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ABSTRACT. In this paper we characterize the phase portrait of the complex Riccati quadratic

polynomial differential systems
dz

dt
= ż = a(z − b)(z − c),

with z ∈ C, a, b, c ∈ C with a ̸= 0 and t ∈ R. Taking z = x+ iy, and writing the Riccati equation as

the differential system (ẋ, ẏ) in the plane, we give the complete description of their phase portraits

in the Poincaré disk (i.e. in the compactification of R2 adding the circle S1 of the infinity) modulo

topological equivalence.
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1. Introduction and statement of the main results

Numerous problems of applied mathematics are modeled by quadratic polynomial

differential systems. Excluding linear systems, such systems are the ones with the

lowest degree of complexity, and the large bibliography on the subject proves its

relevance. We refer for example to the books of Ye Yanqian et al. [16], Reyn [14],

and Artes, Llibre, Schlomiuk, Vulpe [1], and the surveys of Coppel [6], and Chicone

and Jinghuang [5] are excellent introductory readings to the quadratic polynomial

differential systems.

Among such quadratic polynomial differential systems we emphasize the Riccati

polynomial systems. Since their introduction at the end of the seventeenth century

with the crucial work of Jacobo F. Riccati based on the variable separable tech-

nique, they have been studied intensively by renown mathematicians with numerous
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approaches underlying all the facets of their richness. Their field of applications is

widespread ranging from continued fractions to some useful applications in control

system theory, see for instance [9, 12, 13, 15].

In this paper we characterize the phase portraits of the complex Riccati differen-

tial equation

(1.1) ż = a(z − b)(z − c)

with z ∈ C, a, b, c ∈ C with a ̸= 0 and the dot means derivative with respect to t ∈ R.
The Riccati equation is a particular complex differential equation in one variable. A

good reference on relevant general results on complex differential equations in one

variable see [3].

We write

z = x+ iy, a = a1 + ia2, b = b1 + ib2, c = c1 + ic2

with x, y ∈ R and ai, bi, ci ∈ R for i = 1, 2 so that (a1, a2) ̸= (0, 0). System (1.1)

becomes the real system

ẋ = a1b1c1 − a2b2c1 − a2b1c2 − a1b2c2 − (a1b1 − a2b2 + a1c1 − a2c2)x

+ (a2b1 + a1b2 + a2c1 + a1c2)y + a1x
2 − 2a2xy − a1y

2,

ẏ = a2b1c1 + a1b2c1 + a1b1c2 − a2b2c2 − (a2b1 + a1b2 + a2c1 + a1c2)x

− (a1b1 − a2b2 + a1c1 − a2c2)y + a2x
2 + 2a1xy − a2y

2.

(1.2)

(a) Two foci (b) Two centers

(c) Two nodes (d) Equilibrium with

two elliptic sectors

Figure 1. The four different topological phase portraits of the com-

plex Riccati equation with constant coefficients in the Poincaré disc.
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The objective of this work is to classify the phase portraits of the quadratic poly-

nomial differential systems (1.2) in the Poincaré disk modulo topological equivalence.

As any polynomial differential system, system (1.2) can be extended to an analytic

system on a closed disk of radius one, whose interior is diffeomorphic to R2 and its

boundary, the circle S1, plays the role of the infinity of R2. This closed disk is de-

noted by D2 and called the Poincaré disk, because the technique for doing such an

extension is precisely the Poincaré compactification for polynomial differential sys-

tems in R2, which is described in details in chapter 5 of [8]. In this paper we shall use

the notation of that chapter. By using this compactification technique the dynamics

of system (1.2) in a neighborhood of the infinity can be studied and we have the

following result.

Theorem 1.1. The phase portraits of the complex Riccati equation (1.1) in the

Poincaré disk are topologically equivalent to one of the four phase portraits presented

in Figure 1.

2. Infinite equilibrium points

For a complete description of the Poincaré compactification method we refer to

chapter 5 of [8]. In what follows we remember some formulas.

Consider the polynomial differential system in R2 with degree 2

(2.1) ẋ = P (x, y), ẏ = Q(x, y)

or equivalently its associated polynomial vector field X = (P,Q). As we said before,

any polynomial differential system can be extended to an analytic differential system

on a closed disk of radius one centered at their origin of coordinates, whose interior

is diffeomorphic to R2 and its boundary, the circle S1, plays the role of the infinity.

