∗′′(s)dν(s) = 73

14
,

ηy∗′′(1) + λ4y
∗′′′(1) = −288− 90λ4 ≤ 1

6

∫ 1

0
s4y∗′′(s)dν(s) = −233

63
,

(4.6)

Then, by making use of (4.5) and (4.6), it follows that y∗ is a upper solution of

problem (4.1).

On the other hand, it is easy to show that the function g defined by (4.2) satisfies

the hypothesis of Theorem 3.1 and therefore, it follows that the problem (4.1) has a

minimal and a maximal solution. Consequently, the problem (4.1) has at least two

solutions. �

Example 4.2. We study the following boundary value problem

(φp (y
′′′))′ = b(t)g (t, y, y′, y′′, y′′′) , t ∈ J ′ = [0, 1] \ {3

4
},

y
(

3
4

+
)
= y

(
3
4

−
)
+ 1, y′

(
3
4

+
)
= y′

(
3
4

−
)
,

y′′
(

3
4

+
)
= y′′

(
3
4

−
)
, y′′′

(
3
4

+
)
= y′′′

(
3
4

−
)
,

ηy(0)− λ1y
′(0) = −1

6

∫ 1

0
sy(s)dν(s),

ηy(1) + λ2y
′(1) = 2

∫ 1

0
s2y(s)dν(s),

ηy′′(0)− λ3y
′′′(0) = 1

7

∫ 1

0
s4y′′(s)dν(s),

ηy′′(1) + λ4y
′′′(1) = 1

9

∫ 1

0
s5y′′(s)dν(s),

(4.7)

where φp(s) = |s|p−2s, p > 1, ν(s) = 2s + 1, η, λ1, λ2, λ3 and λ4 are positive real

numbers such that η = 1, 0 < λ1 ≤ 25
288

, λ2 =
29
10
, λ3 =

89
210

, λ4 =
11

10003
and f : J −→ R

is a function defined by

f(t) =

{
t+ 5

4
, if t ∈ [0, 3

4
],

tan(t− 3
4
)

t− 3
4

+ 2, if t ∈ (3
4
, 1].

The function f : J −→ R is continuous for t ̸= 3
4
, f

(
3
4

−
)
= 2 and f

(
3
4

+
)
= 3. We

put by definition

(4.8) b(t)g (t, y, y′, y′′, y′′′) = f(t)
(
3 + 3t+ y + y′ − t2y′′ + 6ty′′′

)
Let

y∗(t) =

{
−3t, if t ∈ [0, 3

4
],

−3t+ 1, if t ∈ (3
4
, 1]



P-LAPLACIAN IMPULSIVE DIFFERENTIAL EQUATION 125

and

y∗(t) =

{
−1

3
t3 − 1

2
t2 + 3t+ 8, if t ∈ [0, 3

4
],

−1
3
t3 − 1

2
t2 + 3t+ 9, if t ∈ (3

4
, 1].

We have y∗(t) ≤ y∗(t) and y∗′′(t) ≤ y′′∗(t) for all t ∈ J . It is easy to check that

(φp (y
′′′(t)))′ = 0 for all t ∈ J ′, and

b(t)g (t, y∗, y
′
∗, y

′′
∗ , y

′′′
∗ ) =

{
0, if t ∈ [0, 3

4
],

f(t), if t ∈ (3
4
, 1].

Then we have

(4.9) (φp (y
′′′
∗ (t)))

′ ≤ b(t)g (t, y∗, y
′
∗, y

′′
∗ , y

′′′
∗ ) , for all t ∈ J ′

Also we have

y∗

(
3
4

+
)
= y∗

(
3
4

−
)
+ 1, y′∗

(
3
4

+
)
= y′∗

(
3
4

−
)
,

y′′∗

(
3
4

+
)
= y′′∗

(
3
4

−
)
, y′′′∗

(
3
4

+
)
= y′′′∗

(
3
4

−
)
,

ηy∗(0)− λ1y
′
∗(0) = 3λ1 ≤ −1

6

∫ 1

0
sy∗(s)dν(s) =

25
96
,

ηy∗(1) + λ2y
′
∗(1) = −2− 3λ2 ≤ 2

∫ 1

0
s2y∗(s)dν(s) = −107

48
,

ηy′′∗(0)− λ3y
′′′
∗ (0) = 0 ≥ 1

7

∫ 1

0
s4y′′∗(s)dν(s) = 0,

ηy′′∗(1) + λ4y
′′′
∗ (1) = 0 ≥ 1

9

∫ 1

0
s5y′′∗(s)dν(s) = 0.

(4.10)

Then by (4.9) and (4.10), it follows that y∗ is a lower solution of problem (4.7).

Similarly, we have (φp (y
∗′′′(t)))′ = 0 for all t ∈ J ′, and

b(t)g (t, y∗, y∗′, y∗′′, y∗′′′) =

{
(−t3 + 6t2 + 5t− 12)f(t), if t ∈ [0, 3

4
],

(−t3 + 6t2 + 5t− 13)f(t), if t ∈ (3
4
, 1].

Thus, we obtain

(4.11) (φp (y
∗′′′(t)))

′ ≥ b(t)g (t, y∗, y∗′, y∗′′, y∗′′′) , for all t ∈ J ′

Also we have

y∗
(

3
4

+
)
= y∗

(
3
4

−
)
+ 1, y∗′

(
3
4

+
)
= y∗′

(
3
4

−
)
,

y∗′′
(

3
4

+
)
= y∗′′

(
3
4

−
)
, y∗′′′

(
3
4

+
)
= y∗′′′

(
3
4

−
)
,

ηy∗(0)− λ1y
∗′(0) = 8− 3λ1 ≥ −1

6

∫ 1

0
sy∗(s)dν(s) = −2413

1440
,

ηy∗(1) + λ2y
∗′(1) = 67

6
+ λ2 ≥ 2

∫ 1

0
s2y∗(s)dν(s) ≥ 9947

720
,

ηy∗′′(0)− λ3y
∗′′′(0) = −1 + 2λ3 ≤ 1

7

∫ 1

0
s4y∗′′(s)dν(s) = − 16

105
,

ηy∗′′(1) + λ4y
∗′′′(1) = −3− 2λ4 ≤ 1

9

∫ 1

0
s5y∗′′(s)dν(s) = − 19

189
.

(4.12)

Then by (4.11) and (4.12), it follows that y∗ is a upper solution of the problem (4.7).

On the other hand, it is easy to show that the function b(t)g (t, y∗, y∗′, y∗′′, y∗′′′)

defined by (4.8) satisfies the hypothesis of Theorem 3.1 and therefore, it follows that

the problem (4.7) has a minimal and a maximal solution. Consequently, the problem

(4.7) has at least two solutions. �
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We discuss the conditions in the paper. It is easy to know that the functions

satisfying the conditions of the theorem 3.1 are rather wide. For example, we can

obtain the following corollary:

Corollary 4.3. Let y∗(t) and y∗(t) be a lower and upper solution respectively for

problem (1.1) such that y∗(t) ≤ y∗(t) in J . Assume that the conditions (Ai) for

i = 0, 1, 2, 3, 4 and (H1) with (H2) hold, and the Nagumo-Wintner conditions relative

to y∗ and y∗ are satisfied. Then the problem (1.1) has a solution y♣ with y∗(t) ≤
y♣(t) ≤ y∗(t) in J .

Remark 4.4. From above discussions, it is clear that our results unify, improve and

extend the results in [16], [22] and [23] with [31].
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