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ABSTRACT. Necessary and sufficient conditions for almost sure asymptotic stability of solutions

of stochastic dynamical systems generated by linear and nonlinear, nonautonomous ordinary sto-

chastic difference equations (SDE) in R1

Xn+1 = Xn

(
1− αnf(Xn) + σng(Xn)ξn+1

)
driven by square-integrable independent random variables (ξn+1)n∈N with uniformly bounded quan-

tities σnξn+1 are in the center of this presentation. All conditions are explicitly expressed in terms of

the coefficients αn, σn, f and g. Kolmogorov’s variant of the strong law of large numbers as well as

martingale convergence and martingale representation theorems are applied to prove related results.
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1. INTRODUCTION

The search for efficient necessary and sufficient conditions (abbreviated by iff-

conditions here) for almost sure asymptotic stability of the solution of stochastic dif-

ference equations (SDE) is highly complex and important for applications, especially

in mathematical finance (asset price evolutions in discrete (B,S)-markets) and math-

ematical biology (population dynamics). Mostly, authors have found sufficient condi-

tions while using Lyapunov-Krasovskii functional’s technique, see e.g. Kolmanovskii

and Shaikhet [18], [19] Kolmanovskii V.B., Kosareva N.P. and Shaikhet L.E. [17],

Kolmanovskii, Koroleva and Kosareva [16], Rodkina, Mao and Kolmanovskii [33],

Rodkina [31], [32], Rodkina and Nosov [34], Rodkina and Schurz [35], [36], [37] and

[38]. We are aiming at obtaining efficient criteria (i.e. iff-conditions) to guarantee

almost sure asymptotic stability without applying Lyapunov-Krasovskii functional’s

method while using martingale convergence theorems. All conditions shall be ex-

pressed in terms of the coefficients of related stochastic equations.
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Our studies are devoted to the problem of almost sure asymptotic stability of the

solutions of ordinary stochastic difference equations

Xn+1 = Xn

(
1− αnf(Xn) + σng(Xn)ξn+1

)
(1.1)

driven by the sequence of independent random variables (ξn+1)n∈N with moments

E [ξn+1] = 0 and E [ξn+1]
2 < +∞ such that mn+1 :=

∑n
i=0 ξi+1 defines a square-

integrable martingale with respect to the naturally generated filtration

(1.2) Fn+1 = σ({ξi+1 : i = 0, 1, ..., n}).

Such equations occur as natural discretizations of asset prices in mathematical finance

or population dynamics in mathematical biology - phenomena which are modelled by

stochastic differential equations (SDEs) driven by independent Wiener processes. For

related theory and numerics, see Allen [1], Arnold [3], [4], Dynkin [6], Evans [7],

Freidlin and Wentzell [8], Friedman [9], Gard [10], [12], Khas’minskij [13], Kloeden,

Platen and Schurz [15], Krylov [21], Ladde and Sambandham [22], Mao [24], [25],

Mil’shtein [26], Mohammed [27], Schurz [40], [41], [42], [43] and further applications

in Kliemann and Sri [14].

We are going to prove that, for almost sure asymptotic stability of the trivial

solution of (1.1), it is necessary and sufficient that at least one of the sums
∑+∞

n=0 αn

or
∑+∞

n=0 σ
2
nηn with ηn = E [ξn+1]

2 < +∞ have to be divergent almost surely. Our gen-

eralizable proofs are not confined to identically distributed random variables Zn such

that we could refer to the case of dependent Zn = σng(Xl : l ≤ n)ξn+1 too. Moreover,

it is worth to note that, to the best of our knowledge up to now, such results are hard-

ly met in view of possible applications to stochastic numerical analysis, even not often

for linear equations (discrete or continuous) where almost sure stability was proved

only under the assumption
∑+∞

n=0 σ
2
nηn = +∞, except for the groundbreaking paper-

s of Higham [11] and Schurz [42], where results concerning almost sure asymptotic

stability were obtained for the trivial solution of equations

Xn+1 = Xn

(
1 + σ0ξn+1

)
+ |c0ξn+1|(Xn −Xn+1)

with zero drift and real parameters |c0| ≥ |σ0| > 0 (i.e., more precisely speaking,

equations interpreted as linear-implicit discretizations of Girsanov’s stochastic dif-

ferential equations dX(t) = σ0X(t)dW (t) through balanced implicit methods with

unbounded martingale-type of noise ξn+1 = W (tn+1)−W (tn) ∈ N (0, tn+1− tn) along

partitions 0 = t0 < t1 < · · · < tN = T driven by an underlying Wiener process W in

a more general context). For stability investigations of stochastic numerical methods

using Lyapunov functions in any dimension, cf. also [40], [41], [42], [43]. For a.s.

asymptotic stability of linear systems of drift-implicit stochastic Theta methods in

Rd, see [44].
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For the general setting, we assume the following. Fix a complete filtered prob-

ability space (Ω,F , (Fn)n∈N,P) (i.e. complete with respect to the P-null sets of F ,

see Kolmogorov (1933) [20]). The notation X = (Xn(ω))n∈N denotes a (Fn)-adapted

stochastic process with Xn(ω) : (Ω,Fn,P) → (R1,B(R1)). B(S) represents the σ-

field of all Borel-sets of the set S. We also use the standard abbreviation ”a.s.” for

the wordings ”almost sure” or ”almost surely” with respect to the fixed probability

measure P throughout the text. Moreover, ”SLLN” stands for ”law of large num-

bers” and ”MCT” for ”martingale convergence theorems” (see Doob [5], Liptser and

Shiryaev [23], Neveu [29], Protter [30] or Shiryaev [46] for more details concerning

these concepts).

The paper is organized by 7 sections as follows. After this introduction Section 2

commences with a compilation of necessary preliminaries in order to prove our main

results. Section 3 discusses a.s. asymptotic stability for linear equations without drift

parts. In Section 4 we extend our investigations to the stability behavior of linear

equations with drift parts. Section 5 reports on results with respect to nonlinear

equations with trivial solution. Eventually, in Sections 6 and 7 we work on some

relaxations of the previously presented conditions which guarantee a.s. asymptotic

stability of related class of stochastic difference equations (1.1).

2. PRELIMINARIES

A series of preliminary results is needed for the proof of main results. For its

statement, we borrow some results from Shiryaev [46], chapter IV, paragraph 3, p.

389 and derive some further simple conclusions.

Theorem 2.1 (Kolmogorov’s SLLN). Assume that ξ0, ξ1, ξ2, . . . is a sequence of

independent real-valued random variables with finite second moments and set θ2i =

V ar(ξi) for i ∈ N. Let Sn = ξ0 + ξ1 + · · · + ξn and bn > 0 be real numbers such that

bn ↑ +∞ (i.e. monotonically increasing) as n → +∞ and

+∞∑
i=0

θ2i
b2i

< +∞(2.1)

Then, we have P-a.s.

lim
n→+∞

Sn − ESn

bn
= 0.(2.2)

Corollary 2.2. Assume that, in addition to the conditions of Theorem 2.1, the hy-

pothesis

+∞∑
i=0

θ2i = +∞(2.3)
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holds. Then, for any δ > 0, we have P-a.s.

lim
n→+∞

Sn − ESn

(
∑n

i=0 θ
2
i )

1
2
+δ

= 0.(2.4)

Proof. Let δ > 0 be any real constant. Define

An =
n∑

i=0

θ2i , bn = A
1+δ
2

n ,

and find some N = N(ω) > 0 such that, for n > N , we have

An

1 + An

= 1− 1

1 + An

>
1

2
.

Then
n∑

i=N

θ2i
b2i

=
n∑

i=N

θ2i
A1+δ

i

< 21+δ

n∑
i=N

θ2i
(1 + Ai)1+δ

≤ 21+δ

n∑
i=N

∫ Ai

Ai−1

dt

(1 + t)1+δ

< 21+δ

∫ +∞

0

dt

(1 + t)1+δ
< +∞.

Now, it remains to apply Kolmogorov’s SLLN (i.e. Theorem 2.1).

Corollary 2.3. Assume that under the conditions of Corollary 2.2 we have E [ξn] = 0

for all n ∈ N. Then, for any δ, ε > 0, there exists a random integer N = N(ε, ω) > 0

such that, for all n > N , we have P-a.s.

|Sn| ≤ ε

( n∑
i=0

θ2i

) 1
2
+δ

.(2.5)

Lemma 2.4. If u ∈ R1 and |u| ≤ k < 1 then

0 < 1 + u ≤ exp

(
u− u2

2(1 + k)2

)
and(2.6)

1 + u ≥ exp

(
u− u2

2(1− k)2

)
> 0.(2.7)

Proof. Simple manipulation using properties of ln function and its Taylor series.