We consider four open charts covering the disk D2:

ϕ1 : R2 −→ U1, ϕ1(x, y) = (1/v, u/v),

ϕ2 : R2 −→ U2, ϕ1(x, y) = (u/v, 1/v)

and

ψk : R2 −→ Vk, ψk(x, y) = −ϕk(x, y), k = 1, 2

with

U1 = {(u, v) ∈ D2 : u > 0}, U2 = {(u, v) ∈ D2 : v > 0},

V1 = {(u, v) ∈ D2 : u < 0}, V2 = {(u, v) ∈ D2 : v < 0}.
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The extended vector field of X from R2 to D2, i.e. the Poincaré compactification

is denoted by p(X). The expression of p(X) in the chart U1 is

(2.2) u̇ = v2(−uP +Q), v̇ = −v3P,

where P and Q are evaluated at (1/v, u/v).

The expression of p(X) in the chart U2 is

(2.3) u̇ = v2(P − uQ), v̇ = −v3Q,

where P and Q are evaluated at (u/v, 1/v). Moreover in all these local charts the

points (u, v) of the infinity have its coordinate v = 0.

The expression for the extend differential system in the local chart Vi, i = 1, 2 is

the same as in Ui multiplied by −1.

The following result summarizes the information at infinity.

Lemma 2.1. The complex Riccati equation (1.1) at infinity has a unique pair of

infinite equilibrium points which are saddles.

Proof. First we analyze the phase portrait in the local chart U1. The expression of

the system in this chart is

u̇ = a2 + a1u− (a2b1 + a1b2 + a2c1 + a1c2)v + a2u
2

+ (a2b1c1 + a1b2c1 + a1b1c2 − a2b2c2)v
2 + a1u

3

− (a2b1 + a1b2 + a2c1 + a1c2)u
2v − (a1b1c1 − a2b2c1 − a2b1c2 − a1b2c2)uv

2,

v̇ = −a1v + 2a2uv + (a1b1 − a2b2 + a1c1 − a2c2)v
2 + a1u

2v

− (a2b1 + a1b2 + a2c1 + a1c2)uv
2 − (a1b1c1 − a2b2c1 − a2b1c2 − a1b2c2)v

3.

(2.4)

The equilibrium points at infinity in the local chart U1 satisfy v = 0 and are the real

solutions of

a2 + a1u+ a2u
2 + a1u

3 = 0.

Since the solutions of the above equation are u = ±i and u = −a2/a1, we conclude

that if a1 = 0 there are no equilibrium points in the local chart U1 and if a1 ̸= 0

the unique equilibrium point in the local chart U1 is p = (−a2/a1, 0). Computing

the eigenvalues of the Jacobian matrix at this point we obtain that they are ±a1
(
1+

(a2/a1)
2
)
and so it is a saddle. Hence we have another saddle in the local chart V1

diametrally opposite to p.

Now we analyze the phase portrait in the local chart U2, we need to study only

the origin of U2, the others infinite equilibria have been studied in the local charts
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U1 ∪ V1. The expression of the system in this chart is

(2.5)

u̇ = −a1 − a2u+ (a2b1 + a1b2 + a2c1 + a1c2)v − a1u
2

+(a1b1c1 − a2b2c1 − a2b1c2 − a1b2c2)v
2 − a2u

3 + (a2b1 + a1b2

+a2c1 + a1c2)u
2v − (a2b1c1 + a1b2c1 + a1b1c2 − a2b2c2)uv

2,

v̇ = a2v − 2a1uv + (a1b1 − a2b2 + a1c1 − a2c2)v
2 − a2u

2v + (a2b1 + a1b2

+a2c1 + a1c2)uv
2 − (a2b1c1 + a1b2c1 + a1b1c2 − a2b2c2)v

3.

Note that if a1 ̸= 0 the origin is not an equilibrium point in the local chart U2, and if

a1 = 0 then the origin of the local chart U2 is an equilibrium point whose eigenvalues

of the Jacobian matrix at this point are ±a2, and so the origin is a saddle. In short

there is a unique pair of infinite equilibrium points which are saddles.

3. Finite equilibrium points

The finite equilibrium points of system (1.2) are the real solutions of ẋ = ẏ = 0.

Computing such solutions the real equilibrium points are (b1, b2) and (c1, c2). The

Jacobian matrix at the point (b1, b2) becomes

J =

(
a1b1 − a2b2 − a1c1 + a2c2 −a2b1 − a1b2 + a2c1 + a1c2

a2b1 + a1b2 − a2c1 − a1c2 a1b1 − a2b2 − a1c1 + a2c2

)
.

whose eigenvalues are

λ± = a1b1 − a1c1 − a2b2 + a2c2 ± i(a2b1 + a1b2 − a2c1 − a1c2).

The Jacobian matrix at the point (c1, c2) becomes −J whose eigenvalues are −λ±.
We consider different cases.

Case 1: a2b1 + a1b2 − a2c1 − a1c2 ̸= 0 and a1b1 − a1c1 − a2b2 + a2c2 ̸= 0. In this case

the finite singular points (b1, b2) and (c1, c2) are both foci with opposite stability. The

focus (b1, b2) is stable whenever a1b1 − a1c1 − a2b2 + a2c2 < 0 and unstable whenever

a1b1 − a1c1 − a2b2 + a2c2 > 0.

