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ABSTRACT. We estimate the drift in the semilinear SPDE by approximation by space and time

discretization. We study the asymptotic properties of the approximate maximum likelihood estima-

tors and also the rates of convergence. We also study parameter estimation in controlled semilinear

SPDE.
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1. Introduction and Preliminaries

Parameter estimation in semilinear stochastic partial differential equations (SPDEs)

has received some recent attention. Altermeyer, Bretschneider, Janak and Reiss

(2022) studied parameter estimation in an SPDE model for cell repolarization. Al-

termeyer, Cialenko and Pasemann (2023) studied parameter estimation for semilin-

ear SPDEs from local measurements. Cialenko, Kim and Pasemann (2023) studied

statistical analysis of discretely sampled semilinear SPDEs through a power vari-

ation approach. Altermeyer, Bretschneider, Janak, and Reiss (2021) studied non-

parametric estimation for linear SPDEs from local measurements. Pasemann and

Stannnat (2020) studied Drift estimation for stochastic reaction-diffusion systems.

Pasemann, Flemming, Alonso, Beta and Stannat (2021) studied diffusivity estima-

tion for activator-inhibitor models with application to the intracellular dynamics of

the actin cytoskeleton.
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Parameter estimation in infinite dimensional stochastic differential equations was

first studied by Loges (1984). When the length of the observation time becomes

large, he obtained consistency and asymptotic normality of the maximum likelihood

estimator (MLE) of a real valued drift parameter in a Hilbert space valued SDE. Koski

and Loges (1986) extended the work of Loges (1984) to minimum contrast estimators.

Koski and Loges (1985) applied the work to a stochastic heat flow problem. Bayes

and sequential estimation in Hilbert space valued stochastic differential equations

were studied in Bishwal (1999). Bishwal (2008) studied asymptotics of maximum

likelihood and Bayes estimators in finite and infinite dimensional SDEs.

In the spectral approach with large number of Fourier modes, the Bernstein-von

Mises theorem and spectral asymptotics of Bayes estimators for parabolic SPDEs were

studied in Bishwal (2001). Bernstein-von Mises theorem and Bayesian asymptotics for

small noise intensity for parabolic stochastic partial differential equations were studied

in Bishwal (2018). Hypothesis testing for fractional stochastic partial differential

equations with applications to neurophysiology and finance was studied in Bishwal

(2017). Bishwal (2021) studied parameter estimation and hypothesis testing in non-

linear SPDE based on continuous and discrete observations. Bishwal (2022a) studied

estimation in SPDE by mixingale estimation function method based on observations

at the jump times of a Poisson process.

In this paper we consider discretization of the spectral approach and also temporal

discretization. Within spectral approach, there has not been much attempt so far to

quantify the amount of spatial information needed to recover its asymptotics for

drift estimation. We determine how much spatial information is needed in order to

reconstruct spectral asymptotics. Cialenko et al. (2020) consider the discretization

in time of the maximum likelihood estimator from the spectral approach.

Pasemann and Stannnat (2020) studied asymptotic normality of the AMLE of

the drift parameter in a semilinear SPDE, the reaction-diffusion equation, based on

finite dimensional approximation to the solution trajectory obtained by truncation in

the Fourier space. Burgers equation and Cahn-Hillard equations are treated as special

cases. However, our estimators are based on spatial-discretization. We also obtain

rates of convergence of the estimators. In the later part of the paper we consider

controlled SPDE where the unknown parameter appears in the nonlinear part.

Let H be a separable Hilbert space. Let A be an infinitesimal generator of an

analytical semigroup of negative type. Let Wt be Wiener process taking values in H

with covariance operator Q. Consider the stochastic evolution equation

dut = (θAut + f(t, ut))dt+ σ(ut)dWt, u0 = u0 ∈ U (1.1)

where U is a certain interpolation space of H and A.
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The functions f and σ satisfy certain smoothness conditions for the existence and

uniqueness of solution of the evolution equation.

Fix γ, α, ρ, ασ such that γ > 0, 0 ≤ τ ≤ 1/2, 0 ≤ ρ < min(1/2, γ) and ρ+τσ < ρ.

We assume

(A1) (i) f is Lipschitz continuous:

‖f(t, x)− f(t, y)‖δ ≤ C‖x− y‖δ

for δ ∈ [ρ, γ] and x ∈ D((−A)γ)).

(ii) f satisfies linear growth

‖f(t, x)‖2
δ ≤ K(1 + ‖x‖2

δ).

for δ ∈ [ρ, γ] and x, y ∈ D((−A)γ)).

(iii) f is Hölder continuous in time

‖f(t, x)− f(s, x)‖ρ ≤ C|t− s|min(1/2,γ−ρ−α)‖x‖min(1+ρ+α+ασ , γ+α)

for x, y ∈ D((−A)γ)).

(A2) Assume that σ is an operator such that (−A)−ασ : X → L0
2 is bounded and

satisfies the following conditions:

(i) (−A)−ασσ is Lipschitz continuous in space, i.e.,

‖(−A)−ασ [σ(x)− σ(y)]‖L0,δ
2
≤ C‖x− y‖δ

for δ ∈ [ρ, γ] and x, y ∈ D((−A)γ)).

(ii)

‖(−A)−τσ(x)‖L0,δ
2
≤ C‖x‖δ

for δ ∈ [ρ, γ].

(iii) (−A)−ασ is globally Lipschitz, i.e., satisfies

‖(−A)−α[σ(x)− σ(y)]‖L0,δ
2
≤ ξ‖x− y‖δ

for δ ∈ [ρ, γ] and x, y ∈ D((−A)γ)).

(A3) The semigroup TA(t) associated with the operator A satisfies∫ t

0

‖TA(t)(x− y)‖2ds ≤ (ζ + φ(t))‖x− y‖2
δ

for all x, y ∈ D((−A)γ)). for all δ ∈ [0, γ], such that φ(t)→ 0 as t→ 0.

Space Discretization: Method of Moments

A function f in H can be written as f =
∑∞

ı=1 fiφi where φi is a complete set of

basis function in H. The approximation is done by taking a finite number of basis
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function. Define the dn dimensional subspace Hn = span{φi : 1 ≤ i ≤ dn} and the

approximation

f ≈
dn∑
i=1

φifi. (1.2)

Substituting the approximation f into the operator equation we get

dn∑
i=1

fiAφi = g.

Now taking the inner product of g with a set of test functions {χj, 1 ≤ j ≤ dn}, we

can write
dn∑
i=1

fi〈Aφi, χj〉 = 〈g, χj〉, 1 ≤ j ≤ dn

which can be written in the matrix form [aij][fi] = [gj] where

ai,j = 〈Aφi, χj〉

and gj = 〈χj, g〉, 1 ≤ i ≤ dn1 ≤ j ≤ dn.

The approximating operator An is now defined by the matrix An = (ai,j)
dn
i,j=1, i.e.

