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ABSTRACT. In this paper, we consider a given infinite series in x of the form y(x) =
∑∞

k=0 bkx
k

expressed formally also by an infinite product as y(x) = Π∞
k=1(1 − x

ak
) into real positive zeros

ai, i = 1, 2, . . . ,∞ forming a strictly increasing sequence. For consideration of polynomials of degree

n, we replace suitably ∞ by n.

Using the known formal solution of a second linear differential y” = f(x)y, y(0) = y0, y
′(0) = y′0

in the form y(x) =
∑∞

k=0 dkx
k, we demonstrate that the above infinite product form of y(x) yields

the set of infinite equations of the form for a suitable f(x).∑∞
k=1(ak)

−p = cp, p = 1, 2, . . . ,∞ with c′ks depending on f(x), its derivarives at x = 0 and b′ks.

Recognizing the infinite matrix as the infinite Vandermonde matrix, some bounds for the zeros are

given.
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1. INTRODUCTION

We will be concerned with the zeros ai, i = 1, 2, . . . ,∞ of the convergent series

y(x) given by

(1.1) y(x) =
∞∑
k=0

bkx
k

also formally expressed as

(1.2) y(x) = Π∞
k=1

(
1− x

ak

)
where the zeros ak of y(x) are real, positive and

(1.3) ai+1 > ai > 0, i = 1, 2, . . . ,∞.
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Clearly,

(1.4) y(0) = b0 = 1, y′(0) = b1 = −
∞∑
k=1

1

ak
.

We note that for a polynomial of degree n, we replace suitably ∞ by n. A large

number of classical differential equation yield infinite series solutions with the above

mentioned properties of the zeros. An example is the Bessel’s function, particularly

of the first kind. Our plan is to use an earlier result [3] which gives the formal implicit

series solution of the differential system.

(1.5) y′′ = f(x)y, y(0) = y0, y′(0) = y′0

in the form

(1.6) y(x) =
∞∑
k=0

αkx
k

where αk’s depends entirely on f(x) and its derivatives at x = 0.

In section 2, we give the details of the coefficients αk in (1.6) in terms of f(x)

and its derivatives. In section 3, we consider the case when

(1.7) f(x) =

[
∞∑
k=1

1

ak − x

]2
−

∞∑
k=1

(
1

ak − x

)2

where it is shown that (see Appendix) using (1.7) for f(x) and using (1.2), (1.5) is

satisfied.

Now we can equate (1.1) with the resulting α′
ks on using (1.7) for f(x) yielding

(1.8) αk = bk, k = 0, 1, 2, . . . ,∞.

Also in section 3, we give expressions for derivatives of f(x). In section 4, we

demonstrate that (1.8) reduces to

∞∑
k=1

a−p
k αk = cp, p = 1, 2, . . . ,∞.

with cp is depending on f(x), its derivatives at x = 0 and bk’s.

2. THE SOLUTIONS OF (1.5)

From [3], we have the following theorem and a lemma concerning the formal

solution of (1.5).
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Theorem 2.1. For the second order linear differential system (1.5), the formal so-

lution is given by, with a = 0,

(2.1)

y(x) =
∑∞

k=0 αkx
k

= y(0) + xy′(0)

+
∑∞

k=0

{
1

(2k+2)!

[∑l
s1=0

∑k+1
j=1 Pj(s1, 2k, 0)

]
x2k+2

}
+
∑∞

k=0

{
1

(2k+3)!

[∑l
s1=0

∑k
j=1 Pj(s1, 2k + 1, 0)

]
x2k+3

}
= b0 + b1x+

∑∞
k=0 b2k+2x

2k+2 +
∑∞

k=0 b2k+3x
k+3

using (1.6) and where

(2.2)

Pq(s1, k, 0) =∑k−2(q−1)
s2=s1

· · ·
∑k−2(q−1)

sq=sq−1

[(
k

sq+2(q−1)

)( sq+2(q−2)
sq−1+2(q−2)

)
· · ·
(
s2
s1

)
f (k−2(q−1)−sq)(0)f (sq−1−sq−2)(0)

· · · f (s2−s1)(0)y(s1)(0)
]
.

The following lemma establishes the recurvese relation between Pq and Pq−1.

Lemma 2.2.