Lemma 2.5. If u ∈ R1 and |u| ≤ k ≤ 1 then

0 ≤ 1 + u ≤ exp

(
u− 1

2ek
u2

)
(2.8)

and, if additionally k2 exp(k) < 2 then

1 + u ≥ exp

(
u− ek

2
u2

)
≥ exp

(
u− l(k)u2

)
> 0(2.9)

where

l(k) =
ek

2 (1− k2ek/2)
.(2.10)
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Proof. An expansion of ex into its 2nd order Taylor series yields that

exp(u) = 1 + u+
u2

2!
exp(θ)(2.11)

where θ is an intermediate value satisfying 0 < |θ| < |u|. Then

1 + u = exp(u)− u2

2!
exp(θ) = exp(u)

(
1− u2 exp(θ)

2 exp(u)

)
.(2.12)

Let |u| ≤ k ≤ 1. For u > 0, we have the elementary estimates

0 ≤ θ ≤ u ≤ k, 1 ≤ exp(θ) ≤ exp(u) ≤ exp(k),

hence
1

exp(k)
≤ 1

exp(u)
≤ exp(θ)

exp(u)
= exp(θ − u) ≤ 1,(2.13)

and, for u < 0, the estimates

0 ≥ θ ≥ u ≥ −k, 1 ≥ exp(θ) ≥ exp(u) ≥ exp(−k),

hence 1 ≤ exp(θ)

exp(u)
= exp(θ − u) ≤ exp(k)(2.14)

hold. Thus, summarizing, for any |u| ≤ k ≤ 1, we may conclude that

exp(k) ≥ exp(θ)

exp(u)
≥ 1

exp(k)
, 0 ≤ 1 + u ≤ exp

(
u− 1

2ek
u2

)
.(2.15)

Consequently, inequalities (2.8) are proven. For the proof of inequalities (2.9) we use

the other sides of inequalities (2.13) and (2.14). Namely, we use the estimate

exp(θ)

exp(u)
≤ max{1, ek} = exp(k).

Thus, while assuming that k2 exp(k) < 2 and |u| ≤ k, we arrive at

1 + u = exp(u) ·
(
1− u2 exp(θ)

2 exp(u)

)
≥ exp(u) ·

(
1− u2 exp(k)

2

)
> 0.(2.16)

Now, we make use of a Taylor expansion of ln(1 + u) up to the first order term,

namely ln(1 + u) = u/(1 + θ) with intermediate value θ ∈ (min(0, u),max(0, u)) and

|u| ≤ k < 1. Estimate the second factor in the last product in (2.16) as follows.

Consider

0 < 1− u2 exp(k)

2
= exp

(
ln

(
1− u2 exp(k)

2

))
= exp

(
−u2 exp(k)

2(1 + ζi)

)
(2.17)

with intermediate value ζi ∈ (−u2 exp(k)/2, 0). Recall that k2 exp(k) < 2 holds. Note

that

1 ≤ 1

1 + ζi
≤ 1

1− u2ek/2
≤ 1

1− k2ek/2
.(2.18)

Define l(k) as in (2.10). Combining (2.18) with (2.17) leads to

1− u2 exp(k)

2
≥ exp(−l(k)u2) > 0.

Plugging this estimate into (2.16) brings us to the conclusion of Lemma 2.5.
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3. ALMOST SURE STABILITY FOR LINEAR EQUATIONS

WITHOUT DRIFT

Consider linear stochastic difference equations

Xn+1 = Xn

(
1 + σnξn+1

)
(3.1)

started at some initial value X0 which is independent of Fn for all n ∈ N, where σn

are nonrandom parameters and ξn+1 are uniformly bounded random variables such

that

∀i ∈ N : |σiξi+1| ≤ k < 1, and k2 exp(k) < 2(3.2)

where k > 0 is a real constant. Assume that ξn+1 are independent random variables

which have mean E [ξi+1] = 0 and finite 2nd moments E [ξi+1]
2 = ηi < +∞. In the

statement of the theorem below, we shall also suppose that

+∞∑
i=0

σ2
i ηi = +∞.(3.3)

Theorem 3.1. Assume that condition (3.2) is satisfied. Then, condition (3.3) is

fulfilled if and only if limn→+∞ Xn = 0 holds P-a.s. for all solutions (Xn)n∈N of

equation (3.1).

Proof. Suppose that (Xn)n∈N solves (3.1). First, some preliminary considerations.

Applying Lemma 2.5, more precisely from its proof-step (2.12), we get to the repre-

sentation

Xn+1 = X0

n∏
i=0

(1 + σiξi+1) = X0

n∏
i=0

exp(σiξi+1)

(
1− (σiξi+1)

2 exp(θi)

2 exp(σiξi+1)

)
(3.4)

where θi ∈ [0, |σiξi+1|] ⊆ [0, k]. Let ϕi : R1
+ → R1

+ be the moment generating function

related to the random variable −ξ2i+1. Then, an expansion of ex into its Taylor series

leads to

ϕi(t) = E [exp(−tξ2i+1)] = E
[
1− tξ2i+1 exp(ζi)

]
for t ∈ R1

+, where ζi ∈ [−tξ2i+1, 0]. For tξ
2
i+1 ≤ k2, one arrives at

−k2 ≤ −tξ2i+1 ≤ ζi ≤ 0, − exp(−k2) ≥ − exp(−tξ2i+1) ≥ − exp(ζi) ≥ −1.

This implies that

ϕi(t) = 1− t2E [ξ2i+1 exp{ζi}]

≤ 1− t2 exp(−k2)E [ξ2i+1] = 1− t2 exp(−k2)ηi(3.5)

and, in particular for t = σ2
i , we have

0 < ϕi(σ
2
i ) ≤ 1− σ2

i exp(−k2)ηi.(3.6)
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We also note that

Mn+1 =
n∏

i=0

exp(−σ2
i ξ

2
i+1)

ϕi(σ2
i )

defines a nonnegative martingale M = (Mn)n∈N started at initial value M0 = 1,

since the expectation of any independent factor in the above product is 1, i.e., more

precisely, E [exp(−σ2
i ξ

2
i+1)/ϕi(σ

2
i )] = 1. Thanks to well-known martingale convergence

theorems (MCT, see [5], [23], [29], [30], [46]), this martingale M converges (P-a.s.)
to a finite random variable M+∞. Therefore, it is uniformly bounded above by some

P-a.s. finite random variable H1 = H1(ω) > 0, i.e.

1 ≤ sup
n∈N

Mn(ω) ≤ H1(ω) < +∞(3.7)

for ω ∈ Ω (P-a.s.). Furthermore, from the elementary estimate 1 + u ≤ eu and (3.6),

we know that

0 <
n∏

i=0

ϕi(σ
2
i ) ≤

n∏
i=0

(
1− exp(−k2)σ2

i ηi
)
≤ exp

(
− exp(−k2)

n∑
i=0

σ2
i ηi

)
.(3.8)

Second, return to the estimation of (3.4). Suppose that condition (3.3) is fulfilled.