An := PnAEn where the projection operator is defined by

(Pnf)i = 〈f, χi〉, i = 1, . . . , dn

where the ’embedding’ or ’interpolation’ operator En is given by

Enc =
dn∑
i=1

ciφi, c ∈ Rdn .

If χj = φj, then the method is known as Galerkin method. Pn coincided with the

orthogonal projection operator on the subspace {φi : 1 ≤ i ≤ dn}. In spectral meth-

ods, one takes usually orthogonal rectangular function, e.g., eigenfunction. In this

case the projection operator Pn coincides with the orthogonal projection operator

on the subspace {φi : 1 ≤ i ≤ dn}. In finite elements, one uses the variation form of∑dn
i=1 fiAφi = g to reduce the regularity assumptions on the basis. Here it is sufficient

as regularity condition that φi ∈ D((−A)1/2), 1 ≤ i ≤ dn. A typical example is finite

difference.

The approximation will satisfy

dunt + θAnu
n
t dt = Pnf(t, Enu

n
t )dt+ σn(Enu

n
t )dPnWt, un0 = Pnu

0 (1.3)

where σn is a bounded operator on Hn approximating σ such that trace (σnQnσ
T
n ) is

exact on EnPnH, that is,

trace〈(σQσT )φj, ξi〉 = trace〈(σnQnσ
T
n )φj, ξi〉, i, j = 1, 2, . . . , dn

where Qn = PnQEn. Notice that PnWt is a dn-dimensional Wiener process with

nuclear covariance matrix Qn.
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The space discretization satisfy the following assumptions:

(B1) (i) H,H1, H2, . . . are all real or complex Banach spaces. All norms will be

denoted by ‖ · ‖.

(ii) Pn is a bounded linear operator satisfying ‖Pnx‖ ≤ p‖x‖ for all n ≥ 1, x ∈ H
and for some p ≥ 0.

(iii) En is a bounded linear operator satisfying ‖Enx‖ ≤ q‖x‖ for all n ≥ 1, x ∈ H
and for some q ≥ 0.

(iv) PnEnx = x for all n ≥ 1 and x ∈ Hn.

(B2) Stability condition: An is a bounded operator and there exists some M <∞
and ω ∈ R such that

‖eAnt‖ ≤Meωt for t ≥ 0, n ≥ 1.

Time Discretization

We discretize the time t at the same time as the space H. Let τn be the time step

size corresponding to the space Hn. Following are the time discretization schemes.

The explicit Euler scheme is given by

un(t+ τn)− un(t)

τn
+ θAnun(t) = Pnf(t, Enun(t)) + σn(Enun(t))∆Bn(t)

where ∆Bn(t) := Bn(t+ τn)−Bn(t) and Bn(t) is a dn-dimensional Brownian motion

with nuclear covariance Qn = PnQEn.

We discuss the simulation of dn-dimensional Brownian motion B. To simulate

Bn ∼ BM(µ,Σ), we first find a matrix S such that SST = Σ. If S is d × k,

let Z1, Z2, . . . be independent standdard normal in Rk. Set B0 = 0. and Bti+1
=

Bti + µ(ti+1− ti) +
√
ti+1 − tiSZi, i = 1, 2, . . . , n− 1. Thus simulation of BM(µ,Σ) is

straightforward once sigma has been factored.

Let vnk := unkτn . Let ξnk are dn-dimensional standard Gaussian random variables

distributed according to N(0, Qn) where Qn = PnQEn is the nuclear covariance op-

erator.

Explicit Euler Scheme (Forward Rectangular Rule):

vnk+1 = (1 + τnθAn)vnk + τnPnf(kτn, Env
n
k ) +

√
τnσn(vnk )ξnk , vn0 = Pnu

0.

Implicit Euler Scheme (Backward Rectangular Rule):

vnk+1 = (1− τnθAn)−1vnk + τnPnf(kτn, Env
n
k ) +

√
τnσn(vnk )ξnk , vn0 = Pnu

0.

Crank-Nicholson Scheme (Trapezoidal Rule):

vnk+1 = (1− τn
2
θAn)−1(1 +

τn
2
θAn)vnk + τnPnf(kτn, Env

n
k ) +

√
τnσn(vnk )ξnk , vn0 = Pnu

0.
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For t = kτn, the solution is given by vn(t) = vkn. Between the points kτn and (k+

1)τn, the solution can be linearly interpolated, that is by the polygonal approximation

vn(t) = vkn + τ−1
n (t− kτn)(vk+1

n − vkn).

Homogeneous solution at a grid point kτn is approximated by Fτ (An)k where

Fτ (A) equals (I + τA) in case of Explicit Euler scheme, equals (I + τA)−1 incase of

Implicit Euler scheme, equals (I−τA)−1(I+ 1
2
τA) incase of Crank-Nicholson scheme.

In the Crank-Nicholson scheme, the discretization is done symmetrically around the

point kτn + 1
2
τn.

(B3) σ : H → H is unbounded and the stability condition

‖(1 +
τn
2
An)k‖ ≤M exp(kτn)

is satisfied in the case of Crank-Nicholson scheme. If σ is bounded (B3) is not neces-

sary. However, we restrict ourselves to the unbounded case.

In the case of implicit Euler scheme√
E[‖vnk − u(kτn)‖ρ]2 ≤ C

(
τmin(1/2,γ−ρ−τσ)
n + τn ‖ (−An)max(0,1+ρ+τσ−γ) ‖

+κ(n)[ηγ−ε(n) + (kτn)−ρ + 1]ηγ(n)
)
.

In the case of explicit Euler scheme√
E[‖vnk − u(kτn)‖ρ]2 ≤ C

(
τmin(1/2,γ−ρ−ασ)
n + κ(n)[ηγ−ε(n) + (kτn)−ρ + 1]ηγ(n)

)
.

In the case of Crank-Nicholson scheme√
E[‖vnk − u(kτn)‖ρ]2 ≤ C

(
τmin(1/2,γ−ρ−τσ)
n + κ(n)[ηγ−ε(n) + (kτn)−ρ + 1]ηγ(n)

)
.

The rate is same as the implicit Euler scheme. However under (B3), we have

second order convergence of the Crank-Nicholson scheme. See Hausenblas (2003).

2. Space Discretized AMLE

Let P T
θ the measure generated by the solution {u(t), t ∈ [0, T ]} of the SPDE on the

space C([0, T ];H) with the associated Borel σ-algebra BT .

Note that condition (A1) is equivalent to∫ T

0

‖Au(s)‖2ds <∞ a.s. for fixed ε.

