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ABSTRACT. Taking into account the interaction between budmoth and quality of larch trees

located in the Swiss Alps (a mountain range in Switzerland), a discrete-time model is proposed and

studied. The novel model is proposed with implementation of Holling type III functional response

for interaction of plant quality. The proposed functional response is validated with real observed

data of larch budmoth interaction. Furthermore, we investigate qualitative behavior of this proposed

discrete-time system for interaction between budmoth and quality of larch trees. Boundedness of

solutions, existence of fixed points and their local behavior is carried out. It is proved that system

experiences period-doubling bifurcation at its positive fixed point with utilizing center manifold

theorem and normal forms theory. Moreover, existence and direction for Neimark-Sacker bifurcation

are also investigated for larch budmoth interaction. Bifurcating and fluctuating behaviors of system

are controlled through utilization of chaos control strategies. Numerical simulations are presented

to demonstrate the theoretical findings. At the end, theoretical investigations are validated with

field and experimental data.
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1. Introduction and mathematical model

Ecologists argue that small mammals with their consumers and forest insects are

two main classes of animals which have population dynamics of cyclic type. Lepi-

doptera from moderate zonal are most prominent insects of such type [1]. According
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to Myers [2], oscillations occur in population densities of 18 species of budmoth. Re-

solving the reasons of such periodic oscillations is an important topic for both practical

and theoretical researchers. The larch budmoth interaction is one of the population

cycles of classical type. Experiments show that density of budmoth changes by ap-

proximately fifth order of magnitude, whereas amplitude and period remain remark-

ably constant. The interaction between budmoth and larch trees, supply of its food

and needles of larch, is a topic of great interest and many researchers are attracted

by this field for the last few decades. This population cycle is described as resource-

consumer interaction, in which larch needles behave like a source and budmoth is

considered as consumer. The high-quality needles of larch trees are badly affected

due to outbreaks of budmoth, and in a result low-quality leaves are produced for the

next year. Ultimately, the length of needles remains shorter with higher raw quantity

of fiber. Feeding on these affected needles gives less larval survival chance and female

fertility. Several years can take for the improvement of leaves quality. Mathematical

models related to these larch budmoth interaction can produce cycles with great re-

semblance to observed data. Larch budmoth is a worm of grey color which became

famous for its periodic behavior of outbreaks and infestations on large-scale with larch

trees located in Alpine valleys of Europe. For further description related to biology

of larch budmoth, their natural enemies, their population cycles, reconstruction of

historical cycles, reasons behinds the creation of cycles, negative feedback of needle

quality, regulation by natural enemies, fitness of various ecotypes, migration of moth

and dispersal, cycles in the nutshell, variation of cycles with respect to climate change,

importance of larch budmoth, possible sources of confusion and control measures, the

interested readers are referred to recently published article [3]. The interaction related

to larch budmoth reveals rich dynamics such as complexity, fluctuating and chaotic

behavior [4]. Moreover, cycles of larch budmoth population interaction have been

reported by many researchers (cf. [5, 6, 7, 8, 9, 10, 11]). Due to seasonal variation

(non-overlapping generations) in the interaction related to larch budmoth, it is more

appropriate to model such interaction with discrete-time systems of host-parasitoid

type. Such mathematical framework allows us to explore qualitative behavior of these

models. Jang and Johnson in [12] investigated one model related to leaf quality-moth

interaction and two moth-parasitoid systems. They discussed stability, existence of

equilibria, persistence and period-doubling bifurcation for these discrete models. Jang

and Yu in [13] studied one simple system related to plant quality-moth interaction

and other model with implementation of Ricker equation. They also explored pres-

ence of Neimark-Sacker bifurcation for the model with Ricker type growth function.

In [14], De Silva and Jang considered model of larch budmoth interaction. The orig-

inal model was proposed in [11], and authors of [14] used an approximation in moth

equation. With this approximation, they showed persistence of solutions, existence
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of fixed points, their stability and bifurcations of two types, that is, Neimark-Sacker

bifurcation and period-doubling bifurcation. Iyengar et al. [15] investigated impact

of climate change on the interaction of larch budmoth system. In order to give an

explanation for the irregular larch budmoth cyclic outbreaks observed in the French

Alps, Balakrishnan et al. [16] proposed important modifications in models related

to larch budmoth interaction by implementing a slow time dependence in one of the

species–specific parameters. Taking into account the interaction between plant qual-

ity and larch budmoth in Swiss Apls, recently Ali et al. [17] reported period-doubling

bifurcation, Neimark-Sacker bifurcation and chaos control for a class of discrete-time

system with Ricker equation.

Arguing as in [11], assume that xn represents larch budmoth density at time n,

where n = 0, 1, 2, · · · . On the other hand, as foliage of larch tree is eaten by the

budmoth, the fluctuations are observed in their nutritive content and biomass. The

quality of leaf at time n is represented by yn, and it can be expressed in terms of

needle length zn as follows:

yn+1 = (zn − 15mm)/15mm,

where zn the needle length index changes such that zn ∈ [15mm, 30mm].

Keeping in view the interaction between leaf quality and larch budmoth popula-

tion, a two-dimensional model is given as follows:

xn+1 = xn exp
(
r
(
1− exp

(
−yn
a

))
− r

k
xn

)
,

yn+1 = (1− b) + byn −
cxn

d+ xn
,

(1.1)

where all parameters are positive and b < 1. Assume that F (y) := 1 − exp
(
−y

a

)
,

then a linear approximation of F (y) is used in [14] as follows:

1− exp
(
−y
a

)
≈ y

a
.

Fig. 1 shows that linear approximation for F (y) is not appropriate with its exact

value. Therefore, it is suitable to implement some nonlinear approximation for F (y).

In this paper, we discuss dynamics of system (1.1) with the following more appropriate

nonlinear approximation for F (y):

1− exp
(
−y
a

)
≈ y2

a+ y2
:= G(y).

With implementation of nonlinear approximation G(y), system (1.1) is approximated

as follows:

xn+1 = xn exp

(
r

(
y2n

a+ y2n

)
− r

k
xn

)
,

yn+1 = (1− b) + byn −
cxn

d+ xn
.