For the estimation of |Xn+1| for the solution Xn+1 of (3.1) from above, we apply

inequality 1 + u ≤ eu, Lemma 2.5 and simple estimation (2.15). Thus, by returning

to representation (3.4), we obtain

|Xn+1| ≤ |X0| exp

(
n∑

i=0

σiξi+1 −
1

2ek

n∑
i=0

σ2
i ξ

2
i+1

)
.(3.9)

To estimate the term
∑n

i=0 σiξi+1 we apply Corollary 2.3 from the preliminaries in sec-

tion 2. Consequently, there exists some P-a.s. finite random variable H2 = H2(ω) > 0

(i.e. ε from Corollary 2.3) such that, for any δ ∈ (0, 1/2), we have P-a.s.

n∑
i=0

σiξi+1 ≤

∣∣∣∣∣
n∑

i=0

σiξi+1

∣∣∣∣∣ ≤ H2

(
n∑

i=0

σ2
i ηi

) 1
2
+δ

(3.10)
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for all n ≥ N(H2, ω). Combining (3.7), (3.8), (3.9) and (3.10) leads to (for all

n ≥ N(H2, ω))

|Xn+1| ≤ |X0| · exp

H2

[
n∑

i=0

σ2
i ηi

] 1
2
+δ
 · exp

(
− 1

2ek

n∑
i=0

σ2
i ξ

2
i+1

)

= |X0| · exp

H2

[
n∑

i=0

σ2
i ηi

] 1
2
+δ
·

(
n∏

i=0

exp(−σ2
i ξ

2
i+1)

ϕi(σ2
i )

)1/(2ek)

·

(
n∏

i=0

ϕi(σ
2
i )

)1/(2ek)

≤ |X0| · exp

H2

[
n∑

i=0

σ2
i ηi

] 1
2
+δ
 ·H1/(2ek)

1 · exp

(
−exp(−k2)

2ek

n∑
i=0

σ2
i ηi

)

≤ |X0| ·H1/(2ek)
1 · exp

H2

[
n∑

i=0

σ2
i ηi

] 1
2
+δ

− exp(−k2 − k)

2

n∑
i=0

σ2
i ηi

 .(3.11)

Due to condition (3.3), for all real numbers ε > 0, there exists some random integer

N1 = N1(ε, ω) such that, for all n ≥ N1 and all δ ∈ (0, 1/2), we can estimate

H2

[
n∑

i=0

σ2
i ηi

] 1
2
+δ

≤ ε

n∑
i=0

σ2
i ηi.

Then, for fixed ε > 0 with ε < exp(−k2− k)/4 and all n ≥ max{N1(ε, ω), N(H2, ω)},
we arrive at

|Xn+1| ≤ |X0| ·H1/(2ek)
1 · exp

(
−exp(−k2 − k)

4

n∑
i=0

σ2
i ηi

)
,

hence, a.s. stability of equation (3.1) can be established and the asymptotic property

lim
n→+∞

Xn = 0(3.12)

holds P-a.s.

Third, consider the verification of the backwards conclusion in iff-part of The-

orem 3.1. Suppose that limn→∞ Xn = 0 holds P-a.s. Return to the estimation of

representation (3.4). An estimation of |Xn+1| from below using the second part of

Lemma 2.5 (more precisely, its proof-step (2.12)) yields that

|Xn+1| ≥ |X0| ·
n∏

i=0

exp(σiξi+1)

(
1− (σiξi+1)

2 exp(θi)

2 exp(σiξi+1)

)

≥ |X0| ·
n∏

i=0

exp(σiξi+1)

(
1− (σiξi+1)

2 exp(k)

2

)
> 0.(3.13)

To proceed with the estimation of |Xn+1| from below, consider the expression 1 −
((σiξi+1)

2 exp(k))/(2). Now, we make use of a Taylor expansion of ln(1 + u) up to

the first order term, namely ln(1 + u) = u/(1 + θ) with intermediate value θ ∈
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(min(0, u),max(0, u)) and |u| ≤ k < 1. We estimate the factors of the product in

(3.13) as in the proof of Lemma 2.5 as follows. Set u = σiξi+1 and get to

0 < 1− (σiξi+1)
2 exp(k)

2
= exp

(
ln

(
1− (σiξi+1)

2 exp(k)

2

))
= exp

(
−(σiξi+1)

2 exp(k)

2(1 + ζi)

)
(3.14)

with intermediate value ζi ∈ (−(σiξi+1)
2 exp(k)/2, 0). Recall that k2 exp(k) < 2 holds

by assumption (3.2). Note that the term 1/(1 + ζi) can be estimated from above as

in (2.18). Define l(k) as in (2.10). Applying estimation (2.18) to (3.14) implies that

n∏
i=0

exp(σiξi+1) ·
(
1− (σiξi+1)

2 exp(k)

2

)
≥

n∏
i=0

exp
(
σiξi+1 − l(k)(σiξi+1)

2
)
.

Then, by exploiting the prior observations, estimation (3.13) renders to

|Xn+1| ≥ |X0| · exp

(
n∑

i=0

σiξi+1 − l(k)
n∑

i=0

(σiξi+1)
2

)
.(3.15)

Next, for further estimation from below, consider ϕ
(2)
i : R1

+ → R1
+ as the moment

generating function for the random variable ξ2i , defined by ϕ
(2)
i (t) = E [exp(tξ2i+1)] for

0 ≤ t ≤ σ2
i . Then, from an expansion of eu into its Taylor series eu = 1 + ueθ where

θ ∈ (0, u), we conclude that

ϕ
(2)
i (t) = E [exp(tξ2i+1)] = E

[
1 + tξ2i+1 exp(ζi)

]
,

where 0 ≤ |ζi| ≤ k2 and exp(k2) ≥ exp(ζi) ≥ exp(−k2). An estimation of ϕ(2)(t)

from above gives

ϕ
(2)
i (t) = 1 + tE

[
ξ2i+1 exp(ζi)

]
≤ 1 + t exp(k2)E [ξi+1]

2 = 1 + t exp(k2)ηi

for 0 ≤ t ≤ σ2
i . Hence, in particular, we have

ϕ
(2)
i (σ2

i ) ≤ 1 + σ2
i exp(k

2)ηi.

We note that M (2) = (M
(2)
n )n∈N satisfying

M
(2)
n+1 =

n∏
i=0

exp(σ2
i ξ

2
i+1)

ϕ
(2)
i (σ2

i )

started at M
(2)
0 = 1 forms a nonnegative martingale with respect to {Fn}n∈N and its

expectation E [M
(2)
n ] = 1. Then, by MCT (see [5], [23], [29], [30], [46]), M converges P-

a.s. and is uniformly bounded by some P-a.s. finite random variable H3 = H3(ω) ≥ 1.

Similarly to the uniform boundedness (3.7), we find that

1 ≤ sup
n∈N

M (2)
n ≤ H3 < +∞,(3.16)
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hence

1

M
(2)
n

≥ 1

supn∈NM
(2)
n

≥ 1

H3

> 0(3.17)

for all n ∈ N. Then, using the latter observations, we have

n∏
i=0

exp(−σ2
i ξ

2
i+1) =

n∏
i=0

ϕ(2)(σ2
i )

exp(σ2
i ξ

2
i+1)

·
n∏

i=0

1

ϕ(2)(σ2
i )

=
1

M
(2)
n+1

·
n∏

i=0

1

ϕ(2)(σ2
i )

≥ 1

H3

∏n
i=0 ϕ̄

(2)
i (σ2

i )
≥ 1

H3

∏n
i=0(1 + σ2

i exp(k
2)ηi)

.(3.18)

Exploiting the elementary relation 1 + u ≤ eu provides us the estimate

n∏
i=0

(1 + σ2
i exp(k

2)ηi) ≤ exp

(
exp(k2)

n∑
i=0

σ2
i ηi

)
.(3.19)

Combining (3.18) and (3.19) leads to

n∏
i=0

exp(−σ2
i ξ

2
i+1) ≥ 1

H3

exp

(
− exp(k2)

n∑
i=0

σ2
i ηi

)
(3.20)

which can be applied to estimate the 2nd part of exponential at the right hand

side of (3.15). Next, we are going to estimate its 1st part. For this purpose, let

ϕ
(1)
i : R1 → +R1 be the moment generating function for the random variable −ξi+1,

i.e. ϕ
(1)
i (t) = E [exp(−tξi+1)] for t ∈ R1. Then, by the expansion of eu into its

2nd order Taylor series eu = 1 + u + u2eθ/2 where the intermediate value θ satisfies

0 ≤ |θ| < |u|, we have

ϕ
(1)
i (t) = E[exp(−tξi+1)]=E

[
1−tξi+1+

t2ξ2i+1 exp(ζi)

2

]
=E
[
1+

t2ξ2i+1 exp(ζi)

2

]
where |ζi| ≤ k and exp(k) ≥ exp(ζi) ≥ exp(−k). Using these observations we can

estimate

ϕ
(1)
i (t) = 1 +

1

2
t2E [ξ2i+1 exp(ζi))] ≤ 1 +

1

2
t2 exp(k)E [ξi+1]

2 = 1 +
1

2
t2 exp(k)ηi

and, in particular for t = ±σi, we have

1 ≤ ϕ
(1)
i (±σi) ≤ 1 +

1

2
σ2
i exp(k)ηi.