Thus under (A1), for different θ the measures Pθ are mutually absolutely continuous.
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The Radon-Nikodym derivative (likelihood) of P T
θ with respect to P T

θ0
is given by

LθT (u) :=
dPTθ
dPTθ0

(u) = exp

{
(θ − θ0)

∫ T

0

(Au(s), du(s)) − 1

2
(θ2 − θ2

0)

∫ T

0

‖Au(s)‖2ds

−(θ − θ0)

∫ T

0

(Au(s), f(s, u(s))ds

}
.

(2.1)

Maximizing LθT (u) with respect to θ provides the maximum likelihood estimator

(MLE) given by

θ̂T =

∫ T
0

(Au(s), du(s)− f(s, u(s))ds)∫ T
0
‖Au(s)‖2ds

. (2.2)

Let uN(t) be the N -dimensional approximation to the solution trajectory ob-

tained by truncation in Fourier space. The process uN(t) generates a probability

measure on the space of continuous paths with values in RN , denoted by P T,N
θ . Of

course, different values of θ lead to different measures on path space. Due to Girsanov

theorem, the density of P T,N
θ with respect to P T,N

θ0
is given by

LθT,N(uN) :=
dPT,Nθ

dPT,Nθ0

(uN) = exp

{
(θ − θ0)

∫ T

0

(AuN(s), duN(s)) −
1
2
(θ2 − θ2

0)
∫ T

0
‖AuN(s)‖2ds

−(θ − θ0)

∫ T

0

(AuN(s), f(s, uN(s))ds

}
.

(2.3)

Maximizing LθT,N(uN) with respect to θ provides the approximate maximum like-

lihood estimator (AMLE) given by

θ̂N,T =

∫ T
0

(AuN(s), duN(s)− f(s, uN(s))ds)∫ T
0
‖AuN(s)‖2ds

. (2.4)

Paseman and Stannat (2021) showed that the estimator is consistent and asymp-

totically nomal as the number of Fourier coefficients becomes large.

Now we proceed through the Galerkin method. We define the AMLE as the

conditional least squares estimator (CLSE), due to Gaussian noise they are equal.

We need the following result on AML estimation in the sequel.

Lemma 2.1 (Le Breton (1976, page 138)). Let (Ω, A, {Pθ; θ ∈ R}) be a statistical

structure dominated by P , with a log-likelihood function L(θ, ·). Let {An, n ≥ 1} be

a sequence of sub-σ-algebras of A and, for all n ≥ 1, Ln(θ, ·) be the log-likelihood

function on the statistical structure (Ω, An, {Pθ|An ; θ ∈ R}) or any An - measurable

function. Let us suppose that the following assumptions are satisfied.

(C1) L and Ln are twice continuously differentiable with derivatives L(i) and L
(i)
n

respectively, i = 1, 2.
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(C2) L(2) does not depend on θ and P -almost surely strictly negative.

(C3) L(1)(θ, ·) = 0 admits P almost surely a unique solution θ̂.

(C4) There exists a sequence {γn, n ≥ 1} of positive numbers converging to zero

and for i = 1, 2 and all K > 0 there exists a sequence {∇i
n(K), n ≥ 1} of positive

random variables such that θ ∈ R,

(a) {∇i
n(K), n ≥ 1} is bounded in Pθ probability,

(b) sup
|θ|≤K

|L(i)
n (θ, ·)− L(i)(θ, ·)| ≤ γn∇i

n(K)Pθ almost surely.

Then there exists a sequence {θn, n ≥ 1} of random variables satisfying

(i) θn is An-measurable,

and for all θ ∈ R

(ii) lim
n→∞

Pθ[L
(1)
n (θn) = 0] = 1

(iii) Pθ − lim
n→∞

θn = θ̂, where θ̂ is the MLE based on L.

Furthermore, if {θ′n, n ≥ 1} is another sequence of random variables satisfying (i),

(ii) and (iii), then for all θ ∈ R

lim
n→∞

Pθ[θn = θ′n] = 1.

Lastly, if {θn, n ≥ 1} is a sequence satisfying (i), (ii) and (iii) then for all θ ∈ R, the

sequence {γ−1
n (θn − θ̂), n ≥ 1} is bounded in Pθ probability.

Forward AMLE (Based on the Explicit Euler scheme):

Define

Fn,T =
n∑
k=1

[
vnk+1 − (1 + τnθAn)vnk − τnPnf(kτn, v

n
k )

√
τnσn(vnk )

]2

(2.5)

and

θ̂n,T = argminθFn,T

which is given by

θ̂n,T =

∑n
k=1 Anv

n
k (vnk+1 − vnk )− τnPnf(kτn, v

n
k )∑n

k=1(Anvnk )2τn
.

The following rate of convergence holds for the forward estimator:

Theorem 2.1

θ̂n,T − θT = OP

(
τmin(1/2,γ−ρ−ασ)
n + κ(n)[ηγ−ε(n) + (kτn)−ρ + 1]ηγ(n)

)
.

Proof. We use Le Breton’s general theorem on AML estimation (Lemma 2.1). As

one can see, in the linearly parametrized case, the rate of convergence of approximate

MLE to continuous MLE is given by the rate of convergence of the corresponding
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approximate log-likelihood to continuous log-likelihood.

Backward AMLE (Based on the Implicit Euler Scheme)

Define

Gn,T =
n∑
k=1

[
vnk+1 − (1− τnθAn)−1vnk − τnPnf(kτn, v

n
k )

√
τnσn(vnk )

]2

(2.6)

and

θ̃n,T = argminθGn,T

which is given by

θ̃n,T =

∑n
k=1Anv

n
k+1(vnk+1 − vnk )− τnPnf(kτn, v

n
k )∑n

k=1(Anvnk )2τn
.

The following rate of convergence holds for the backward estimator:

Theorem 2.2

θ̃n,T − θT = OP

(
τmin(1/2,γ−ρ−ασ)
n + τn‖(−An)max(0,1+ρ+τσ−γ)‖

+κ(n)[ηγ−ε(n) + (kτn)−ρ + 1]ηγ(n)
)
.

Proof. It is a direct consequence of Lemma 2.1.

Midpoint AMLE (Based on the Crank-Nicholson Scheme)

If in addition, σ : H → H is unbounded and satisfies the stability condition

‖(1 +
τn
2
An)k‖ ≤Mekτn

or σ : H → H is bounded, then define

Jn,T =
n∑
k=1

[
vnk+1 − (1 + τnθAn)(

vnk+vnk+1

2
)− τnPnf(kτn, v

n
k )

√
τnσn(vnk )

]2

(2.7)

and

θ̌n,T = argminθJn,T

which is given by

θ̌n,T =

∑n
k=1An(

vnk+vnk+1

2
)(vnk+1 − vnk )− τnPnf(kτn, v

n
k )∑n

k=1(Anvnk )2τn
.

The following rate of convergence holds for the trapezoidal estimator:
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Theorem 2.3

θ̌n,T − θT = OP

(
τmin(1/2,γ−ρ−τσ)
n + κ(n)[ηγ−ε(n) + (kτn)−ρ + 1]ηγ(n)

)
.