Lemma 3.1. Under these assumptions system (1.2) has no limit cycles.

Proof. We translate the finite singular point (b1, b2) at the origin of system (1.2).

Then system (1.2) becomes

ẋ = (a2(c2 − b2) + a1(b1 − c1))x+ (a2(c1 − b1) + a1(c2 − b2))y + a1x
2

− 2a2xy − a1y
2,

ẏ = (a1(b2 − c2) + a2(b1 − c1))x+ (a1(b1 − c1) + a2(c2 − b2))y + a2x
2

+ 2a1xy − a2y
2.

The function

H =
(b1 − c1)(b1 − c1 + 2x) + (b2 − c2)(b2 − c2 + 2y)

x2 + y2
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satisfies

dH

dt
=
∂H

∂x
ẋ+

∂H

∂y
ẏ

= −2
(a1b1 − a1c1 − a2b2 + a2c2)((b1 − c1 + x)2 + (b2 − c2 + y)2)

x2 + y2

Since the function H along the orbits does not change sign (and is zero or not defined

at the equilibria), we conclude that there are no periodic solutions in this case and

so there cannot be limit cycles.

Case 2: a2b1 + a1b2 − a2c1 − a1c2 ̸= 0 and a1b1 − a1c1 − a2b2 + a2c2 = 0. In this case

the finite singular points (b1, b2) and (c1, c2) are both either weak focus or centers.

Since we have (b1− c1)2+(b2− c2)2 ̸= 0 (otherwise the first condition is not satisfied),

we can assume that b1 ̸= c1 because the other case is done exactly in the same way

interchanging the roles of (b1, b2) by (c1, c2). In this case we have that

a1 =
a2(b2 − c2)

b1 − c1
.

Lemma 3.2. Under these assumptions the finite singular points (b1, b2) and (c1, c2)

are both centers.

Proof. We study the finite singular point (b1, b2), the other finite singular point is

studied exactly in the same way and so we will not do it. We translate the finite

singular point (b1, b2) at the origin and we get

ẋ = − a2
b1 − c1

((b1 − c1)
2 + (b2 − c2)

2)y +
a2(b2 − c2)

b1 − c1
x2 − 2a2xy

− a2(b2 − c2)

b1 − c1
y2,

ẏ =
a2

b1 − c1
((b1 − c1)

2 + (b2 − c2)
2)x+ a2x

2 + 2
a2(b2 − c2)

b1 − c1
xy − a2y

2.

(3.1)

In order to write it as in Theorem 4.1 (see the appendix) we introduce the rescaling

by the quantity a2((b1 − c1)
2 + (b2 − c2)

2)/(b1 − c1) and system (3.1) becomes

ẋ = −y + b2 − c2
(b1 − c1)2 + (b2 − c2)2

x2 − 2
b1 − c1

(b1 − c1)2 + (b2 − c2)2
xy

− b2 − c2
(b1 − c1)2 + (b2 − c2)2

y2,

ẏ = x+
b1 − c1

(b1 − c1)2 + (b2 − c2)2
x2 + 2

b2 − c2
(b1 − c1)2 + (b2 − c2)2

xy

− b1 − c1
(b1 − c1)2 + (b2 − c2)2

y2.

(3.2)

Note that

b = − b2 − c2
(b1 − c1)2 + (b2 − c2)2

and d =
b2 − c2

(b1 − c1)2 + (b2 − c2)2
.
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Hence b+ d = 0 and it follows from Theorem 4.1 that the origin of system (3.2) is a

center. This concludes the proof of the lemma.

Case 3: a2b1+a1b2−a2c1−a1c2 = 0 and a1b1−a1c1−a2b2+a2c2 ̸= 0. In this case the

finite singular points (b1, b2) and (c1, c2) are both nodes with opposite stability. The

node (b1, b2) is stable whenever a1b1 − a1c1 − a2b2 + a2c2 < 0 and unstable whenever

a1b1−a1c1−a2b2+a2c2 > 0. Note that it follows from Theorem 4.2 (see the appendix)

that there cannot be limit cycles in this case.

Case 4: a2b1 + a1b2 − a2c1 − a1c2 = 0 and a1b1 − a1c1 − a2b2 + a2c2 = 0. Taking into

account that (a1, a2) ̸= (0, 0) the unique solution of both equations is c1 = b1 and

c2 = b2. In this case both finite equilibrium points collide in the unique equilibrium

point (b1, b2) and the matrix J at this point is identically zero.

Lemma 3.3. Under these assumptions the finite equilibrium point (b1, b2) is formed

by two elliptic sectors.