Similarly as before, M (1) = (M
(1)
n )n∈N started at M0 = 1 and satisfying

M (1)
n =

n∏
i=0

exp(σiξi+1)

ϕ
(1)
i (−σi)

forms a nonnegative martingale with respect to {Fn}n∈N. Then, by MCT (see [5],

[23], [29], [30], [46]), and the fact that ϕ
(1)
i (t) = ϕ

(1)
i (−t) ≥ 1 for all i ∈ N and all

t ∈ R1, the exponential martingale M (1) converges P-a.s. to M
(1)
+∞ with E [M

(1)
+∞] = 1.
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Therefore, we can estimate M (1) from below as follows. There is some P-a.s. finite

random variable H4 = H4(ω) > 0 such that, for all n ∈ N, we have(
M

(1)
n+1

)−1

=
n∏

i=0

exp (−σiξi+1)ϕ
(1)
i (−σi)

=
n∏

i=0

exp (−σiξi+1)

ϕ
(1)
i (σi)

·
n∏

l=0

ϕ
(1)
l (σl)ϕ

(1)
l (−σl) ≤ H4 · exp

(
exp(k)

n∑
i=0

σ2
i ηi

)
<+∞.

This fact leads to

M
(1)
n+1 ≥ 1

H4

· exp

(
− exp(k)

n∑
i=0

σ2
i ηi

)
> 0.(3.21)

Applying the latter estimate implies that

n∏
i=0

exp(σiξi+1) =
n∏

i=0

(
exp(σiξi+1)

ϕ
(1)
i (−σi)

ϕ
(1)
i (−σi)

)
= M

(1)
n+1 ·

n∏
i=0

ϕ
(1)
i (−σi)

≥ 1

H4

· exp

(
− exp(k)

n∑
i=0

σ2
i ηi

)
> 0(3.22)

for all n ∈ N. Now, return to the estimation (3.15). Suppose that |X0| > 0. Then,

after plugging estimates (3.20) and (3.22) into (3.15), we arrive at

|Xn+1| ≥ |X0| · exp

(
n∑

i=0

σiξi+1 − l(k)
n∑

i=0

(σiξi+1)
2

)

≥ |X0|
H4H

l(k)
3

· exp

(
−(exp(k) + l(k) exp(k2))

n∑
i=0

σ2
i ηi

)
> 0(3.23)

for all n ∈ N. Recall that we have supposed that limn→+∞ Xn = 0 for all X0 (P-a.s.).
Note also that the nonrandom constant exp(k) + l(k) exp(k2) > 0 is strictly positive.

Therefore, from (3.23), we may conclude that the nonrandom sum
∑n

i=0 σ
2
i ηi has to

tend to +∞ as n → +∞. Consequently, Theorem 3.1 is proved.

Remark 3.2. The proof of Theorem 3.1 can be simplified using the standard Central

Limit and Monotone Convergence Theorems (see [46]) in conjunction with properties

of the ln function, based on the independence of (ξn+1)n∈N. However, for the sake of

transparency of all succeeding proofs, we prefer to avoid a simplification in this way

in view of an impossible extension of such a simplified proof-technique to the case

of nonlinear equations with possibly dependent noise terms. Furthermore, some of

the above proof-steps are needed for the simplification of proofs and some necessary

references below. Moreover, under the hypothesis that all random variables ξn+1 are

independent of each other, either the limits X∞ = 0 or X∞ > 0 for X0 > 0 (P-a.s.)
by the well-known Kolmogorov 0-1 Law (see [46]).
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Remark 3.3. Because of the independence of random variables (ξn+1)n∈N the martin-

gale (3.1) is of the likelihood ratio type covered by Kakutani’s theorem on singularity

/ equivalence of product measures (see, e.g. Neveu [29], Proposition III-2-6). Sup-

pose that X0 ≥ 0 for simplicity. Then this theorem asserts that the limit of such a

martingale X is either a.s. positive or a.s. zero, and is positive if and only if

+∞∏
n=0

E
√
1 + σnξn+1 > 0.

This would give another set of necessary and sufficient conditions to ensure asymptotic

stability, from which the result of Theorem 3.1 could be deduced too.

Remark 3.4. Using estimates (3.11) and (3.23) it is possible to obtain very rough

estimates for the exponential decay rate of solutions of equation (3.1). More precisely,

for some nonrandom constants H1 = H1(k), H2 = H2(k), K1 = K1(k) and K2 =

K2(k) satisfying 0 < H1(k) ≤ H2(k) and 0 < K1(k) ≤ K2(k), we find that

H1|X0| exp

(
−K2

n∑
i=0

σ2
i ηi

)
≤ |Xn+1| ≤ H2|X0| exp

(
−K1

n∑
i=0

σ2
i ηi

)
(3.24)

for all n ∈ N. In particular, when ξi are independent and identically distributed

discrete random variables taking on only 2 values 1 and -1 with equal probabilities

1/2, we have ηi = 1 for all i ∈ N. Suppose that σi = 1/
√
2(i+ 1), then conditions

(3.2) and (3.3) hold with k = 1/
√
2. In this case, as a result of our analysis above, we

can even find polynomial-type decay rates as follows. Estimates (3.24) take on the

form

H1|X0| exp

(
−K2

2

n∑
i=0

1

i+ 1

)
≤ |Xn+1| ≤ H2|X0| exp

(
−K1

2

n∑
i=0

1

i+ 1

)
.

Now, apply the estimates
∑n

i=0 1/(i+1) ≤ 1+ ln(n+1) and ln(n+2) <
∑n

i=0 1/(i+

1) which are derived from an application of monotonicity of Riemann sums to the

integrals ln(n) =
∫ n

1
(1/x)dx. Consequently, we get to

H1|X0|e−K2/2

(n+ 1)K2/2
≤ |Xn+1| ≤

(
n+ 1

n+ 2

)K1/2

· H2|X0|
(n+ 1)K1/2

≤ H2|X0|
(n+ 1)K1/2

(3.25)

with strictly positive constants K1 ≤ K2 and H2 ≤ H1. Therefore, we can even

establish polynomial-type decay rates for discrete stochastic difference equations using

techniques from the proof of Theorem 3.1.

4. ALMOST SURE STABILITY FOR LINEAR EQUATIONS WITH

DRIFT

Consider ordinary stochastic difference equations

Xn+1 = Xn

(
1− αn + σnξn+1

)
(4.1)
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started at some initial value X0 which is independent of Fn for all n ∈ N, where
αn and σn are not random, (ξn+1)n∈N are independent random variables with mean

E [ξn+1] = 0 and second moments E [ξn+1]
2 = ηn < +∞. Assume that there exists

some nonrandom constant k ∈ (0, 1) such that, for all n ∈ N, we have P-a.s.

−k ≤ σnξn+1 ≤ k,(4.2)

1− αn + σnξn+1 > 0.(4.3)

Furthermore, for the statement of Theorem 4.2 below, we introduce the following

conditions.

lim
n→+∞

[
n∑

i=0

αi +
n∑

i=0

σ2
i ηi

]
= +∞,(4.4)

lim
n→+∞

n∑
i=0

αi = +∞,(4.5)

∀n ∈ N αn ≥ 0.(4.6)

Remark 4.1. Condition (4.4) is fulfilled if one of the conditions (4.5) or (3.3) is

satisfied.

Theorem 4.2. Assume that conditions (4.2), (4.3) and (4.6) are satisfied. Then,

condition (4.4) is fulfilled if and only if limn→+∞ Xn = 0 holds P-a.s. for all solutions
(Xn)n∈N of equation (4.1).

Proof. First of all, we represent solutions of (4.1) in the form

Xn = X0

n∏
i=0

(1− αi + σiξi+1) = X0

n∏
i=0

(1 + σiξi+1)
n∏

i=0

(
1− αi

1 + σiξi+1

)
.(4.7)

We note that, since condition (4.3) is fulfilled, the second product at the right side of

(4.7) is positive. The positivity of the first product at the right side of (4.7) is due to

condition (4.2). Moreover, due to condition (4.2) and inequality 1 + u ≤ exp(u), we

can estimate the second product at the right side of (4.7) from above as follows.

n∏
i=0

(
1− αi

1 + σiξi+1

)
≤

n∏
i=0

exp

(
− αi

1 + σiξi+1

)
= exp

(
−

n∑
i=0

αi

1 + σiξi+1

)

≤ exp

(
− 1

1 + k

n∑
i=0

αi

)
.(4.8)

Next, we estimate it from below. For this purpose, for u > −1, we can expand

ln(1 + u) in its Taylor series up to the first order term, namely ln(1 + u) = u/(1 + θ)

where the intermediate value θ satisfies θ ∈ (min(0, u),max(0, u)) and |u| ≤ k < 1.
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We obtain

n∏
i=0

(
1− αi

1 + σiξi+1

)
=

n∏
i=0

exp

(
ln

(
1− αi

1 + σiξi+1

))

=
n∏

i=0

exp

(
− αi

(1 + σiξi+1)(1 + ζi)

)

≥ exp

(
− 1

(1− k)2

n∑
i=0

αi

)
,(4.9)

since (4.3) holds and 1/(1 + k) ≤ 1/(1 + σiξi+1) ≤ 1/(1 − k), |ζi| ≤ k and therefore

1/(1 + k) ≤ 1/(1 + ζi) ≤ 1/(1− k).