The rate is same as the backward estimator.

Proof. It is a direct consequence of Lemma 2.1.

3. Approximate Maximum Likelihood Estimation
in Controlled Semilinear SPDE

We estimate the drift in the controlled semilinear SPDE by approximation by space

and time discretization. We study parameter dependent adaptive, ergodic cost sto-

chastic control problem in a semilinear SPDE. Adaptive control problem is to find a

family of consistent estimates of the unknown parameter and to determine an adap-

tive control from a family of admissible controls such that the optimal ergodic cost is

achieved. Oksendal and Sulem (2007) applied stochastic control problem to finance.

Stannat and Wessels (2022) provided necessary and sufficient conditions for optimal

control of semilinear stochastic partial differential equations. Clairon and Samson

(2022) studied optimal control for parameter estimation in partially observed hypoel-

liptic stochastic differential equations. Bishwal (2022b) studied parameter estimation

in stochastic volatility models.

Let H be a separable Hilbert space. Let A be an infinitesimal generator of an

analytical semigroup of negative type. Let Wt be Wiener process taking values in H

with covariance operator Q. Consider the stochastic evolution equation

dXt = (AXt + f(θ,Xt)− Yt)dt+
√
QdWt, X0 = x ∈ H. (3.1)

Controls Y are taken from a set of admissible controls Y which consist of pro-

gressively measurable processes Y : R+×Ω→ H such that P (Yt ∈ B(r0)) = 1 for all

t ≥ 0 where B(r0) ⊂ H stands for a centered ball with radius r0.

Let the family of admissible controls be given by Y = {Y : R+ × Ω → BR | Y
is measurable and (Ft) adapted} where BR = {y ∈ H : |y| > R} and R > 0 is fixed.

A family of Markov control Y (t) = Ỹ (Xt) is also considered where Ỹ ∈ Ỹ where

Ỹ = {Ỹ : H → BR| is measurable}.

The cost functionals J(x, λ, Y ) and J̃(x, Y ) are given by

J(x, λ, Y ) = Ex,Y

∫ ∞
0

e−λt(ψ(Xt + h(Yt))dt



LIKELIHOOD ESTIMATION IN SEMILINEAR SPDE 175

and

J̃(x, Y ) = lim inf
T→∞

Ex,Y
1

T

∫ T

0

e−λt(ψ(Xt + h(Yt))dt

where λ > 0, h : BR → R+, and ψ : H → R, that describe a discounted and ergodic

cost control problem, respectively.

The adaptive control problem is to find a family of strongly consistent estimates

of the unknown parameter θ and to determine an adaptive control from the family of

admissible controls such that the optimal ergodic cost is achieved. Thus one wants

to achieve infY ∈Y J̃(x, Y ).

Duncan et al. (2000) studied the linearly parametrized case. The following are

the standing assumptions of this section:

(D1) f is Lipschitz and Gateaux differentiable and A generates a strongly con-

tinuous semigroup on H.

(D2) f is Hölder continuous in θ:

|f(θ1, x)− f(θ2, x)| ≤ k|θ1 − θ2|α(1 + |x|p), θ1, θ2 ∈ θ, x ∈ H.

(D3) A generates a C0-semigroup (St) on H. Moreover, there exists ω ∈ R such

that

‖St‖HS ≤ e−ωt, ∀ t ≥ 0

for all t ≥ 0 and some ω > 0.

(D4) There exists γ > 0 such that
∫ T

0
t−γ‖St‖HSdt <∞ for some T > 0.

(D5)

〈Ax+ f(θ, x+ y), x〉 ≤ −K|x|2 + g(|y|)|x|, x ∈ D(A), y ∈ H

where g : R+ → R+ is a continuous increasing function.

(D6) (Identifiability condition) For every θ ∈ Θ, θ 6= θ0, there exists x ∈ H such

that f(θ, x) 6= f(θ0, x).

Let P : H → P (H) be a fixed finite dimensional projection on H with range in

Dom(A∗) that is chosen to satisfy (D7) given below:

(D7) For each admissible control law

lim inf
t→∞

∫ t

0

|Pf(θ,Xs)|2ds > 0 a.s.

If (D2) is satisfied, then the nonlinear equation (3.1) has a unique mild solution

Xt = Stx+

∫ t

0

St−r(f(θ,Xr)− Yr)dr +

∫ t

0

St−rQ
1/2dWr (3.2)

for each d ∈ D and θ ∈ Θ. If the control in (3.1) has the feedback form Yt = Ỹ (Xt)

where Ỹ ∈ Ỹ , then the solution of (3.1) is obtained by an absolute continuity of

measures as a weak solution in the probabilistic sense.
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For a certainty equivalence adaptive control and a consistent family of estimators

of the unknown parameter, it is shown that the adaptive control is self-optimizing.

Consider (3.1) with the true parameter value θ0 ∈ Θ,

dXt = (AXt + f(θ0, Xt)− Ỹ (Xt))dt+Q1/2dWt, X0 = x (3.3)

where the adaptive control can be defined in the feedback form

Ỹ (Xt) = DH̃(DZθt(Xt))

and H̃ is the Hamiltonian of the problem, (θt, t ≥ 0) is an adapted, measurable

process satisfying limt→∞ θt = θ0 in probability and Zθ is the solution of the infinite

dimensional HJB equation.

Let Ȳn = DH̃(DZn) and Ȳ = DH̃(DZθ) be controls where D is Gateux deriva-

tive. For an arbitrary Φ ∈ C([0, T ], H), it follows that

|Eτ,x,ȲnΦ(X(·))− Eτ,x,Ȳ Φ(X(·))|

≤ Eτ,xΦ(X(·))
∣∣∣∣exp

(∫ T

0

〈Q−1/2Ȳn(Xs), dWs〉 −
1

2

∫ T

0

|Q−1/2Ȳn(Xs)|2ds
)

− exp

(∫ T

0

〈Q−1/2d̄(Xs), dWs〉 −
1

2

∫ T

0

|Q−1/2Ȳ (Xs)|2ds
)∣∣∣∣→ 0

as n→∞ for τ ∈ [0, T ). Finally, by the Skorohod’s theorem

lim
n→∞

sup
s∈[τ,T ]

|Xn(s)−X0(s)| = 0 a.s.

for each T > τ .

We turn to the estimation problem. The MLE θ̂T is the maximizer of the log-

likelihood:

L(t, θ) =

∫ T

0

〈Pf(θ,Xs), dPX(s)〉 − 1

2

∫ T

0

|Pf(θ,Xs)|2ds.

In the linearly parametrized case f(θ, x) = f0(x) +
∑q

r=1 θfr(x), for the MLE of

θ, using time change in the components of the stochastic integral and the law of large

numbers for Brownian motion, we have the MLE error

ej(T ) =

(∫ T

0

〈Pf(θ,Xs), dPXs〉
)−1∫ T

0

〈Pf(θ,Xs), dPQ
1/2Ws〉 → 0 a.s. as T →∞

giving the strong consistency of the MLE, see Duncan et al. (2000).