Proof. We translate the equilibrium point at the origin and we get

(3.3) ẋ = a1x
2 − 2a2xy − a1y

2, ẏ = a2x
2 + 2a1xy − a2y

2.

This system is homogeneous of degree two. Such systems have been completely

studied by Date in [7], and it follows from his results that the origin is formed by two

elliptic sectors. We prove this result here using polar coordinates for completeness.

We introduce polar coordinates (r, θ) through x = r cos θ, y = r sin θ, and system

(3.3) becomes

ṙ = r2(a1 cos θ − a2 sin θ), θ̇ = r(a2 cos θ + a1 sin θ).

Note that θ̇ = 0 on the straight line of slope θ = arctan(−a2/a1). The endpoints

of this invariant straight line are the unique pair of infinite singular points which

are saddles. Therefore, since the origin is the unique finite singular point, taking

into account the invariant straight line, by the Poincaré-Bendixson Theorem (see [8,

Theorem 1.25]) it follows that the origin is formed by two elliptic sectors.

Lemma 3.4. System (1.2) has an invariant straight line if and only if either a2b1 +

a1b2 − a2c1 − a1c2 = 0 or a1b1 − a1c1 − a2b2 + a2c2 = 0.

Proof. System (1.2) has an invariant straight line Ax+By+C = 0 with A,B,C ∈ R
if and only if

Aẋ+Bẏ = (k0 + k1x+ k2y)(Ax+By + C),
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that is

A(a1b1c1 − a2b2c1 − a2b1c2 − a1b2c2 − (a1b1 − a2b2 + a1c1 − a2c2)x

+ (a2b1 + a1b2 + a2c1 + a1c2)y + a1x
2 − 2a2xy − a1y

2)

+B(a2b1c1 + a1b2c1 + a1b1c2 − a2b2c2 − (a2b1 + a1b2 + a2c1 + a1c2)x

+ (a1b1 − a2b2 + a1c1 − a2c2)y + a2x
2 + 2a1xy − a2y

2)

= (k0 + k1x+ k2y)(Ax+By + C),

for some constants k0, k1, k2 ∈ R.

Doing this computation we obtain that the straight line is:

(a) a2x+ a1y − a2c1 − a1c2 = 0 if a2b1 + a1b2 − a2c1 − a1c2 = 0.

(b) 2a1a2x+2a21y−2a1a2c1−a22(b2−c2)−a21(b2+c2) = 0 if a1b1−a1c1−a2b2+a2c2 = 0

and a21 + (b2 − c2)
2 ̸= 0.

(c) x− (b1 + c1)/2 = 0 if a1b1 − a1c1 − a2b2 + a2c2 = 0 and a21 + (b2 − c2)
2 = 0.

4. Proof of Theorem 1.1

We separate the proof into the previous four cases.

In Case 1 taking into account the previous information on the finite and infinite

equilibria together with Lemmas 3.1 and 3.4 we conclude that the only possible phase

portrait is the first phase portrait in Figure 1.

In Case 2 taking into account the previous information on the finite and infinite

equilibria together with Lemmas 3.2 and 3.4 we conclude that the only possible phase

portrait is the second phase portrait in Figure 1.

In Case 3 taking into account the previous information on the finite and infinite

equilibria together with Lemma 3.4 we conclude that the only possible phase portrait

is the third phase portrait in Figure 1.

In Case 4 taking into account the previous information on the finite and infinite

equilibria together with Lemmas 3.3 and 3.4 we conclude that the only possible phase

portrait is the fourth phase portrait in Figure 1.

Appendix: auxiliary results

In this appendix we introduce some auxiliary results. The first one is proved in

[2, 10, 11].

Theorem 4.1 (Kapteyn–Bautin Theorem). Any quadratic system candidate to have

a center can be written in the form

(4.1) ẋ = −y − bx2 − Cxy − dy2, ẏ = x+ ax2 + Axy − ay2.
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This system has a center at the origin if and only if one of the following conditions

holds

A− 2b = C + 2a = 0,

C = a = 0,

b+ d = 0,

C + 2a = A+ 3b+ 5d = a2 + bd+ 2d2 = 0.

An easy proof of the Kapteyn–Bautin Theorem using the Darboux theory of

integrability can be found in [4].

The second result, proved in [6] is the following

Theorem 4.2. Any limit cycle of a quadratic polynomial differential system must

surround a focus.
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by the Acadèmia de Ciències i Arts de Barcelona. The second author is partially

supported by FCT/Portugal through CAMGSD, IST-ID, projects UIDB/04459/2020

and UIDP/04459/2020.

REFERENCES

[1] J.C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe, Geometric configurations of singulari-

ties of planar polynomial differential systems. A global classification in the quadratic case,
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