Suppose that condition (4.4) is fulfilled. As noted in Remark 4.1, this condition

can be only satisfied if either (4.5) or (3.3) is fulfilled. First, suppose that condition

(4.5) is fulfilled. Using estimate (4.8), the trivial fact that

M
(3)
n+1 =

n∏
i=0

(1 + σiξi+1), M
(3)
0 = 1(4.10)

forms a nonnegative martingale M = (M
(3)
n )n∈N with respect to {Fn}n∈N because of

E [1+σiξi+1] = 1 and standard MCT (see [5], [23], [29], [30], [46]), we find some P-a.s.
finite random variable H5 = H5(ω) > 0 such that

|Xn+1| ≤ |X0|H5 exp

(
− 1

1 + k

n∑
i=0

αi

)
.(4.11)

Apparently, under (4.5), Xn+1 must converge (P-a.s.) to 0 as n → +∞.

Second, suppose that condition (3.3) is fulfilled. Then, by applying estimates

(3.9), (3.10) and (3.11), it follows that, for all integers n ≥ N1(ω) (where N1 is chosen

in the same way as in Theorem 3.1), we have P-a.s.

|Xn+1| ≤ |X0|H1/(2ek)
1 exp

(
− 1

1 + k

n∑
i=0

αi −
exp(−k2 − 2ek)

4

n∑
i=0

σ2
i ηi

)
,(4.12)

hence Xn+1 converges (P-a.s.) to 0 as n → +∞ too.

Now, the backwards conclusion. Suppose that limn→+∞ Xn = 0 (P-a.s.). Acting

as in the last part of the proof of Theorem 3.1, we can arrive at similar estimates

from below as in (3.23). However, for this purpose, we need to estimate from below

the nonnegative product martingale M (3) = (M
(3)
n )n∈N defined as in (4.10). We may

apply the 2nd order Taylor expansion 1/(1 + u) = 1− u+ u2/(1 + θ)3 where θ is an

imtermediate value satisfying θ ∈ [−k, k]. Thus, thanks to MCT (see [5], [23], [29],
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[30], [46]), we can estimate the nonnegative inverse of M (3) by(
M

(3)
n+1

)−1

=
n∏

i=0

1

1 + σiξi+1

=
n∏

i=0

1
1+σiξi+1

E
[

1
1+σiξi+1

] · n∏
i=0

E
[

1

1 + σiξi+1

]

≤ H6 · exp

(
1

(1− k)3

n∑
i=0

σ2
i ηi

)
where H6 = H6(ω) > 0 is a P-a.s. finite random variable on Ω. Consequently, we find

that

M
(3)
n+1 ≥ 1

H6

· exp

(
− 1

(1− k)3

n∑
i=0

σ2
i ηi

)
(4.13)

for all n ∈ N. Finally, apply (4.9) and (4.13) to representation (4.7) in order to get

to

|Xn+1| ≥ |X0|
1

H6

exp

(
− 1

(1− k)2

n∑
i=0

αi −
1

(1− k)3

n∑
i=0

σ2
i ηi

)
.

Recall that 0 < k < 1. Thus, (4.14) means that at least one of the expressions∑n
i=0 αi or

∑n
i=0 σ

2
i ηi has to tend to +∞ as n → +∞ in order to have Xn → 0 for all

X0 (P-a.s.) as n → +∞. Hence, the proof of Theorem 4.2 is complete.

Remark 4.3. It is not difficult to recognize that Theorem 4.2 remains valid if, instead

of conditions (4.6), we just require that, for some nonrandom constant K > 0, we

have

∀n ∈ N :
n∑

i=0

αi > −K > −∞.(4.14)

Remark 4.4. Instead of representation (4.7) we can also consider the splitting

Xn+1 = X0

n∏
i=0

1− αi + σiξi+1

1− αi

·
n∏

i=0

(1− αi) = X0

n∏
i=0

(
1 +

σiξi+1

1− αi

)
·

n∏
i=0

(1− αi).

We note that

Mn+1 =
n∏

i=0

(
1 +

σiξi+1

1− αi

)
(4.15)

started at M0 = 1 forms a martingale with respect to {Fn}n∈N since

E
[
1 +

σiξi+1

1− αi

]
= 1

for all i ∈ N. Then, instead of conditions (4.2) and (4.3), we require that, for some

nonrandom constant k ∈ (0, 1) with k2 exp(k) < 2,

∀i ∈ N : −k ≤ σiξi+1

1− αi

≤ k.(4.16)
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holds. Apparently, this condition guarantees the strict positivity of the product mar-

tingale (Mn)n∈N following (4.15) and MCT can be applied as before, hence we achieve

more freedom for the choice of parameters αn.

5. ALMOST SURE STABILITY FOR NONLINEAR EQUATIONS

WITH TRIVIAL SOLUTION

Consider ordinary nonlinear stochastic difference equations

Xn+1 = Xn

(
1− αnf(Xn) + σng(Xn)ξn+1

)
(5.1)

started at some initial value X0 which is independent of Fn for all n ∈ N, where
(ξn+1)n∈N are independent random variables with E [ξi+1] = 0 and E [ξi+1]

2 = ηi. Let

f : R1 → R1
+ and g : R1 → R1 be two continuous functions such that

∀ε > 0 ∃H(ε) > 0 : inf
|x|>ε

f(x) ≥ H(ε) and inf
|x|>ε

|g(x)| ≥ H(ε),(5.2)

∀x ∈ R1 : 0 ≤ f(x), |g(x)| ≤ 1.(5.3)

Suppose also that

∀x ∈ R1 ∀i ∈ N : 1− αif(x) + σiξi+1g(x) > 0.(5.4)

Remark 5.1. Assumption (5.4) is fulfilled if, in addition to conditions (5.3) and

(4.2), the condition

∀i ∈ N : 0 ≤ αi ≤ 1− k

holds. Indeed, we have

∀u ∈ R1 ∀i ∈ N : αif(u) ≤ αi ≤ 1− k ≤ 1 + σiξi+1 ≤ 1 + σiξi+1g(u).

Theorem 5.2. Assume that conditions (4.2), (4.3), (4.6), (5.2), (5.3) and (5.4) are

satisfied. Then, condition (4.4) is fulfilled if and only if the limit limn→+∞ Xn = 0

holds P-a.s. for all solutions (Xn)n∈N of equation (5.1).

Proof. We have a representation for the solution Xn of equation (5.1)

Xn+1 = X0 ·
n∏

i=0

(1− αif(Xi) + σig(Xi)ξi+1)

= X0 ·
n∏

i=0

(1 + σig(Xi)ξi+1) ·
n∏

i=0

(
1− αif(Xi)

1 + σig(Xi)ξi+1

)
(5.5)

From (5.5) we can easily conclude that the limit limn→∞ Xn exists. Indeed,

the first product Mn+1 =
∏n

i=0(1 + σig(Xi)ξi+1) forms a nonnegative martingale

M = (Mn)n∈N started atM0 = 1 with respect to {Fn}n∈N since E [1+σig(Xi)ξi+1] = 1,

it has a finite limit as n → +∞ (thanks MCT) and is uniformly bounded with
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respect to n ∈ N. The second product
∏n

i=0 (1− αif(Xi)/(1 + σig(Xi)ξi+1)) decreases

monotonically due to nonnegativity of αif(Xi) and 1 + σig(Xi)ξi+1.