We study the nonlinear case. Let

MT (θ) :=

∫ T

0

〈Q−1/2(f(θ,Xs)− f(θ0, Xs), dWs〉,

ST (θ) :=

∫ T

0

〈Q−1/2(f(θ,Xs)− f(θ0, Xs), dXs〉,
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RT (θ) :=

∫ T

0

|Q−1/2(f(θ,Xs)− f(θ0, Xs)|2ds.

It can be shown that the map (t, θ) → Mt(θ) has a continuous modification on

(0,∞)×Θ.

Let Pθ be the measure generated by the process Xt and let θ0 be the true value

of the parameter θ. The likelihood ratio (Radon-Nikodym derivative) of is given by

LT (θ) =
dPθ
dPθ0

= exp

{∫ T

0

〈Q−1/2(f(θ,Xs)− f(θ0, Xs), dXs〉

−1

2

∫ T

0

|Q−1/2(f(θ,Xs)− f(θ0, Xs)|2ds.
}

= exp

{
ST (θ)− 1

2
RT (θ)

}
.

In practice, the process {Xt, t ≥ 0} can not be observed continuously in time. We

assume that the process {Xt, t ≥ 0} is observed at 0 = t0 < t1 < . . . < tn = T with

∆ti := ti−ti−1 = T
n

= h and T = dn1/2 for some fixed real number d > 0. We estimate

θ from the observations {Xt0 , Xt1 , . . . , Xtn}. The Euler approximate log-likelihood is

given by

ln,T (θ) := Sn,T (θ)− 1

2
Rn,T (θ)

where

Sn,T (θ) :=
n∑
i=1

〈Q−1/2(f(θ,Xti−1
)− f(θ0, Xti−1

), (Xti −Xti−1
)〉,

Rn,T (θ) :=
n∑
i=1

|Q−1/2(f(θ,Xti−1
)− f(θ0, Xti−1

)|2(ti − ti−1).

Approximate maximum likelihood estimator (AMLE) is defined as

θn,T = argmaxθ∈Θln,T .

We obtain the strong consistency of the AMLE in the next theorem.

Theorem 3.1 (Strong Consistency)

θ̂n,T → θ0 almost surely as T →∞ and T/n→ 0.

Proof. Observe that

θ̂n,T − θ0 =
Mn,T (θ) +Nn,T (θ)

Rn,T (θ)
=

1
T
Mn,T (θ) + 1

T
Nn,T (θ)

1
T
Rn,T (θ)



178 JAYA P. N. BISHWAL

where

Nn,T (θ) :=
n∑
i=1

∣∣∣∣Q−1/2

∫ ti

ti−1

(f(θ,Xti−1
)− f(θ0, Xt))dt

∣∣∣∣2
and

Mn,T (θ) :=
n∑
i=1

〈Q−1/2(f(θ,Xti−1
)− f(θ0, Xti−1

), Wti −Wti−1
〉.

Since MT is a continuous martingale, by Dambis-Dubins-Schwarz theorem on clock

change,

lim
T→∞

1

T
MT (θ) = lim

T→∞

W ∗(RT (θ))

RT (θ)

RT (θ)

T
= 0 P− a.s.

where W ∗ is another Brownian motion independent of W . Due to ergodic theorem,

lim
T→∞

1

T
RT (θ) = E|Q−1/2(f(θ,X0)− f(θ0, X0))|2 P− a.s.

It is easily seen that Mn,T (θ)−MT (θ) →P 0 as T/n → 0. We prove stronger result.

We show that

a) 1
T
Mn,T (θ)→ 0 almost surely as T →∞ and T/n→ 0,

b) 1
T
Nn,T (θ)→ 0 almost surely as T →∞ and T/n→ 0.

a) Let v(θ, x) := f(θ, x) − f(θ0, x). The Fourier expansion of v(θ, x) in L(Θ) be

given by

v(θ, x) =
∞∑
m=1

am(x)eπjmθ, j =
√
−1, x ∈ R

where ak(x) are the Fourier coefficients. Thus

1

T

n∑
i=1

〈Q−1/2v(θ,Xti−1
), ∆Wi〉 =

1

T

∞∑
m=1

n∑
i=1

〈Q−1/2am(Xti−1
)eπjmθ, ∆Wi〉

where

|am(x)| ≤ cm|x|,
∞∑
m=1

m1+γc4
m <∞.

Let

Am,n(s) :=
n∑
i=1

am(Xti−1
)I(ti−1−ti](s)

where I(ti−1−ti], i = 1, 2, ..., n are indicator functions. Then

n∑
i=1

〈Q−1/2am(Xti−1
), ∆Wi〉 =

∫ T

0

〈Q−1/2Am,n(s), dWs〉

By exponential inequality for martingales, we have

P

{∫ T

0

Am,n(s)dWs −
α

2

∫ T

0

|Q−1/2Am,n|2ds > β

}
≤ e−αβ

for any α, β > 0. Thus

P

{
1

T

∫ T

0

〈Q−1/2Am,n(s), dWs〉 >
β

T
+

α

2T

∫ T

0

|Q−1/2Am,n|2ds
}
≤ e−αβ
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and

P

{∣∣∣∣ 1

T

∫ T

0

〈Q−1/2Am,n(s), dWs〉
∣∣∣∣ > β

T
+
αh

2T

n∑
i=1

|Q−1/2am(Xti−1
)|2
}
≤ 2e−αβ.

Since
h

T

n∑
i=1

|Q−1/2am(Xti−1
)|2 ≤ c2

m

h

T

n∑
i=1

|Q−1/2Xti−1
|2

and by ergodicity

h

T

n∑
i=1

|Q−1/2Xti−1
|2 → E|Q−1/2X0|2 > 0 a.s.,

there exists a random variable V such that

h

T

n∑
i=1

|Q−1/2Xti−1
|2 < V a.s.

for all T > 0, n = 1, 2, . . . . where P (V <∞) = 1.

Denote

Zm,n :=
1

tn

∫ tn

0

〈Q−1/2Am,n(s), dWs〉.

Recall that T = tn. Choose

α :=
ma

tδn
, β :=

tγn
mb

,

where δ < γ < 1 and 1
2
< b < 1+γ

2
.

Then

P

(
|Zm,n| >

1

t1−γn mb
+
mac2

mV

2tδn

)
< 2e−m

a−btγ−δn .

This

P

(
∞∑
m=1

Z2
m,n >

∞∑
m=1

(
1

t1−γn mb
+
mac2

mV

2tδn

)2
)

≤
∞∑
m=1

P

(
Z2
m,n >

(
1

t1−γn mb
+
mac2

mV

2tδn

)2
)

=
∞∑
m=1

P

(
|Zm,n| >

1

t1−γn mb
+
mac2

mV

2tδn

)

≤ 2
∞∑
m=1

e−m
a−btγ−δn

≤ 2e−t
γ−δ
n

∞∑
m=1

e−m
a−b
.