(1.2)



202 E. M. ELSAYED1 AND QAMAR DIN2

Figure 1. Comparison of F (y), G(y) and linear approximation y
a
.

Figure 2. Variation in maximum needle length (in mm) from 1961 to

1989.

Next, in order to validate the proposed functional response G(y) = y2

a+y2
with real

observed data of larch budmoth interaction, we consider the data reported by Bal-

tensweiler et al. [18] in Engadine (Switzerland). According to their study, the max-

imum change in needle length starting from year 1961 to year 1989 is depicted in

Fig. 2. In Fig. 2, the minimum length of needle is recorded as 15mm, whereas the

maximum length of needle is 33.7mm. Therefore, the quality of leaf yn at time n is

expressed in terms of needle length zn as follows:

yn+1 = (zn − 15mm)/18.7mm.

Using nonlinear regression analysis, the observed data from 1961 to 1989 for maximum

needle length index with proposed functional response G(y) = y2

a+y2
is fitted. The best

fitted value for parameter a is investigated as a = 88.1367, whereas the parameter



LARCH BUDMOTH INTERACTION 203

Figure 3. Variation in maximum needle length index and fitted func-

tional response G(y).

confidence interval is [26.3846, 149.889] with 95 percent confidence level. On the

other hand, taking into account F (y) we have a = 14.2143 the best fitted value

and the parameter confidence interval is [9.13824, 19.2905] with 95 percent confidence

level. Keeping in view the linear functional response, a = 29.0379 is the best fitted

value and [22.911, 35.1648] is confidence interval with 95 percent confidence level.

Consequently, more reasonable confidence interval is obtained in case of G(y). The

variation in maximum needle length index from 1961 to 1989 and fitted proposed

functional response G(y) = y2

a+y2
are depicted in Fig. 3. Moreover, according to

study of [3], cyclical population fluctuations of the larch budmoth were observed

in the Upper Engadine with mean periodicity was 8.5 years, and at the peak of

an outbreak, there were more than twenty thousand larvae on a single larch tree,

which concludes that consumers (predators) are much bigger than their resources

(preys). Hassell et al. [19] argued that Holling type III functional response should

be particularly common in predators that are much bigger than their prey. Taking

into account the study of [3, 19], and aforementioned nonlinear regression analysis, it

is more appropriate to implement Holling type III functional response (that is, G(y))

instead of Ivlev type functional response (that is, F (y)) for the plant quality index.

Furthermore, biological meanings of parametric values of system (1.2) are pre-

sented in Table 1.

The motivational aspects and novelty of this paper are further described as fol-

lows:

• A novel discrete model for interaction between larch budmoth and plant quality

is proposed and studied.

• The proposed model is more appropriate for mathematical analysis and validated

with observed data.
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Parameter value Biological meaning of parameter

r larch budmoth growth rate

a reciprocal of speed of convergence of leaf quality to its maximum value

k inverse intraspecific competition coefficient of larch budmoth

b plant unprotectedness

c maximal uptake rate of moth

d half saturation constant of moth grazing rate

Table 1. Biological meanings of parameters of system (1.2).

• The proposed system undergoes Neimark-Sacker bifurcation and period-doubling

bifurcation about its interior fixed point whenever growth rate of consumer is

selected as bifurcation parameter.

• Hybrid and exponential type chaos control methods are applied to proposed

system (1.2).

We summarize the remaining discussion of this paper as follows. Boundedness of

solutions for system (1.2), existence of biologically feasible equilibria, and conditions

for local asymptotic stability of these equilibria are investigated in Section 2. In

Section 3, we show that interior equilibrium of system (1.2) undergoes period-doubling

bifurcation whenever growth parameter r of larch budmoth population is taken as

bifurcation parameter. In Section 4, it is proved that system (1.2) undergoes Neimark-

Sacker bifurcation around its interior equilibrium point. OGY and hybrid control

methods are introduced in Section 5. Lastly, numerical simulations are provided in

Section 7 to illustrate our theoretical discussion.

2. Boundedness and existence of equilibria

In this section, first we show that every solution {(xn, yn)} of system (1.2) is

uniformly bounded. For this, the following Lemma is presented.

Lemma 2.1. [20] Assume that ηn satisfies ηn+1 ≤ ηn exp (α (1− βηn)) for all n ∈

[n1,∞) with η0 > 0, where α, β > 0. Then, lim
n→∞

sup ηn ≤ 1

αβ
exp (α− 1).

Lemma 2.2. Every solution {(xn, yn)} of system (1.2) is uniformly bounded.

Proof. Suppose that x0 > 0 and y0 > 0, then every solution {(xn, yn)} of the system

(1.2) satisfies xn > 0 and yn > 0 for all n ≥ 0. First, keeping in view positivity

of solutions of system (1.2) and from second equation of system (1.2) it follows that

yn+1 ≤ (1− b) + byn. Then, comparison argument yields that lim
n→∞

sup yn ≤ 1. Next,

taking into account the positivity of solutions of system (1.2) and considering the first
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equation of the system (1.2) we have

xn+1 = xn exp

(
r

(
y2n

a+ y2n

)
− r

k
xn

)
≤ xn exp

(
r

(
y2n
a

− 1

k
xn

))
≤ xn exp

(
r

(
1

a
− 1

k
xn

))
= xn exp

(r
a

(
1− a

k
xn

))
.

Next, an application of Lemma 2.1 yields that

lim
n→∞

supxn ≤ k

r
exp

(r
a
− 1
)
.

With mathematical induction one can prove the following result.

Lemma 2.3. Assume that 0 < x0 ≤ k
r
exp

(
r
a
− 1
)
and 0 < y0 ≤ 1, then the rectangle[

0, k
r
exp

(
r
a
− 1
)]

× [0, 1] is invariant interval for every positive solution {(xn, yn)} of

the system (1.2).

Secondly, we explore the biologically feasible fixed points of system (1.2). The

steady-states of system (1.2) satisfy the following two-dimensional algebraic equa-

tions:

x = x exp

(
r

(
y2

a+ y2

)
− r

k
x

)
,

y = 1− b+ by − cx

d+ x
.