To show that limn→+∞ Xn = 0, we use an indirect proof. Suppose that

lim
n→+∞

|Xn(ω)| = c(ω) > 0(5.6)

for ω ∈ Ω1 with positive probability P{Ω1} = β1 > 0. Therefore, there exists an

integer N = N(ω) such that we can put

Ω1 =

{
ω ∈ Ω : |Xn(ω)| ≥

c(ω)

2
> 0, ∀n > N(ω)

}
⊆ Ω.(5.7)

We also note that, from condition (5.2) with ε = c(ω)/2, we can find an expression

H (c(ω)/2) such that, for n ≥ N1(ω), the estimates

f(xn) ≥ H

(
c(ω)

2

)
, g2(xn) ≥ H2

(
c(ω)

2

)
(5.8)

hold. For all n ≥ N1(ω), ω ∈ Ω1, this leads to
∑n

i=0 αif(Xi) ≥ H
(

c(ω)
2

)
·
∑n

i=0 αi,∑n
i=0 σ

2
i g

2(Xi)ηi ≥ H2
(

c(ω)
2

)
·
∑n

i=0 σ
2
i ηi

.(5.9)

Now, we distinguish between two cases. First, suppose that, for ω ∈ Ω1, we have

divergence of the series
∑+∞

i=0 σ
2
i ηi from condition (3.3) and, second, its convergence.

In the second case, it means that condition (4.5) is fulfilled.

In the first case, while using the representation (5.5) and estimates (5.9) and

acting as in the proofs of Theorems 3.1 and 4.2 (e.g. see 4.12), we obtain that, for all

n ≥ N1(ω), ω ∈ Ω1,

|Xn| ≤ |X0|H
1

2ek

1 exp

−
H
(

c(ω)
2

)
1 + k

n∑
i=0

αi

· exp

(
−ρ(k)H2

(
c(ω)

2

) n∑
i=0

σ2
i ηi

)

≤ |X0|H7 exp

(
−exp(−k2 − 2ek)

4
H2

(
c(ω)

2

) n∑
i=0

σ2
i ηi

)
(5.10)

where ρ(k) = (exp(−k2 − 2ek))/4 and H7 ≤ H
(1/(2ek))
1 , hence Xn → 0 (P-a.s.) as

n → +∞. Similarly, the second case yields that

|Xn| ≤ |X0|H8 exp

−
H
(

c(ω)
2

)
1 + k

n∑
i=0

αi

(5.11)

with finite random variable H8 ≤ H
(1/(2ek)
1 , hence Xn → 0 (P-a.s.) as n → +∞.

Thus, we arrived at contradictions in both cases.
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It remains to prove necessity of condition (4.4) for limn→+∞ Xn = 0 (P-a.s.).
Suppose that limn→+∞ Xn = 0 (P-a.s.). Then, due to the continuity of functions f

and g, there exist P-a.s. finite random variables H9(ω) > 0 and N3(ω) on Ω such that

0 ≤ f(Xn(ω)) ≤ H9(ω), 0 ≤ g2(Xn(ω)) ≤ H2
9 (ω)(5.12)

hold for n ≥ N3(ω).

Acting as in the last part of proof of Theorem 4.2, combining the observations

above with the estimates (4.9) and (4.13) implies that

|Xn| ≥ |X0|
1

H6

exp

(
− H9(ω)

(1− k)2

n∑
i=0

αi −
H2

9 (ω)

(1− k)3

n∑
i=0

σ2
i ηi

)
.(5.13)

This also means that at least one of the expressions
∑n

i=0 αi or
∑n

i=0 σ
2
i ηi has to tend

to +∞ as n → +∞. This completes the proof of Theorem 5.2.

Remark 5.3. Consider the retarded delay-type stochastic difference equation

Xn+1 = Xn(1− αnf(Xn, Xn−1, . . . , Xn−l) + σng(Xn, Xn−1, . . . , Xn−l)ξn+1(5.14)

with nonrandom initial data X0, X−1, . . . , X−l (or at least independent of Fn for

all n ∈ N), some nonrandom constant delay-length parameter l ∈ N, nonrandom
continuous functions f, g : Rl+1 → R1 such that

∀ε > 0∃H(ε) > 0 : inf
∥v∥Rl+1>ε

f(v) ≥ H(ε), inf
∥v∥Rl+1>ε

|g(v)| ≥ H(ε),(5.15)

∀v ∈ Rl+1 : 0 ≤ f(v), |g(v)| ≤ 1.(5.16)

Then, the conclusion of Theorem 5.2 remains valid for equation (5.14) under condi-

tions (5.15) and (5.16), instead of (5.2) and (5.3).

Indeed, in the proof of Theorem 5.2, when we choose number N1 for expression

(5.8), we take N∗ = N1 + l instead of N1. Then, instead of condition (5.8), we have

that, for all n ≥ max{N∗, N}, the estimates

f(Xn, Xn−1, . . . , Xn−l) ≥ H

(
c(ω)

2

)
, g2(Xn, Xn−1, . . . , Xn−l) ≥ H2

(
c(ω)

2

)
.

hold. Analogously, instead of estimates (5.12), we arrive at{
0 ≤ f(Xn, Xn−1, . . . , Xn−l) ≤ H9(ω),

0 ≤ g2(Xn, Xn−1, . . . , Xn−l) ≤ H2
9 (ω)

(5.17)

for n ≥ N3 + δ. Acting as in the proofs above, we find that, together with |Xn| → 0

(P-a.s.), the expression max{|Xn|, |Xn−1|, . . . , |Xn−l|} must converge to 0 (P-a.s.).

Remark 5.4. For equations with polynomial-type coefficients, we can immediately

derive estimates of the decay rate of solutions of equation (5.1). More precisely, let
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µ1 > 0 and µ2 > 0 be real constants such that

lim
u→0

f(u)

|u|µ1
= c1 > 0 and αn =

(
1

n+ 1

)β1

, β1 ≥ 0,(5.18)

lim
u→0

g2(u)

|u|µ2
= c2 > 0 and σ2

n =

(
1

n+ 1

)β2

, β2 ≥ 0,(5.19)

and |ξn+1| ≤ k < 1. Assume that conditions (5.2), (5.3), (5.4) are fulfilled. Then, for

all exponents γ satisfying γ > max{1−β1

µ1
, 1−β2

µ2
} > 0, we may conclude that

lim sup
n→+∞

(|Xn|nγ) = +∞.(5.20)

For the proof, we only note that all conditions of Theorem 5.2 are fulfilled. Therefore,

we must have limn→+∞ Xn = 0 (P-a.s.).

Suppose that, for some exponent γ0 > max{1−β1

µ1
, 1−β2

µ2
}, conclusion (5.20) is not

true. Because of γ0 >
1−β1

µ1
there exist (P-a.s.) finite numbers H10 = H10(ω) > 0 and

ε10 > 0 such that

0 ≤ lim sup
n→+∞

|Xn|

n
−1−ε10+β1

µ1

≤ H10(5.21)

(i.e. one may take ε10 = µ1γ0 − 1 + β1 > 0). Because of limn→+∞ Xn = 0 and Abel’s

series test, expression (5.21) together with the condition (5.18) imply that there exists

(P-a.s.) a finite random variable N10 = N10(ω) > 0 such that

+∞∑
i=N10

αif(Xi) ≤ (H10)
µ1c1

+∞∑
i=N10

(i+ 1)−β1(i+ 1)−1−ε10+β1

= H11

+∞∑
i=N10

(i+ 1)−1−ε10 < +∞(5.22)

with finite random variable H11 = (H10)
µ1c1. On the other hand, when γ0 > 1−β2

µ2
,

there exists (P-a.s.) finite numbers H12 = H12(ω) > 0 and ε12 > 0 such that

lim sup
n→+∞

|Xn|

n
−1−ε12+β2

µ2

≤ H12(5.23)

(take ε12 = µ2γ0−1+β2 > 0). Because of limn→+∞Xn = 0 and Abel’s series test, the

expression (5.23) together with condition (5.19) imply that there exists (a.s.) finite

number N12 = N12(ω) > 0 such that

+∞∑
i=N12

σ2
i g

2(Xi) ≤ (H12)
µ1c2

+∞∑
i=N12

(i+ 1)−β2i−1−ε12+β2

= H13

+∞∑
i=N12

(i+ 1)−1−ε12 < +∞(5.24)

where H13 = (H12)
µ1c2 is a finite random variable. Finally, from representation

(5.5), estimates (5.22) and (5.24), and using Lemma 2.4, we find some P-a.s. finite
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random variables H14(k) = H14(k)(ω), H15(k) = H15(k)(ω), K2(k) = K2(k)(ω) and

K3(k) = K3(k)(ω) > 0 such that

|Xn| ≥ |X0|H15(k) exp

(
−K2(k)

n∑
i=0

αi −K3(k)
n∑

i=0

σ2
i ηi

)

≥ |X0|H15(k) exp

(
−K2(k)

n∑
i=0

(i+ 1)−1−ε10 −K3(k)
n∑

i=0

(i+ 1)−1−ε12

)
.