Pq(sq, k, 0) =

k−2(q−1)∑
s2=s

fk−s1−2(q−1)(0)Pq−1(s1, s2 + 2(q − 2), 0)

For demonstration purpose, we give below first few terms of y(x) as solutions of

(1.6).

(2.3)

y(x) = y(0) + xy′(0) + x2

2!
y”(0) + x3

3!
y(3)(0) + x4

4!
y(4)(0) + x5

5!
y(5)(0) + · · ·

= y(0) + xy′(0) + x2

2!
f(0)y(0) + x3

3!
[f ′(0)y(0) + f(0)y′(0)]

+x4

4!
[y(0)(f”(0) + f 2(0)] + 2y′(0)f ′(0)]

+x5

5!
[y(0)(f (3)(0) + 4f(0)f ′(0) + y′(0)(3f”(0) + f 2(0))] + · · ·

=
∑∞

k=0 bkx
k

It is noted that in evaluation of bk, the highest power of the derivatives of f(x)

at x = 0 is k − 2. In summary, we have the infinite numbers of equations given by

k = 0, 1, 2, . . . ,∞ with

b0 = 1, b1 = −
∞∑
k=1

1

ak
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and

b2k+2 =
1∑

s1=0

k+1∑
j=1

Pj(s1, 2k, 0), b2k+3 =
1∑

s1=0

k∑
j=1

Pj(s1, 2k + 1, 0),

where Pq’s are given by (1.12).

Again, we note that bk evaluation involves f (k−2)(0) which in turn gives an ex-

pression of Qk.

3. PROPERTIES OF f(x)

In this section, we develop expressions for f(x) and its derivatives at x = 0, where

from (1.7), we have

(3.1) f(x) =

(
∞∑
k=1

1

αk − x

)2

−
∞∑
k=1

1

(αk − x)2
.

Using the identity

(3.2)
∞∑
k=1

g2k = (
∞∑
k=1

gk)
2 −

∞∑
k=1

∞∑
j=1,j ̸=k

gkgj.

We can rewrite f(x) as

(3.3)

f(x) =
∞∑
k=1

∞∑
j=1,j ̸=k

{
1

(αk − x)

1

(αj − x)

}
=

∞∑
k=1

∞∑
j=1,j ̸=k

{[
1

(αk − x)
− 1

(αj − x)

]
1

(αj − αk)

}
.

For convenience, we will use the notation

(3.4) Qp =
∞∑
k=1

zpk, p = 1, 2, 3, . . . ,∞, Zk =
1

αk

which yields on using (3.1)

(3.5) f(0) = Q2
1 −Q2

and from (3.4)

(3.6) Q1 = −
∞∑
k=1

1

αk

= −
∞∑
k=1

Zk = −b1

Differenting f(x) in (3.3) p times we get

f (p)(x) = p!
∞∑
k=1

∞∑
j=1,j ̸=k

[
1

(αk − x)p+1
− 1

(aj − x)p+1

]
1

aj − ak
.
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yielding on using (3.4)

(3.7)

f (p) = p!
∑∞

k=1

∑∞
j=1,j ̸=k

[
1

αp+1
k

− 1

ap+1
j

]
1

aj−ak

= p!
∑∞

k=1

∑∞
j=1,j ̸=k

[
αp+1
j −αp+1

j

ap+1
k ap+1

j

]
1

aj−ak

= p!
∑∞

k=1

∑∞
j=1,j ̸=k

αp
j+αp−1

j αk+···+αjα
p−1
k +αp

k

αp+1
j αp+1

k

= p!
∑∞

k=1

∑∞
j=1,j ̸=k[Z

p
k + Zp−1

k Zj + · · ·+ ZkZ
p−1
j + Zp

j ]ZkZj

= p!
∑∞

k=1

∑∞
j=1[Z

p
k + Zp−1

k Zj + · · ·+ ZkZ
p−1
j + Zp

j − (p+ 1)Zp+2]ZkZj

= p![Q1Qp+1 +Q2Qp + · · ·+Qp+1 − (p+ 1)Qp+2]

= p!
{∑p+1

k=1[QkQp+2−k]− (p+ 1)Qp+2

}
4. CASE n = 3

In this section, we demonstrated the theory to apply to (1.8) using (1.13), (3.6)

and (3.7). We have

b0 = y(0) = 1.