(2.1)

Then, it is quite easy to see that E = (0, 1) is boundary equilibrium of (1.2). We

are interested in interior equilibrium of system (1.2) in closed form. Neglecting the

boundary solution of system (2.1), we left with the following algebraic system for

coexistence:

(k − x)y2 − ax = 0,

y = 1− b+ by − cx

d+ x
.

(2.2)

From (2.2), it follows that positive fixed point (x∗, y∗) of system (1.2) satisfies:

y∗ := 1− c x∗

(1− b)(d+ x∗)
,

where x∗ is a positive real root for the following cubic equation:

(2.3) αx3 + βx2 + γx+ δ = 0,

where

α := (1 + a)(b+ c− 1)2,
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β := (b+ c− 1)(2(a+ 1)(b− 1)d− k(b+ c) + k),

γ := (b− 1)d((a+ 1)(b− 1)d− 2k(b+ c− 1)),

and

δ := −(1− b)2d2k.

Moreover, the following Lemma gives the conditions for existence of unique positive

root for cubic Eq. (2.3).

Lemma 2.4. Assume that b+c ̸= 1, then Eq. (2.3) has unique positive root if ∆ < 0,

where

(2.4) ∆ := 18αβγδ − 4β3δ + β2γ2 − 4αγ3 − 27α2δ2.

Proof. Taking P (x) = αx3 + βx2 + γx+ δ, and assume that b+ c ̸= 1, then it follows

that P (0) = −(1 − b)2d2k < 0 and lim
x→∞

P (x) = +∞. Therefore, according to the

intermediate value property of continuous functions, P (x) has at least one positive

solution. Furthermore, assume that ∆ < 0, then according to Descartes’ rule of signs,

P (x) has unique positive real root.

Taking into account Lemma 2.4, one has the following result for existence of

unique positive equilibrium point of system (1.2).

Lemma 2.5. Assume that b + c > 1 and ∆ < 0, then there exists unique positive

equilibrium point (x∗, y∗) for system (1.2) satisfying 0 < y∗ < 1 and 0 < x∗ < d(1−b)
b+c−1

.

Moreover, existence of interior (positive) fixed point (x∗, y∗) can be shown by

method of isoclines. These isoclines satisfy the following equation:

Ψ1(x) = Ψ2(x),

where

Ψ1(x) :=

√
ax

k − x
,

and

Ψ2(x) := 1− c x

(1− b)(d+ x)
.

The existence of unique positive fixed point is depicted in Fig. 4. Next, we check

local dynamics for equilibria of system (1.2). For this, first taking into account the

boundary equilibrium, it is easy to see that the Jacobian matrix of (1.2) at boundary

equilibrium E is given by:

J(E) =

 e
r

1+a 0

− c
d

b

 .

Then, eigenvalues of J(E) are µ1 = e
r

a+1 > 1 and µ2 = b < 1. Therefore, E is a

saddle point.
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Figure 4. Existence of unique positive fixed point.

Secondly, it is easy to see that the Jacobian matrix of (1.2) at interior equilibrium

P = (x∗, y∗) is given by:

(2.5) J(P ) =


k−rx∗

k
2arx∗y∗

(a+y∗2)2

− cd
(c+x∗)2

b

 .

Now characteristic polynomial of J(P ) is given by:

(2.6) F (µ) = µ2 −
(
b+

k − rx∗

k

)
µ+ b+

2acdrx∗y∗

(a+ y∗2)2 (d+ x∗)2
− brx∗

k
.

From (2.6), it follows that

F (1) = rx∗
(

2acdy∗

(a+ y∗2)2 (d+ x∗)2
+

1− b

k

)
> 0.

Furthermore, the following Lemma gives local dynamical behavior of system (1.2) at

its positive fixed point.

Lemma 2.6. The following results hold true for system (1.2):

(i) The positive equilibrium (x∗, y∗) is a sink if and only if

2acdrx∗y∗

(a+ y∗2)2 (d+ x∗)2
+

(b+ 1)(2k − rx∗)

k
> 0,

and

b+
2acdrx∗y∗

(a+ y∗2)2 (d+ x∗)2
− brx∗

k
< 1.

(ii) The positive equilibrium (x∗, y∗) is a saddle point if and only if

2acdrx∗y∗

(a+ y∗2)2 (d+ x∗)2
+

(b+ 1)(2k − rx∗)

k
< 0.
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Figure 5. Phase-plane analysis of (x∗, y∗) with a = 1.95, c = 1.1,

d = 35, k = 255 and b = 0.85 in ry∗-plane.

(iii) The positive equilibrium (x∗, y∗) is a source if and only if

2acdrx∗y∗

(a+ y∗2)2 (d+ x∗)2
+

(b+ 1)(2k − rx∗)

k
> 0,

and

b+
2acdrx∗y∗

(a+ y∗2)2 (d+ x∗)2
− brx∗

k
> 1.

Keeping in view the phase-plane analysis of positive fixed point (x∗, y∗) of system

(1.2), we choose a = 1.95, c = 1.1, d = 35, k = 255 and b = 0.85 in ry∗-plane (cf. Fig.

5). Moreover, for a = 5.7, c = 1.2, d = 25.5, r = 36.5 and b = 0.8 the phase-plane

analysis in ky∗-plane is depicted in Fig. 6. Finally, in ay∗-plane the phase-plane

analysis of positive fixed point is depicted in Fig. 7. Taking into account Figs. 5, 6

and 7, the following results are presented.

•
• Since positive steady-state (x∗, y∗) of system (1.2) does not exist in closed form,

and steady plant quality index y∗ satisfies 0 < y∗ < 1, therefore it is taken as

parameter.

• On the other hand, steady-state moth population x∗ satisfies 0 < x∗ < k
r
exp

(
r
a
− 1
)
.

Consequently, upper bound for x∗ is not a fixed constant, and it depends upon

parametric values k, r and a.

• Therefore, it is not appropriate to consider x∗ as parameter. Thus, in phase

plane analysis the parameters k, r and a are used versus y∗.
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Figure 6. Classification of (x∗, y∗) with a = 5.7, c = 1.2, d = 25.5,

r = 36.5 and b = 0.8 in ky∗-plane.