Using this estimate from below, we can conclude that the limit limn→+∞ Xn cannot

be equal to 0 - a fact which contradicts to the already established conclusion from

Theorem 4.2.

Example. Fix nonrandom real constants p1, p2, α0, |σ0|, β1, ε > 0 and β2 ≥ 0. Con-

sider the nonlinear stochastic difference equation

Xn+1 = Xn − α0
Xn|Xn|p1

(n+ 1)1+ε(1 + |Xn|p1)
+ σ0

Xn|Xn|p2ξn+1

(n+ 1)β2(1 + |Xn|p2)
(5.25)

driven by square-integrable independent random variables (ξn+1)n∈N with |ξn+1| ≤ 1

for all n ∈ N and infi∈N E [ξi+1]
2 > 0. Now, we may take µ1 = p1, µ2 = 2p2,

c1 = α0, c2 = σ2
0, β1 = 1 + ε. Suppose that 0 ≤ β2 < 1/2 and 0 < |σ0| < 1.

Then, from the previous remark 5.4, it follows that, for all ε > 0 and all exponents

γ > (1−2β2)/(2p2), we have (P-a.s.) that lim supn→+∞ (|Xn|nγ) = +∞. As a matter

of fact, if 0 < β2 ≤ 1/2 then we do not need to require for limn→+∞ Xn = 0 (P-
a.s.) that |σ0| < 1 (because of |σ0|(n + 1)−β2 → 0 as n → +∞ here). However,

the requirements |σ0| > 0 and
∑+∞

i=0 E [ξi+1]
2/(i + 1)2β2 = +∞ are essential for a.s.

asymptotic stability in above example. Interestingly, this example explains how noise

can asymptotically stabilize (P-a.s.) the dynamics of its solution X = (Xn)n∈N, in

contrast to the related non-asymptotically stable deterministic subclass with σ0 = 0

and small 0 ≤ α0 < 1 for all ε > 0. Note that, when σ0 = 0 and 0 ≤ α0 < 1,

the monotonicity relation |Xn| ≥ |Xn+1| for (Xn)n∈N governed by (5.25) and the

estimation

|Xn+1| = |Xn| ·
(
1− α0

|Xn|p1
(n+ 1)1+ε(1 + |Xn|p1)

)
≥ |Xn|

(
1− α0

|X0|p1
(n+ 1)1+ε(1 + |X0|p1)

)
≥ |X0|

n∏
i=0

(
1− α0

(i+ 1)1+ε

)

= |X0| exp

(
n∑

i=0

ln

[
1− α0

(i+ 1)1+ε

])
≥ |X0| exp

(
− α0

1− α0

n∑
i=0

1

(i+ 1)1+ε

)

≥ |X0| exp

(
− α0

1− α0

+∞∑
i=0

1

(i+ 1)1+ε

)
can be established, hence limn→+∞ |Xn| > 0 for all |X0| > 0 (P-a.s.) - a fact which

obviously follows from taking the logarithm in the above estimate and applying the
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Taylor expansion to ln(1 − u) = −u/(1 − θ) > −|u|/(1 − α0) for |u| ≤ α0 < 1

afterwards. Furthermore, in the asymptotically stable case, an increasing parameter

β2 of its diffusion term ranging between 0 < β2 < 1/2 decreases the polynomial decay

rate γ. The same is true for increasing exponents p2.

6. ON SOME RELAXATION OF CONDITION (3.2)

The conditions (3.2) of uniformly bounded noise turn out to be too restrictive

in some cases. Let us relax these conditions a little. For this purpose, recall that a

nonnegative random variable N : (Ω,F ,P) → (N,B(N)) is called a Markov moment

if the following events satisfy {N = n} ∈ Fn (or equivalently {n < N} ∈ Fn) and are

independent of σ(X0) for all n ∈ N, where Fn = σ(ξ0, ξ1, . . . , ξn) is the naturally un-

derlying filtration belonging to the square-integrable sequence of independent random

variables (ξn+1)n∈N with the same moment properties as in previous sections. Now,

suppose that, instead of condition (3.2) we require that there exist finite nonrandom

numbers k ∈ (0, 1) and c∗ ∈ R1, and a P-a.s. finite Markov moment N = N(ω) such

that, for all ω ∈ Ω, we have

∀i ∈ N : |σiξi+1(ω)| ≤ c∗,(6.1)

∀i > N(ω) : |σiξi+1(ω)| ≤ k < 1,(6.2)
∞∑
i=0

pi < +∞, where pi = P({ω ∈ Ω : i < N(ω)}).(6.3)

We already know that a solution of equation (4.1) exists for all n ∈ N. For all ω ∈ Ω

and n > N(ω), we can represent solutions of (4.1) in the form

Xn+1 = XN ·
n∏

i=N

(1−αi +σiξi+1)=XN ·
n∏

i=N

(1 + σiξi+1)·
n∏

i=N

(
1− αi

1 + σiξi+1

)
.(6.4)

Define

ξ̄i+1(ω) :=
σiξi+1(ω)

(i+ 2)2|σiξi+1(ω)|

for all i ∈ N on Ω. Let ζNi+1(ω) = ξ̄i+1(ω) if i < N(ω) and ζNi+1(ω) = σiξi+1(ω) if

i ≥ N(ω). Hence, the decomposition

ζNi+1(ω) = ξ̄i+1(ω)I{ω:i<N(ω)} + σiξi+1(ω)I{ω:i≥N(ω)}

holds for all i ∈ N, where IS denotes the indicator functions of the subscribed ran-

dom set S. Set ζN0 = 0. Then, (ζNn )n∈N is a sequence of (Fn,B(R1))-measurable

independent random variables satisfying

−1 < −max{1/(i+ 2)2, k} ≤ ζNi+1(ω) ≤ max{1/(i+ 2)2, k} < 1.(6.5)
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for all i ∈ N. Hence, the two-sided estimate of (6.5) leads to

sup
i∈N

|κi+1| < 1(6.6)

where κi+1 = E [ζNi+1]. Because of E [σiξi+1] = 0 one can estimate

κi+1 = E [ζNi+1] =

∫
{ω∈Ω:i<N(ω)}

ξ̄i+1 dP(ω) +
∫
{ω∈Ω:i≥N(ω)}

ξi+1 dP(ω)

=

∫
{ω∈Ω:i<N(ω)}

ξ̄i+1 dP(ω)−
∫
{ω∈Ω:i<N(ω)}

σiξi+1 dP(ω) +
∫
Ω

σiξi+1 dP(ω)

≤
∫
{ω∈Ω:i<N(ω)}

dP(ω)
(i+ 2)2

+

∫
{ω∈Ω:i<N(ω)}

c∗ dP(ω) = pi

(
1

(i+ 2)2
+ c∗

)
.(6.7)

From exploiting the (Fi+1,B([−1, 1]))-measurability of random variables ζNi+1 due to

its construction based on the Markov moment N , and estimates (6.5) and (6.6), we

may conclude that

MN
n+1 =

n∏
i=0

1 + ζNi+1

1 + κi+1

(6.8)

started at MN
0 = 1.0 forms a nonnegative martingale with respect to {Fn}n∈N. More-

over, by applying Lemma 2.4 (or Lemma 2.5 similarly), we estimate

n=N−1∏
i=0

(1 + ξ̄i+1) ≤ exp

(
+∞∑
i=0

ξ̄i+1

)
≤ exp

(
+∞∑
i=0

1

(i+ 2)2

)
= H0 < +∞

n=N−1∏
i=0

(1 + ξ̄i+1) ≥ exp

(
+∞∑
i=0

ξ̄i+1 −
1

2(1− k)2

+∞∑
i=0

ξ̄2i+1

)

≥ exp

(
−

+∞∑
i=0

1

(i+ 2)2
− 1

2(1− k)2

+∞∑
i=0

1

(i+ 2)4

)
=H̄0>0,(6.9)

and
n=N−1∏

i=0

(1 + κi+1) ≤ exp

(
+∞∑
i=0

κi+1

)
≤ exp

(
+∞∑
i=0

pi(
1

(i+ 2)2
+ c∗)

)
=H1<+∞,

n=N−1∏
i=0

(1 + κi+1)≥exp

(
+∞∑
i=0

κi+1 −
1

2(1− k)2

+∞∑
i=0

κ2
i+1

)

≥ exp

(
−

+∞∑
i=0

pi(
1

(i+ 2)2
+ c∗)− 1

2(1− k)2

+∞∑
i=0

p2i (
1

(i+ 2)2
+ c∗)2

)
=H̄1>0,(6.10)

since the series
∑+∞

i=0 p
2
i satisfying 0 ≤

∑+∞
i=0 p

2
i ≤

∑+∞
i=0 pi < +∞ converges too.