(4.1) b1 = y′(0) = −Q1 yielding Q1 = −b1

b2 = f(0)y(0) = Q2
1 −Q2 yields

(4.2) Q2 = Q2
1 − b2 = b21 − b2

(4.3)

b3 = 1
3!
[f ′(0)y(0)f (0)y

′(0)]

= 1
3!
[Q1Q2 +Q2

2 − 2Q3 −Q1(Q
2
1 −Q1)]

= 1
3!
[2Q1Q2 +Q2

2 −Q2
1 − 2Q3]

yielding

(4.4)

Q3 = 3!
2
[2Q1Q2 +Q2

2 −Q3
1 − b3]

= 3!
2
[−2b1(b

2
1 − b3) + (b21 − b2)

2 + b31 − b3]

= 3!
2
[−2b31 + 2b2b2 + b41 + b32 − 2b21b

3
2 + b31 − b3]

= 3[−b31 + 2b1b2 + b41 + b22 − 2b21b
2
2 − b3]
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Equations (4.1)-(4.4) illustrate (1.9) when ∞ is replaced by 3.

Now we will show that

y(x) = Π∞
k=1(1−

x

αk

)

satisfies

y′′(x) = y(x)f(x)

where f(x) us given by (1.7). We have

y′(x) = Π∞
k=1(1−

x

αk

)
∞∑
k=1

(− 1

αk

)(
1

1− x
α

) = −y(x)
∞∑
k=1

1

αk − x

giving

y′′(x) = y(x)
∞∑
k=1

1

(αk − x)2
− y′(x)

∞∑
k=1

1

αk − x

Substituting for y′(x), we get

y′′(x) = y(x)


∞∑
k=1

1

(αk − x)2
+

[
∞∑
k=1

1

αk − x

]2 = y(x)f(x)

5. BOUBDS FOR THE ROOTS OF POLYNOMIAL VANDERMONDE

SYSTEM

Our aim in this section is to give suitable bounds for real variables 0 < x1 < x2 <

· · · < xm satisfying

x1 + x2 + · · ·+ xm = c1,

x2
1 + x2

2 + · · ·+ x2
m = c2,

· · · · · · · · ·

xm
1 + xm

2 · · ·+ xm
m = cm.

Let f(Y ) ∈ R[Y ] be the monic polynomial of degree m whose roots are the numbers

xi (i = 1, · · · ,m), that is,

(5.1) f(Y ) =
m∏
i=1

(Y − xi) =
m∑
j=0

sjY
m−j.

By virtue of the well known Newton’s identities the coefficients sj are multivariate

polynomial functions sj = sj(c1, · · · , cm) of the cj. For example, if m = 3 then it is

well-known that 3s3 =
1
2
c31 − 3

2
c1c2 + c3.

We recall [4] that the (quadratic) norm N(g) of a polynomial g(Y ) =
∑d

j=0 ajY
d−j

∈ R[Y ] of degree d is defined as

N(g) =

√√√√ d∑
j=0

aj2.
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By [4, Proposition 2.7.1] the minimal distance Sep(g) between the roots of g is given

by:

(5.2) Sep(g) > d−
d+2
2 |∆|

1
2N(g)1−d,

where ∆ := ∆(g) stands for the discriminant of the polynomial g and may be found

as

∆ = (−1)
d(d−1)

2 Res(g, g′).

where g′ stands for the formal derivative of g and Res(f, f ′) denotes the resultant of

the polynomials f and f ′. Recall that Res(f, f ′) is defined as the determinant of a

matrix defined in terms of the coefficients of the polynomials f and f ′.

Applying (5.2) to the polynomial f above we thus obtain:

Sep(f) > m−m+2
2 |Res(f, f ′)|

1
2N(f)1−m.

Note that all quantities involved in the RHS of the preceding inequality can be ex-

pressed in terms of the coefficients sj of f and hence in terms of the ci. By the bound

of Cauchy [5, Theorem 1.1.2] we have

xn < ρ := 1 + max{|sj|}.

The following bounds for xi are now immediate from the discussion above.

x1 < ρ− (m− 1)Sep(f),

x2 < ρ− (m− 2)Sep(f),

· · · · · ·

xi < ρ− (m− i)Sep(f),

· · · · · ·

xn < ρ.
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