Figure 7. Classification of (x∗, y∗) with k = 265, c = 1.32, d = 2.1,

r = 176 and b = 0.9 in ay∗-plane.

• In Fig. 6 as the intraspecific competition increases with very little food, the

budmoth population collapses to sink.
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Figure 8. Curve CPDB for a = 5.3, b = 0.3, c = 0.25, d = 15 and

k = 35.

• In Fig. 7, it is easy to see that at the higher value of leaf content, one can

expect a homoclinic orbit which may lead to fluctuations in budmoth popula-

tion. Moreover, there is a source for an intermediate value of k due to less half

saturation constant of moth grazing rate.

3. Period-doubling bifurcation

In this section, we apply bifurcation theory of normal forms and center manifold

theorem for emergence of period-doubling bifurcation around interior equilibrium of

system (1.2). Since positive fixed point (x∗, y∗) of system (1.2) is independent of the

parameter r, therefore it is appropriate to take r as bifurcation parameter. For this,

first we assume that

r ≡ r0 =
2(1 + b)

(1+b)x∗

k
− 2acdx∗y∗

(a+y∗2)2(d+x∗)2

.

Furthermore, we define the following curve for existence of period-doubling bifurca-

tion:

CPDB :=

(a, b, c, d, k, r) ∈ R6
+ : r ≡ r0 =

2(1 + b)
(1+b)x∗

k
− 2acdx∗y∗

(a+y∗2)2(d+x∗)2

 .

The existence of curve CPDB can be verified by choosing a = 5.3, b = 0.3, c = 0.25,

d = 15 and k = 35, then CPDB is depicted in Fig. 8 in ry∗-plane. Assume that
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(a, b, c, d, k, r) ∈ CPDB, and writing system (1.2) in the following equivalent map:

(3.1)

(
u

v

)
→

(
u exp

(
(r0 + r̄)

(
v2

a+v2

)
− r0+r̄

k
u
)

1− b+ bv − cu
d+u

)
,

where r̄ is very small perturbation in r0. Furthermore, keeping in view the translations

p = u− x∗ and q = v − y∗, then map (3.1) is converted into the following map with

fixed point at origin:

(3.2)

(
p

q

)
→


k−r0x∗

k
2ar0x∗y∗

(a+y∗2)2

− cd
(c+x∗)2

b

( p

q

)
+

(
ϕ(p, q, r̄)

ψ(p, q)

)
,

where

ϕ(p, q, r̄) = m13p
2 +m14pq +m15q

2 +m16p
3 +m17p

2q +m18pq
2 +m19q

3 +m1pr̄

+m2qr̄ +m3r̄p
2 +m4r̄q

2 +m5r̄pq +O
(
(|p|+ |q|+ |r̄|)4

)
,

ψ(p, q) = m23p
2 +m24p

3 +O
(
(|p|+ |q|)4

)
,

m13 = −r0(2k − r0x
∗)

2k2
, m14 =

2ar0y
∗(k − r0x

∗)

k (a+ y∗2)2
, m15 =

ar0x
∗ (a2 + 2ay∗2(r0 − 1)− 3y∗4)

(a+ y∗2)4
,

m16 =
r20(3k − r0x

∗)

6k3
, m17 =

ar20y
∗(r0x

∗ − 2k)

k2 (a+ y∗2)2
,

m18 =
ar0 (a

2 + 2ay∗2(r0 − 1)− 3y∗4) (k − r0x
∗)

k (a+ y∗2)4
,

m19 =
2ar0x

∗y∗ (3a3(r0 − 2) + 2a2((r0 − 3)r0 − 3)y∗2 + 3a(2− 3r0)y
∗4 + 6y∗6)

3 (a+ y∗2)6
,

m1 =
ax∗(r0x

∗ − 2k) + y∗2 (k2 − kx∗(r0 + 2) + r0x
∗2)

k2 (a+ y∗2)
,

m2 =
2ax∗y∗ (a(k − r0x

∗) + y∗2(kr0 + k − r0x
∗))

k (a+ y∗2)3
,

m3 =
y∗2 (−2k2(r0 + 1) + kr0(r0 + 4)x∗ − r20x

∗2)− a (2k2 − 4kr0x
∗ + r20x

∗2)

2k3 (a+ y∗2)
,

m4 =
ax∗ (a2 + 2a(2r0 − 1)y∗2 − 3y∗4)

(a+ y∗2)4
,

m5 =
2ay∗ (a (k2 − 3kr0x

∗ + r20x
∗2) + y∗2 (k2(r0 + 1)− kr0(r0 + 3)x∗ + r20x

∗2))

k2 (a+ y∗2)3
,

m23 =
cd

(c+ x∗)3
, m24 = − cd

(c+ x∗)4
.
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Suppose that (a, b, c, d, k, r) ∈ CPDB, then eigenvalues of variational matrix


k−r0x∗

k
2ar0x∗y∗

(a+y∗2)2

− cd
(c+x∗)2

b


are given by µ1 = −1 and

µ2 :=
a2b(b+ 1)(d+ x∗)2 + 2ay∗ (b(b+ 1)y∗(d+ x∗)2 − (b+ 2)cdk) + b(b+ 1)y∗4(d+ x∗)2

a2(b+ 1)(d+ x∗)2 + 2ay∗ ((b+ 1)y∗(d+ x∗)2 − cdk) + (b+ 1)y∗4(d+ x∗)2
.

Furthermore, assume that |µ2| ̸= 1 and taking into account the following similarity

transformation:

(3.3)

(
p

q

)
= T

(
x

y

)
,

where

T =

 m12 m12

−1−m11 µ2 −m11

 ,

where

m11 =
k − r0x

∗

k

and

m12 =
2ar0x

∗y∗

(a+ y∗2)2
.