Now, while returning to representation (6.4) of XN and using estimates (6.9) and

(6.10), one can carry out a martingale-based approach similar to the ones used in the

proofs of Theorems 3.1, 4.2 and 5.2. This leads to the following result for equation

(4.1).



A MARTINGALE APPROACH TO ALMOST SURE STABILITY OF SDES 151

Theorem 6.1. Assume that conditions (4.3), (4.6) (or (4.14)), (6.1), (6.2) and (6.3)

hold. Then, condition (4.4) is fulfilled if and only if the limit limn→+∞ Xn = 0 holds

P-a.s. for all solutions X = (Xn)n∈N of equation (4.1).

In a similar way we can prove an analogous result for equation (5.1).

Theorem 6.2. Assume that conditions (4.6), (5.2), (5.3), (5.4), (6.1), (6.2) and

(6.3) hold. Then, condition (4.4) is fulfilled if and only if the limit limn→+∞Xn = 0

holds P-a.s. for all solutions Xn of equation (5.1).

7. LOCAL ALMOST SURE ASYMPTOTIC STABILITY

Conditions (5.3) and (5.4) seem to be rather restrictive in some nonlinear situa-

tions. However, this kind of boundedness can be relaxed in view of local asymptotic

stability as follows (but this is not necessarily true for global stability). Let the

nonlinear equations (5.1) be driven by the square-integrable sequence of independent

random variables (ξn+1)n∈N with E [ξn+1] = 0 and ηn = E [ξn+1]
2 for n ∈ N. Moreover,

the functions f, g : R1 → R1 are supposed to be continuous and f(x) ≥ 0 for all

x ∈ R1. Furthermore, in the statement of Theorem 7.2 below, we also refer to the

set of conditions that the nonrandom real constants k, Kα, Kσ, Kξ and ε > 0 can be

chosen such that, for all n ∈ N,

0 ≤ αn ≤ Kα, |σn| ≤ Kσ, |ξn| ≤ Kξ,(7.1)

−k ≤ σnξn+1

KσKξ

≤ k, k ∈ (0, 1), 1− αn

Kα

+
σnξn+1

KσKξ

> 0,(7.2)

∀x ∈ R with |x| ≤ ε : Kαf(x) +KσKξ|g(x)| < 1,(7.3)

sup
x∈R:|x|≤ε

|g(x)|
f(x)

·Kξ ≤ inf
n∈N

αn

|σn|
.(7.4)

Remark 7.1. Condition (7.4) can be substituted by the requirement (P-a.s.)

∃ε > 0 : sup
n∈N,x∈R:|x|≤ε

[−αnf(x) + g(x)σnξn+1] ≤ 0,

and then the conclusion of Theorem 7.2 below remains still valid. One recognizes from

this relation that the divergence of
∑+∞

n=0 αn = +∞ is essential in order to obtain local

a.s. asymptotic stability, and that the case
∑+∞

n=0 σ
2
nηn = +∞ is not so important for

the local asymptotic stability as established by Theorem 7.2. This fact is due to the

a.s. monotonicity relation which we exploit in the proof below.

Theorem 7.2 (Local Asymptotic Stability). Assume that the conditions (5.2), (7.1)

– (7.4) are satisfied with positive constants Kα, Kσ, Kξ and ε > 0. Then, condition

(4.4) is fulfilled if and only if the limit limn→+∞ Xn = 0 holds P-a.s. for all solutions
Xn of equation (5.1) with initial values X0 bounded by |X0| ≤ ε.
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Proof. First of all, equation (5.1) is equivalently rewritten as

Xn+1 = Xn

(
1− α̂nf̂(Xn) + σ̂nĝ(Xn)ξ̂n+1

)
, where(7.5)

α̂n =
αn

Kα

, σ̂n =
σn

Kσ

, ξ̂n+1 =
ξn+1

Kξ

, f̂(x) = Kαf(x), ĝ(x) = KσKξg(x)(7.6)

for all n ∈ N and x ∈ R. Therefore, the splitting of equation (7.5) with new coefficients

(7.6) satisfies all assumptions of Theorem 5.2 for small values of |X0| ≤ ε. This fact

is supported by the monotonicity relation

|Xn+1| ≤ |Xn| ≤ ... ≤ |X0| ≤ ε

by induction on n ∈ N, provided that |X0| ≤ ε (P-a.s.) with ε > 0 resulting from

(7.3) and (7.4). To see the origin of this relation more clearly, take |X0| ≤ ε and

estimate

|Xn+1| = |Xn|
∣∣∣1− αnf(Xn) + g(Xn)σnξn+1

∣∣∣ ≤ |Xn|

since, due to (7.3) and (7.4), we find that

−1 ≤ −Kαf(Xn)−KσKξ|g(Xn)| ≤ −αnf(Xn) + |g(Xn)||σnξn+1|

≤ −αnf(Xn) + |g(Xn)||σn|Kξ ≤ 0

whenever |Xn| ≤ ε. Now, we may repeat the same proof-procedure as for Theorem 5.2

while restricting to initial values X0 with |X0| ≤ ε. Hence, the equivalence-statement

of Theorem 7.2 is verified.

Remark 7.3. If f, g are continuous and f(0) = g(0) = 0 then the condition (7.3) is

trivially satisfied for sufficiently small ε > 0, and hence not restrictive.

Example. Fix nonrandom real constants c1 > 0, c2 ̸= 0, p ≥ 0, r2 ≥ r1 ≥ 0 and

γ > 0. Consider

Xn+1 = Xn

(
1− c1

(n+ 1)r1
|Xn|p +

c2
(n+ 1)r2

|Xn|p+γξn+1

)
driven by independent random variables (ξn+1)n∈N with E [ξn+1] = 0 and |ξn+1| ≤ 1

for all n ∈ N. Suppose that r1 ≥ 0 is not greater than 1 (hence, the series
∑n

i=0 αi

diverges). Then, due to Theorem 7.2, there exists ε > 0 satisfying (7.3) - (7.4) such

that the trivial solution X ≡ 0 of equation (7.7) is locally a.s. asymptotically stable

for all initial values |X0| ≤ ε. To verify this statement, take αn = c1/(n + 1)r1 ,

f(x) = |x|p, σn = c2/(n+ 1)r2 , g(x) = |x|p+γ, Kα = c1, Kσ = |c2|, Kξ = 1 and choose

ε ≤ min(1, (c1/|c2|)1/γ, 1/(c1 + |c2|)1/p) such that

0 < sup
u∈R:|u|≤ε

|g(u)|
f(u)

·Kξ = εγ ≤ inf
n∈N

αn

|σn|
=

c1
|c2|

inf
n∈N

(n+ 1)r2−r1 =
c1
|c2|

and Kαf(u) +KσKξ|g(u)| = c1|u|p + |c2||u|p+γ < (c1 + |c2|)εp < 1

are ensured (cf. requirements (7.3) and (7.4)).
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Remark 7.4. It is possible to relax the uniform boundedness assumptions (3.2) on

noise terms σnξn+1 or to equations (3.1) driven by more general martingale-differences

(ξn+1)n∈N further. Another way to relaxation of (3.2) can be the application of tech-

niques as described in Schurz [42] which are aiming at an introduction of additional

terms stabilizing the original nonlinear equation (5.1). However, details of studying

such relaxations of conditions are beyond the scope of this paper.

Remark 7.5. There are possible extensions of martingale approach to systems of sto-

chastic difference equations (see [45]) and or systems of stochastic numerical methods

(for an application to drift-implicit stochastic Theta methods, see [44]) in any di-

mension. Even systems of delay equations with memory effects can be studied by

our approach (cf. [39]). The martingale approach applied to asymptotic stability of

continuous stochastic differential equations is also exploited in [2]. This paper repre-

sents just an attempt to nonlinear discrete stochastic difference equations using the

martingale approach. So, one can reckon that the martingale approach to clarify and

verify a.s. asymptotic stability is a very powerful tool for the qualitative study of

stochastic dynamical systems.
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