Hence
∞∑
n=1

P

(
∞∑
m=1

Z2
m,n >

∞∑
m=1

(
1

t1−γn mb
+
mac2

mV

2tδn

)2
)
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≤ 2
∞∑
n=1

e−t
1−γ
n

∞∑
m=1

e−m
a−b

<∞

since γ − δ > 0 and a− b > 0. The above implies

∞∑
n=1

P

(
∞∑
m=1

Z2
m,n >

2

t
2(1−γ)
n

∞∑
m=1

m−2b +
V 2

t2δn

∑
m

m2ac4
m

)
<∞.

By Borel-Cantelli lemma,

∞∑
m=1

(
1

tn

n∑
i=1

〈Q−1/2am(Xti−1
), ∆Wi〉

)2

−→ 0 a.s. as n→∞.

Thus 1
T
Mn,T (θ) → 0 almost surely as T → ∞ and T/n → 0. This completes the

proof of part a).

b) Next we show that 1
T
Nn,T (θ)→ 0 almost surely as T →∞ and T/n→ 0.

For m > 0, we have

E

sup
θ∈Θ

∣∣∣∣∣ 1

T

n∑
i=1

Q−1/2

∫ ti

ti−1

[f(θ0, Xs)− f(θ0, Xti−1
)]v(θ,Xti−1

)ds

∣∣∣∣∣
2m


= E

{
sup
θ∈Θ

∣∣∣∣ 1

T

∫ T

0

Gn(s)ds

∣∣∣∣2m
}
.

where Gn(s) =
∑n

i=1Q
−1/2

∫ ti
ti−1

[f(θ0, Xs)− f(θ0, Xti−1
)]v(θ,Xti−1

) if ti−1 ≤ s ≤ ti.

Hölder’s inequality implies that

E

{
sup
θ∈Θ

∣∣∣∣ 1

T

∫ T

0

Gn(s)ds

∣∣∣∣2m
}

≤ T−2mE

{
sup
θ∈Θ

T 2m−1

∫ T

0

|Gn(s)|2mds
}

≤ T−2mE

(
sup
θ∈Θ

T 2m−1

n∑
i=1

Q−1/2

∫ ti

ti−1

|f(θ0, Xs)− f(θ0, Xti−1
)|2m|v(θ,Xti−1

)|2mds

)

≤ T−1Um

n∑
i=1

Q−1/2

∫ ti

ti−1

E(|f(θ0, Xs)− f(θ0, Xti−1
)|2m|C(Xti−1

)|2mds)

by condition (D2) where Um := supθ∈Θ |θ − θ0|2m <∞.

By Cauchy-Schwarz’s inequality the above term is

≤ T−1Um

n∑
i=1

Q−1/2

∫ ti

ti−1

(E|f(θ0, Xs)− f(θ0, Xti−1
)|4m)1/2(E(C(Xti−1

)|4m)1/2ds

≤ T−1UmK
2m(θ0)(E|C(Q−1/2(X0))|4m)1/2

n∑
i=1

∫ ti

ti−1

(E|Q−1/2(Xs −Xti−1
)|4m)1/2ds
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by condition (D2). Since E|Q−1/2(Xt − Xs)|2m ≤ M(t − s)m, from Gikhman and

Skorohod (1975, p.48), the above term

≤ T−1UmK
2m(θ0)(E|C(Q−1/2X0)|4m)1/2M1/2

n∑
i=1

∫ ti

ti−1

(s− ti−1)mds

= UmK
2m(θ0)(E|C(Q−1/2(X0))|4mM)1/2T−1

n∑
i=1

(∆ti)
m+1

m+ 1

≤ UmK
2m(θ0)

m+ 1
(E|C(Q−1/2(X0))|4mM)1/2hmn−m/2, m > 4.

Chebyshev’s inequality and the above implies that for any ε > 0,

∞∑
n=1

P

{
sup
θ∈Θ

∣∣∣∣∣ 1

T

n∑
i=1

Q−1/2

∫ ti

ti−1

[f(θ0, Xs)− f(θ0, Xti−1
)]v(θ,Xti−1

)ds

∣∣∣∣∣ > ε

}
<∞.

Hence Borel-Cantelli lemma yields the result. This completess the proof of part b).

By the same method along with ergodicity, it can be shown that

1

T
Rn,T (θ)→ E|Q−1/2(f(θ,X0)− f(θ0, X0))|2 P− a.s. as T →∞ and T/n→ 0.

This completes the proof of the theorem.

In order to prove asymptotic normality we need the following lemma from Bishwal

(2008).

Lemma 3.1 Let ξ, ζ and η be any three random variables on a probability space

(Ω, F, P ) with P (η > 0) = 1. Then, for any ε > 0, we have

(a) sup
x∈R
|P{ξ + ζ ≤ x} − Φ(x)| ≤ sup

x∈R
|P{ξ ≤ x} − Φ(x)|+ P (|ζ| > ε) + ε,

(b) sup
x∈R
|P{ξ

η
≤ x} − Φ(x)| ≤ sup

x∈R
|P{ξ ≤ x} − Φ(x)|+ P{|η − 1| > ε}+ ε.

Next theorem gives the asymptotic normality of the AMLE.

Theorem 3.2 (Asymptotic Normality)

√
TI(θ0)(θ̂n,T − θ0)→ N(0, 1) in distribution as T →∞ and T/

√
n→ 0.

Proof. By Taylor expansion of the log-likelihood, we have

l′n,T (θ̂n,T ) = l′n,T (θ0) + (θ̂n,T − θ0)l′′n,T (θ̄n,T )
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where
∣∣θ̄n,T − θ∣∣ ≤ ∣∣∣θ̂n,T − θ0

∣∣∣. Since l′n,T (θ̂n,T ) = 0, hence we have

√
TI(θ0)(θ̂n,T − θ0) = −

1√
TI(θ0)

l′n,T (θ0)

1
TI(θ0)

l′′n,T (θ̄n,T )
= −

1√
TI(θ0)

∑n
i=1〈Q−1/2f ′(θ0, Xti−1

),∆Wi〉
1

TI(θ0)

∑n
i=1Q

−1f ′′(θ̄n,T , Xti−1
)

=:
Mn,T

Vn,T
.

Note that

Vn,T =
1

TI(θ0)

n∑
i=1

Q−1f ′′(θ̄n,T , Xti−1
)∆ti =

1

TI(θ0)

n∑
i=1

|Q−1/2f ′θ̄n,T , Xti−1
|2∆ti.