From (3.2) and (3.3), we obtain

(3.4)

(
x

y

)
→

 −1 0

0 µ2

( x

y

)
+

(
ϕ1 (x, y, r̄)

ψ1 (x, y, r̄)

)
,

where

ϕ1 (x, y, r̄) = −
(
m13m11 +m23m12 −m13µ2

m12 (µ2 + 1)

)
p2 +

(
(µ2 −m11)m14

m12 (µ2 + 1)

)
pq +

(
(µ2 −m11)m15

m12 (µ2 + 1)

)
q2

−
(
m11m16 +m12m24 −m16µ2

m12 (µ2 + 1)

)
p3 +

(
(µ2 −m11)m17

m12 (µ2 + 1)

)
p2q +

(
(µ2 −m11)m18

m12 (µ2 + 1)

)
pq2

+

(
(µ2 −m11)m19

m12 (µ2 + 1)

)
q3 +

(
(µ2 −m11)m1

m12 (µ2 + 1)

)
pr̄ +

(
(µ2 −m11)m2

m12 (µ2 + 1)

)
qr̄

+

(
(µ2 −m11)m3

m12 (µ2 + 1)

)
r̄p2 +

(
(µ2 −m11)m4

m12 (µ2 + 1)

)
r̄q2 +

(
(µ2 −m11)m5

m12 (µ2 + 1)

)
r̄pq

+O
(
(|x|+ |y|+ |r̄|)4

)
,
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ψ1 (x, y, r̄) =

(
(1 +m11)m13

m12 (µ2 + 1)
+

m23

µ2 + 1

)
p2 +

(
(1 +m11)m14

m12 (µ2 + 1)

)
pq +

(
(1 +m11)m15

m12 (µ2 + 1)

)
q2

+

(
(1 +m11)m16

m12 (µ2 + 1)
+

m24

µ2 + 1

)
p3 +

(
(1 +m11)m17

m12 (µ2 + 1)

)
p2q +

(
(1 +m11)m18

m12 (µ2 + 1)

)
pq2

+

(
(1 +m11)m19

m12 (µ2 + 1)

)
q3 +

(
(1 +m11)m1

m12 (µ2 + 1)

)
pr̄ +

(
(1 +m11)m2

m12 (µ2 + 1)

)
qr̄

+

(
(1 +m11)m3

m12 (µ2 + 1)

)
r̄p2 +

(
(1 +m11)m4

m12 (µ2 + 1)

)
r̄q2 +

(
(1 +m11)m5

m12 (µ2 + 1)

)
r̄pq

+O
(
(|x|+ |y|+ |r̄|)4

)
,

p = m12(x+ y) and q = −(1 +m11)x+ (µ2 −m11)y.

Due to center manifold theory [21], stability analysis of equilibrium (x, y) = (0, 0)

near r̄ = 0 can be discussed by investigating a one–parameter family of reduced

equations on a center manifold WC(0, 0, 0), which can be described as follows:

WC(0, 0, 0) =
{
(x, y, r̄) ∈ R3 : y = l1x

2 + l2xr̄ + l3r̄
2 +O

(
(|x|+ |r̄|)3

)}
,

where

l1 =
m2

11m14 −m11m12m13 −m2
12m23 + 2m11m14 −m12m13 +m14

µ2
2 − 1

+
m15 (1 +m11)

3

m12 (1− µ2
2)

,

l2 =
(1 +m11) (m1m12 −m2m11 −m2)

m12 (1− µ2
2)

, l3 = 0.

On the other hand, the map restricted to center manifold is described as follows:

Ω : x→ −x+ d1x
2 + d2xr̄ + d3x

2r̄ + d4xr̄
2 + d5x

3 +O
(
(|x|+ |r̄|)4

)
,

where

d1 =

(
(µ2 −m11)m13

m12 (µ2 + 1)
− m23

µ2 + 1

)
m2

12 −
(µ2 −m11)m14 (1 +m11)

µ2 + 1

+
(µ2 −m11)m15 (1 +m11)

2

m12 (µ2 + 1)
,

d2 =
(µ2 −m11)m1

µ2 + 1
− (µ2 −m11)m2 (1 +m11)

m12 (µ2 + 1)
,

d3 =
(µ2 −m11)m12m3

µ2 + 1
− (µ2 −m11)m5 (1 +m11)

µ2 + 1
+

(µ2 −m11)m1l1
µ2 + 1

+
(µ2 −m11)m4 (1 +m11)

2

m12 (µ2 + 1)
+

(µ2 −m11)
2m2l1

m12 (µ2 + 1)
+ 2

(
(µ2 −m11)m13

m12 (µ2 + 1)
− m23

µ2 + 1

)
m2

12l2

+
(µ2 −m11)

2m14l2
µ2 + 1

− (µ2 −m11)m14l2 (1 +m11)

µ2 + 1
− 2

(µ2 −m11)
2m15 (1 +m11) l2

m12 (µ2 + 1)
,

d4 =
(µ2 −m11) l2 (m1m12 −m2m11 +m2µ2)

m12 (µ2 + 1)
,
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and

d5 =

(
(µ2 −m11)m16

m12 (µ2 + 1)
− m24

µ2 + 1

)
m3

12 −
(µ2 −m11)m12m17 (1 +m11)

µ2 + 1

+ 2

(
(µ2 −m11)m13

m12 (µ2 + 1)
− m23

µ2 + 1

)
m2

12l1 +
(µ2 −m11)m18 (1 +m11)

2

µ2 + 1

− (µ2 −m11)m14l1 (1 +m11)

µ2 + 1
− (µ2 −m11)m19 (1 +m11)

3

m12 (µ2 + 1)

+
(µ2 −m11)

2m14l1
µ2 + 1

− 2 (µ2 −m11)
2m15 (1 +m11) l1

m12 (µ2 + 1)
.

On the other hand, two nonzero numbers k1 and k2 are computed as follows:

k1 =

(
∂2ϕ1

∂x∂r̄
+

1

2

∂Ω

∂r̄

∂2Ω

∂x2

)
(0,0)

=
(µ2 −m11)m1

µ2 + 1
− (µ2 −m11)m2 (1 +m11)

m12 (µ2 + 1)
,

and

k2 =

(
1

6

∂3Ω

∂x3
+

(
1

2

∂2Ω

∂x2

)2
)

(0,0)

= d21 + d5.

Keeping in view above computation, the following Lemma gives the parametric con-

ditions for existence and direction of flip bifurcation for system (1.2) at its positive

fixed point.

Theorem 3.1. Suppose that k1 ̸= 0 and k2 ̸= 0, then system (1.2) undergoes period-

doubling bifurcation at its positive steady-state (x∗, y∗) when parameter r varies in

small neighborhood of r0. Furthermore, if k2 > 0, then the period-two orbits that

bifurcate from (x∗, y∗) are stable, and if k2 < 0, then these orbits are unstable.

4. Neimark-Sacker bifurcation

In this section, we discuss that system (1.2) undergoes Neimark-Sacker bifur-

cation around its positive equilibrium (x∗, y∗). For this, r is taken as bifurcation

parameter. For emergence of Neimark-Sacker bifurcation around positive equilibrium

(x∗, y∗) of system (1.2), the roots of (2.6) must be complex conjugate with unit mod-

ulus. Therefore, necessary conditions for emergence of Neimark-Sacker about positive

fixed point of system (1.2) are described by the following curve:

CNB =

{
(a, b, c, d, k, r) ∈ R6

+ : r ≡ r1 =
1− b

2acdx∗y∗

(a+y∗2)2(d+x∗)2
− bx∗

k

,

∣∣∣∣b+ k − r1x
∗

k

∣∣∣∣ < 2

}
.

It is easy to see that CNB is nonempty because for a = 8.5, b = 0.25, c = 1.25, d = 10

and k = 165, this curve CNB is depicted in Fig. 9 in ry∗-plane. Assuming that r̃
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Figure 9. Existence of curve CNB for a = 8.5, b = 0.25, c = 1.25,

d = 10 and k = 165 in ry∗-plane.

be a small perturbation in r ≡ r1, then system (1.2) is described by the following

2-dimensional map:

(4.1)

(
U

V

)
→

(
U exp

(
(r1 + r̃)

(
V 2

a+V 2

)
− r1+r̃

k
U
)

1− b+ bV − cU
d+U

)
.

Suppose that (x∗, y∗) be unique positive fixed point of the map (4.1), then we consider

the translations u = U − x∗ and v = V − y∗ for shifting the fixed point of resulting

map at origin. Consequently, these translations yield the following map with fixed

point at origin:

(4.2)

(
u

v

)
→

 a11 a12

a21 a22

( u

v

)
+

(
f(u, v)

g(u, v)

)
,

where

f(u, v) = a13u
2 + a14uv + a15v

2 + a16u
3 + a17u

2v + a18uv
2 + a19v

3 +O
(
(|u|+ |v|)4

)
,

g(u, v) = a23u
2 + a24u

3 +O
(
(|u|+ |v|)4

)
, a11 a12

a21 a22

 =


k−(r1+r̃)x∗

k
2a(r1+r̃)x∗

(a+y∗2)2

− cd
(c+x∗)2

b

 , a13 = −R(2k −Rx∗)

2k2
,

a14 =
2aRy∗(k −Rx∗)

k (a+ y∗2)2
, a15 =

aRx∗ (a2 + 2a(R− 1)y∗2 − 3y∗4)

(a+ y∗2)4
,
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a16 =
R2(3k −Rx∗)

6k3
, a17 =

aR2y∗(Rx∗ − 2k)

k2 (a+ y∗2)2
,

a18 =
aR (a2 + 2a(R− 1)y∗2 − 3y∗4) (k −Rx∗)

k (a+ y∗2)4
,

a19 =
2aRx∗y∗ (3a3(R− 2) + 2a2((R− 3)R− 3)y∗2 + 3a(2− 3R)y∗4 + 6y∗6)

3 (a+ y∗2)6
,

a23 =
cd

(c+ x∗)3
, a24 = − cd

(c+ x∗)4
, R = r1 + r̃.

Now, characteristic polynomial of map (4.2) at its fixed point (0, 0) is given by

(4.3) P (τ) = τ 2 − A(r̃)τ +B(r̃),

where

A(r̃) := b+
k − (r1 + r̃)x∗

k
,

and

B(r̃) := b+
2acd(r1 + r̃)x∗y∗

(a+ y∗2)2 (d+ x∗)2
− b(r1 + r̃)x∗

k
.

Moreover, complex conjugate roots of (4.3) are given by

τ 1 =
A(r̃) + ι

√
4B(r̃)− A2(r̃)

2
,

and

τ 2 =
A(r̃)− ι

√
4B(r̃)− A2(r̃)

2
.

Then, simple computation yields that |τ 1| = |τ 2| =
√
B(r̃). Next, in order to verify

nondegeneracy conditions, first we see that:(
d|τ 1,2|
dr̃

)
r̃=0

=
acdx∗y∗

(a+ y∗2)2 (d+ x∗)2
− bx∗

2k
̸= 0.

Secondly, keeping in view non-resonance, at r̃ = 0 it is required that τn1,2 ̸= 1 for n =

1, 2, 3, 4, which is equivalent to A (0) ̸= −2,−1, 0, 2. Assume that (a, b, c, d, k, r) ∈
CNB, then it follows that |A(0)| < 2. Moreover, we have

A(0) = b+
k − r1x

∗

k
.

Therefore, conditions for non-resonance are satisfied if the following holds true:

b+
k − r1x

∗

k
̸= 0,−1.

Furthermore, in order to compute the first Lyapunov exponent, we want to transform

Jacobian matrix of (4.2) into canonical form. For this, the following transformation

is considered:

(4.4)

(
u

v

)
=

 a12 0

α− a11 −β

( w

z

)
,
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where

α :=
A(0)

2
and β :=

√
4B(0)− A2(0)

2
.

Consequently, from (4.2) and (4.4), it follows that

(4.5)

(
w

z

)
→

 α −β
β α

( w

z

)
+

(
M(w, z)

N(w, z)

)
,

where

M(w, z) :=
1

a12
f

(
a12w, (α− a11)w − βz

)
,

and

N(w, z) := −a11 − α

a12β
f

(
a12w, (α− a11)w − βz

)
− 1

β
g

(
a12w, (α− a11)w − βz

)
.