But E(IT − 1)2 ≤ CT−1 (see Altmeyer and Chorowski (2018)). It can be shown that

E[(Vn,T − IT )2 ≤ C T
n

. Hence

E(Vn,T − 1)2 = E[(Vn,T − IT ) + (IT − 1)]2 ≤ C(T−1
∨ T

n
).

Since

sup
x∈R
|Pθ {Mn,T ≤ x} − Φ(x)|

≤ sup
x∈R
|Pθ {Mn,T ≤ x} − Φ(x)|+ Pθ {|Rn,T −MT | ≥ ε}+ ε

≤ C(T−1/2
∨

T 2

n
) + ε−2E |Rn,T −MT |2 + ε

≤ (T−1/2
∨

T 2

n
) + ε−2C(T−1

∨
T 3

n2 ) + ε.

we have

sup
x∈R

∣∣∣Pθ {√TI(θ)(θ̂n,T − θ) ≤ x
}
− Φ(x)

∣∣∣
= sup

x∈R

∣∣∣∣Pθ {Mn,T

Vn,T
≤ x

}
− Φ(x)

∣∣∣∣
= sup

x∈R
|Pθ {Mn,T ≤ x} − Φ(x)|+ Pθ {|Vn,T − 1| ≥ ε}+ ε

≤ C(T−1/2
∨

T 2

n
) + ε−2C(T−1

∨
T 2

n2 ) + ε.

Choosing ε = T−1/2 completes the proff of the theorem.

4. Examples

1) Non-linear Case: Let (Ω, F, {Ft}t≥0, P ) be a stochastic basis with the usual as-

sumptions on which countably many independent standard Brownian motions Wk =

{Wk(t), t ≥ 0}, k = 1, 2, . . . are defined. Let G be a domain in Rd. The space time

Gaussian white noise Ẇ = Ẇ (t, x) on G is a collection of zero mean Gaussian random

variables Ẇ [g1], g1 ∈ L2((0,∞)×G) such that

E(Ẇ [g1]Ẇ [g2]) =

∫ ∞
0

∫
G

g1(t, x)g2(t, x)dxdt.
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Given an orthonormal basis {hk = hk(x), k ≥ 1} in L2(G), the process Ẇ can be

written as a formal sum

Ẇ (t, x) =
∞∑
k=1

hk(x)Ẇk(t).

Similarly,

W (t, x) =
∞∑
k=1

hk(x)Wk(t)

is called cylindrical Brownian motion in L2(G). For a square integrable function

g1 = g1(t, x),∫ t

0

∫
G

g1(s, y)W (ds, dy) =
∞∑
k=1

(∫ t

0

∫
G

g1(s, y)hk(y)dy

)
dWk(s).

The covariance function cylindrical Brownian motion W is given by

EW (t1, ζ1)W (t2, ζ2) = (t1 ∧ t2)(ζ1 ∧ ζ2), ti ≥ 0, ζi ∈ [0, 1], i = 1, 2.

Consider the nonlinear SPDE where H = L2(0, 1) and

A0x(ζ) =
∂

∂ζ

(
a
∂x

∂ζ

)
(ζ) + b(ζ)

∂x

∂ζ
(ζ) + c0(ζ)x(ζ)

endowed with the Dirichlet boundary conditions. We assume that a is Lipschitz on

[0, 1], b, c0 ∈ L∞(0, 1) and a2(x) ≥ m > 0, ζ ∈ [0, 1]. Under these assumptions, A

generates an analytic C0-semigroup of contractions on L2(0, 1). It is also known that

A generates a semigroup of Hilbert-Schmidt operators on L2(0, 1) and for all T > 0,∫ T
0
‖St‖2

HSds <∞ <∞. The SPDE driven by space-time cylindrical Wiener process

has unique solution.

The hypotheses (D2), (D3), (D4) and (D5) are satisfied in the present case and

therefore the SPDE

∂X

∂t
(t, ζ) =

∂

∂ζ

(
a
∂X

∂ζ

)
(t, ζ)+b(ζ)

∂X

∂ζ
(t, ζ)+c0(ζ)X(t, ζ)+f0(θ0, X(t, ζ))−ut(ζ)+

∂2W

∂t∂ζ

X(0, ζ) = x(ζ), ζ ∈ [0, 1], X(t, 0) = X(t, 1) = 0

has a unique solution. As a consequence, we obtain the strong consistency of the

MLE θt of the parameter θ0 provided the family of measures {µt : t ≥ 0} is relatively

compact on L2(0, 1). In particular, this condition is satisfied if ut(ζ) = K(θt, X(t, ζ))

where the function K : Θ× R→ R is uniformly bounded and continuous.

2) Linear Case: When f ≡ 0 and u ≡ 0 in (3.1), a linear SPDE is obtained by

dXt = AXtdt+Q1/2dWt, X0 = x

whose solution is given by

Xt = Stx+

∫ t

0

St−rQ
1/2dWr
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which is an H valued process with continuous sample paths, is ergodic and has a

unique invariant probability measure µ = N(0, Q∞) where Q∞ =
∫∞

0
SrQS

∗
rdr is a

trace class operator on H.

Ergodic theorem for the Ornstein-Uhlenbeck process X yields for t→∞,

lim
t→∞

1

t

∫ t

0

φ(Xs)ds =

∫
H

φ(y)µ(dy) a.s.

5. Monte Carlo Method

We consider the linear case. The generalized stochastic forcing term we consider is

an additive space-time noise. Formally, we may write

σdW =
∑
k

λ−αk φkdWk (5.1)

where {φk, k ≥ 1} are eigenfunctions of the operator, {λk, k ≥ 1} represents the

associated eigenvalues and {Wk, k ≥ 1} are one-dimensional independent Brownian

motions. We assume α is a real parameter greater than 1 which guarantees some

spatial smoothness in the forcing. We may also derive the space-time correlation

structure of the noise term

E(σdW (x, t)σdW (y, s)) = K(x, y)δt−s (5.2)

where

K(x, y) =
∑
k≥1

λ−2α
k φk(x)φk(y). (5.3)

Let uk(t) = (ut, φk) be the k-th generalized Fourier mode of the solution ut. Each

Fourier mode uk represents a one dimensional Ornstein-Uhlenbeck process. In order

to simulate the trajectories of the solution (Fourier modes), we discretize the SPDE

(1.1). Let the Euler-Maruyama scheme of the solution be

ũjk(ti) = ũjk(ti−1)− θλ2
kũ

j
k(ti−1)∆T + σλ−αk ξjk,i, u

j
k(ti) = uk(0), 1 ≤ j ≤ l, 1 ≤ i ≤ m,

1 ≤ k ≤ n where ξjk,i are i.i.d. Gaussian random variables with zero mean and variance

∆T = T/m = ti − ti−1, 1 ≤ i ≤ m and l denotes the number of trials in the Monte

Carlo experiment for each Fourier mode. Hence ũjk(ti) is the approximation of ujk(ti)

which is the true value of the k-th Fourier mode at time ti of the j-th trial in the

Monte Carlo simulation. In what follows, we will investigate how to approximate the

forward AMLE using ũjk(ti) and how the numerical errors are related to m, l, T and n.