Keeping in view the normal forms theory related to bifurcation analysis [22, 23, 24,

25, 26], at (w, z, r̃) = (0, 0, 0) the first Lyapunov exponent is computed as follows:

L = −Re
(
(1− 2τ 1)τ

2
2

1− τ 1
τ 20τ 11

)
− 1

2
|τ 11|2 − |τ 02|2 +Re(τ 2τ 21),

where

τ 20 =
1

8

[
Mww −Mzz + 2Nwz + i(Nww −Nzz − 2Mwz)

]
,

τ 11 =
1

4

[
Mww +Mzz + i(Nww +Nzz)

]
,

τ 02 =
1

8

[
Mww −Mzz − 2Nwz + i(Nww −Nzz + 2Mwz)

]
,

and

τ 21 =
1

16

[
Mwww +Mwzz +Nwwz +Nzzz + i(Nwww +Nwzz −Mwwz −Mzzz)

]
.

Then, due to above calculation, one has the following Theorem:

Theorem 4.1. Assume that (a, b, c, d, k, r) ∈ CNB,
acdx∗y∗

(a+y∗2)2(d+x∗)2
− bx∗

2k
̸= 0, b +

k−r1x∗

k
̸= 0,−1 and L ̸= 0, then unique positive equilibrium point (x∗, y∗) of system

(1.2) undergoes Neimark-Sacker bifurcation when the bifurcation parameter r varies

in a small neighborhood of r1 =
1−b

2acdx∗y∗

(a+y∗2)2(d+x∗)2
− bx∗

k

. Moreover, if L > 0, then a stable

invariant closed curve bifurcates from the equilibrium point for r > r1, and if L < 0,

then an unstable invariant closed curve bifurcates from the equilibrium point for r <

r1.
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5. Chaos control

Comparatively small perturbations are added to control chaotic behavior of a

given system and in a return unstable orbits become stable one. Consequently, the

implementation of chaos control strategies makes chaotic orbits more predictable and

stable. The successful chaos control method plays important role for stabilization

of perturbed system and avoids from fluctuating and unpredictable situations. The

perturbation added to corresponding controlled system must be negligible as compare

to chaotic or bifurcating system to avoid from major modification of natural dynamics

of original system.

This section is dedicated for implementation of chaos control methods to sys-

tem (1.2). For this, three chaos control methods are implemented to system (1.2).

Implementation of chaos control methods for discrete-time systems is topic of great

interest. Recently, many discrete-time systems have been discussed for implementa-

tion of strategies related to chaos and bifurcations control [27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41].

First, we consider Ott-Grebogi-Yorke (OGY) method (see [42]). An application

of OGY feedback control method to system (1.2) yields the following control system:

xn+1 = xn exp

(
Π

(
y2n

a+ y2n

)
− Π

k
xn

)
,

yn+1 = (1− b) + byn −
cxn

d+ xn
,

(5.1)

where

Π := r − c1(xn − x∗)− c2(yn − y∗),

c1 and c2 are control parameters, and (x∗, y∗) is interior equilibrium point of system

(1.2). Furthermore, biological relevance of OGY method and its control parameters

is given as follows:

•
• In the case of OGY, the chaos control is applied by including a harvesting term

equal to the difference between the current value and the equilibrium value

quantity, to the larch bud moth growth rate. Essentially this feedback tries to

bring the system back close to an equilibrium position.

• c1 represents refuge rate of budmoth population density xn − x∗ at time n.

• Assume that some sort of insecticide spray is provided to the plant quality index

yn − y∗, which may affect the growth rate of budmoth up to a certain level, say

c2.

In order to see the controllability of system (5.1), first we compute controllability

matrix C for this system as follows:

C =
[
B(x∗,y∗,r2) : A(x∗,y∗,r2)B(x∗,y∗,r2)

]
,
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where A(x∗,y∗,r2) is Jacobian matrix of system (1.2) computed at (x∗, y∗, r2), (x
∗, y∗)

is positive fixed point of (1.2), r2 is critical value of bifurcation parameter r lies in

bifurcating or chaotic interval, that is, r2 ≥ r0 or r2 ≥ r1, and B(x∗,y∗,r2) is given as

follows:

B(x∗,y∗,r2) =

(
∂f(x∗,y∗,r2)

∂r
∂g(x∗,y∗,r2)

∂r

)
,

where

f(x, y, r) = x exp

(
r

(
y2

a+ y2

)
− r

k
x

)
,

and

g(x, y, r) = (1− b) + by − cx

d+ x
.

Keeping in view the fact that (x∗, y∗) satisfies y∗2

a+y∗2
− x∗

k
= 0, one has ∂f(x∗,y∗,r2)

∂r
=

x∗
(

y∗2

a+y∗2
− x∗

k

)
= 0 and ∂g(x∗,y∗,r2)

∂r
= 0. Consequently, C is a null matrix of order

2 × 2. Hence, rank of controllability matrix C is zero. Hence, OGY method is not

applicable for controlling chaotic behavior of system (1.2) at (x∗, y∗, r2).

Secondly, we apply hybrid control method [43] to system (1.2) to get the following

control system:

xn+1 = α

(
xn exp

(
r

(
y2n

a+ y2n

)
− r

k
xn

))
+ (1− α)xn,

yn+1 = α

(
(1− b) + byn −

cxn
d+ xn

)
+ (1− α)yn,

(5.2)

where 0 < α < 1 is control parameter for hybrid control method, which is based

on parameter perturbation and state feedback control. The biological relevance of

hybrid control method is stated as follows:

•
• From control system (5.2), it is easy to observe that the growth rate is increased

by α and the 1−α harvesting term is introduced as a correction to the equations.

• Consequently, the leaf available for the budmoth is reduced by α(b− 1) + 1. By

forcing the food source to be less, the budmoths are not allowed to grow. This

is also evident in Fig. 10.

Again controllability of system (5.2) depends upon stability of this system at its

positive fixed point. To see this stability behavior, the Jacobian matrix JH(x
∗, y∗) of

system (5.2) at its unique positive fixed point (x∗, y∗) is given as follows:

JH(x
∗, y∗) =

 1− αrx∗

k
2aαrx∗y∗

(a+y∗2)2

− αcd
(c+x∗)2

1− α(1− b)

 .
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Figure 10. Controllable region of (5.2) for a = 0.75, b = 0.15, c = 3.2,

d = 6.3, r = 10 and k = 165 in αy∗-plane.