We obtain error estimates of the corresponding Monte Carlo experiments associated

with the Euler-Maruyama scheme, see Glasserman (2004). We consider d = 1 with

the random forcing term being space time white noise with α = 0 and σ = 1. We
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assume the special domain G = [0, π] and the initial value u0 = 0. In this case λk = k.

Using the likelihood ratio (2.3) and Itô formula, we get

P n,T
θ0

(
√
T (θ̂n,T − θ) ≥ η) = P n,T

θ0
(|θ̂n,T − θ| ≥ ηT−1/2) = P n,T

θ0
(lnLθ1T (uTn ) ≥ ηT )

= P n,T
θ0

(
−

n∑
k=1

λ2+2α
k (

∫ T

0

uk(t)duk(t) +
θ1 + θ0

2θ0

∫ T

0

uk(t)(σλ
α
kdWk(t)

−duk(t))) ≥
σ2ηT

θ1 − θ0

)
= P n,T

θ0

(
n∑
k=1

λ2+2α
k (

θ1 − θ0

2

∫ T

0

u2
k(T )− σ2λ−2α

k T )

+(θ1 + θ0)

∫ T

0

uk(t)(σλ
α
kdWk(t))) ≥

2θ0σ
2ηT

θ1 − θ0

)
= P n,T

θ0

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
X̃T − ỸT/

√
T ≥ 2θ0σ∆η

√
T

θ2
1 − θ2

0

)
where

η := −(θ1 − θ0)2

4θ0

M +
(θ1 − θ0)2

2θ2
0T

+
(θ1 − θ0)2

2θ2
0

√
−θ0MT−1 lnα + T−2 ln2 α,

∆η := η +
(θ1 − θ0)2

4θ0

M, X̃T :=
n∑
k=1

λ2+2α
k u2

k(T ), ỸT :=
n∑
k=1

λ2+α
k

∫ T

0

uk(t)dWk(t)

and M =
∑n

k=1 λ
2
k. We approximate X̃T and ỸT by

̂̃
X
j

n,T :=
n∑
k=1

λ2+2α
k ũjk(tn)2,

˜̃
Y
j

n,T :=
n∑
k=1

λ2+α
k

m∑
i=1

ũjk(ti−1)ξjk,i (5.4)

respectively. Define

R̃0,j
m,T :=

{
θ1 − θ0

2σ(θ1 + θ0)
√
M

̂̃
X
j

m,T −
̂̃
Y
j

m,T/
√
M ≥ 2θ0σ∆η

θ2
1 − θ2

0

√
M

}
. (5.5)

The approximation of P n,T
θ0

(
√
T (θ̂n,T − θ) ≥ η) is given by

P̃ l,m,n,T
θ0

(
√
m(θ̂l,m,n,T − θ) ≥ η) =

1

l

l∑
j=1

IR̃0,j
m,T
. (5.6)

The following theorem gives error estimate on the Monte Carlo simulations:

Theorem 5.1

sup
x∈R

∣∣∣P̃ l,m,n,T
θ0

(
√
m(θ̂l,m,n,T − θ) ≤ x)− P n,T

θ0
(
√
T (θ̂n,T − θ) ≤ x)

∣∣∣ ≤ Cm−1/3 + Cl−1/2.

Proof. Let θ1 = θ0 + rn−1/2, r > 0. Following Bishwal (2008, Chapter 8), one can

show that

E|( ̂̃Y j

m,T − ỸT )/
√
T |2 = O(∆T ), E| ̂̃Xj

m,T − X̃T | = O(∆T ).
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Consequently, for any ε > 0, we have

P l,m,n,T
θ0

(
√
m(θ̂l,m,n,T − θ) ≥ η) ≤ P n,T

θ0

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
X̃T − ỸT/

√
T ≥ 2θ0σ∆η

√
T

θ2
1 − θ2

0

−ε) + P n,T
θ0
| ˜̃Y j

m,T − ỸT |/
√
T ) ≥ ε/2) + P n,T

θ0

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
| ̂̃Xj

m,T − X̃T | ≥ ε/2

)
and

P n,T
θ0

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
X̃T − ỸT/

√
T ≥ 2θ0σ∆η

√
T

θ2
1 − θ2

0

− ε

)
≤ P n,T

θ0
(
√
T (θ̂n,T − θ) ≤ η)(1 + Cε).

From the above results and Chebyshev inequality, we conclude that, for any x ∈ R,

P l,m,n,T
θ0

(
√
m(θ̂l,m,n,T − θ) ≤ x)

≤ P n,T
θ0

(
√
T (θ̂n,T − θ) ≤ x)(1 +Cε) +Cε−1E| ̂̃Xj

m,T − X̃T |/
√
T +E|( ̂̃Y j

m,T − ỸT )/
√
T |2.

Similarly, we have

P l,m,n,T
θ0

(
√
m(θ̂l,m,n,T − θ) ≤ x)

≥ P n,T
θ0

(
√
T (θ̂n,T − θ) ≤ x)(1−Cε)−Cε−1E| ̂̃Xj

m,T − X̃T |/
√
T −E|( ̂̃Y j

m,T − ỸT )/
√
T |2.

Combining the above two inequalities, we obtain

|P l,m,n,T
θ0

(
√
m(θ̂l,m,n,T − θ) ≤ x)− P n,T

θ0
(
√
T (θ̂n,T − θ) ≤ x)|

≤ CεP n,T
θ0

(
√
T (θ̂n,T − θ) ≤ x) + Cε−1E| ̂̃Xj

m,T − X̃T |/
√
T + E|( ̂̃Y j

m,T − ỸT )/
√
T |2.

This implies that

|P l,m,n,T
θ0

(
√
m(θ̂l,m,n,T − θ) ≤ x)− P n,T

θ0
(
√
T (θ̂n,T − θ) ≤ x)| ≤ C(∆T )1/3.

It is straightforward to check that for large T

Var

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
X̃T − ỸT/

√
T

)
≤ C.

From here one can show that

Var

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T

̂̃
X
j

m,T −
̂̃
Y
j

m,T/
√
T

)

= Var

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
X̃T − ỸT/

√
T

)
+O(∆T ).

This implies that the Monte Carlo error simulations can be controlled by l−1/2 uni-

formly with respect to T and m. Therefore we have the following error estimate:

sup
x∈R
|P̃ l,m,n,T
θ0

(
√
m(θ̂l,m,n,T − θ) ≤ x)− P n,T

θ0
(
√
T (θ̂n,T − θ) ≤ x)| ≤ C(∆T )1/3 + Cl−1/2

where l is the number of trials of Monte Carlo simulations.
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