In addition, the characteristic polynomial for JH(x
∗, y∗) is computed as follows:

(5.3)

F (µ) = µ2−
(
2 + α

(
b− rx∗

k
− 1

))
µ+(1−α+αb)

(
1− αrx∗

k

)
+

2aα2cdrx∗y∗

(a+ y∗2)2 (d+ x∗)2
.

Taking into account the controllability of system (5.2), the following Lemma is pre-

sented.

Lemma 5.1. Positive fixed point (x∗, y∗) of system (5.2) is a sink if the following

condition is satisfied:∣∣∣∣2 + α

(
b− rx∗

k
− 1

)∣∣∣∣ < 1 + (1− α + αb)

(
1− αrx∗

k

)
+

2aα2cdrx∗y∗

(a+ y∗2)2 (d+ x∗)2
< 2.

Clearly, controllability of system (5.2) depends upon the choice of parametric

values of given system (1.2) and α. For a = 0.75, b = 0.15, c = 3.2, d = 6.3, r = 10

and k = 165, controllable region of (5.2) is depicted in Fig. 10 in αy∗-plane. The

area of stability region varies (increases or decreases) with variation in parametric

values. At the end of this section, we apply recently proposed chaos control method

of exponential type to system (1.2) as follows [34]:

xn+1 = exp (−s1(xn − x∗))xn exp

(
r

(
y2n

a+ y2n

)
− r

k
xn

)
,

yn+1 = exp (−s2(yn − y∗))

(
(1− b) + byn −

cxn
d+ xn

)
,

(5.4)
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where s1 and s2 are control parameters, and (x∗, y∗) is interior fixed point of system

(1.2).

According to [10, 15, 16], some seasonal effects may result migration of budmoth

population, and a change in plant quality index. Keeping in view these studies, the

biological interpretation of control system (5.4) is given as follows:

•
• The function exp (−s1(xn − x∗)) represents exponential type density-dependent

harvesting of budmoth population xn − x∗.

• s1 is harvesting rate of budmoth population xn − x∗. Moreover, for s1 > 0 it is

an emigration rate, and for s1 < 0 it is an immigration rate for this population.

• Due to climate change, exp (−s2(yn − y∗)) denotes exponential type density-

dependent harvesting of plant quality index yn − y∗.

• s2 is harvesting rate of plant quality index yn − y∗. Moreover, s2 > 0 will

decrease, and s2 < 0 will increase the plant quality index.

In order to see the effectiveness of exponential chaos control method about its

positive fixed point (x∗, y∗), we have to focus on local stability of system (5.4) about

(x∗, y∗). For this, the variational matrix JE(x
∗, y∗) of system (5.4) is computed as

follows:

JE(x
∗, y∗) =


k−x∗(ks1+r)

k
2arx∗y∗

(a+y∗2)2

− cd
(c+x∗)2

b− s2y
∗

 .

In addition, the characteristic polynomial for JE(x
∗, y∗) is computed as follows:

F (ν) = ν2 −
(
1 + b− x∗(ks1 + r)

k
− s2y

∗
)
ν +

2acdrx∗y∗

(a+ y∗2)2 (d+ x∗)2

+ (b− s2y
∗)

(
k − x∗(ks1 + r)

k

)
.

(5.5)

Taking into account the controllability of system (5.4), the following Lemma is pre-

sented.

Lemma 5.2. Positive fixed point (x∗, y∗) of system (5.4) is a sink if the following

condition is satisfied:∣∣∣∣k − x∗(ks1 + r)

k
+ b− s2y

∗
∣∣∣∣ < 1 +

2acdrx∗y∗

(a+ y∗2)2 (d+ x∗)2

+ (b− s2y
∗)

(
k − x∗(ks1 + r)

k

)
< 2.

For a = 3.8, b = 0.45, c = 1.5, d = 1.2, k = 0.35 and r = 1.85, controllable region of

(5.4) is depicted in Fig. 11 in y∗s1s2-space.
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Figure 11. Controllable region of (5.4) for a = 3.8, b = 0.45, c = 1.5,

d = 1.2, k = 0.35 and r = 1.85 in y∗s1s2-space.

Parameter of system (1.2) Parameter estimates Source

r 2.5± 0.2 [11]

a 88.14± 61.75 [18]

k 500± 200 [11]

b 0.5± 0.1 [11]

c 0.7± 0.2 [11]

d 150± 150 [11]

Table 2. Regression–based parameter estimates for system (1.2).

6. Numerical simulation and discussion

For the validation of our theoretical findings with respect to observed field data,

the following parametric estimations are presented, which are based on statisti-

cal analysis reported by Turchin [11] and parameter a is fitted keeping in view

the data reported by Baltensweiler et al. [18] in Engadine (Switzerland). Case

(i): Keeping in view Table 2, first we consider the best fitted values for param-

eters k = 500 ∈ [300, 700], a = 88.14 ∈ [26.3846, 149.889], d = 150 ∈ [0, 300],
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(a) Bifurcation diagram for xn (b) Bifurcation diagram for yn

(c) Maximum Lyapunov exponents

Figure 12. Bifurcation diagrams and MLE for system (1.2) with a =

88.14, b = 0.5, c = 0.7, d = 150, k = 500, r ∈ [140, 340] and (x0, y0) =

(5.1089, 0.9538).

b = 0.5 ∈ [0.4, 0.6], c = 0.7 ∈ [0.5, 0.9] and r is taken as bifurcation parameter. Then,

system (1.2) undergoes period-doubling bifurcation around its interior equilibrium

(x∗, y∗) = (5.10894, 0.953887) when r passes through the critical value r0 = 201.966.

On the other hand, at a = 88.14, b = 0.5, c = 0.7, d = 150, k = 500 and r = 201.966

the multipliers of system (1.2) are µ1 = −1 and µ2 = 0.43634 with |µ2| ≠ 1. More-

over, bifurcation diagrams and maximum Lyapunov exponents (MLE) of system are

depicted in Fig. 12.

Next, we demonstrate validity of chaos control methods related to period-doubling

bifurcation. For this, first we see the effectiveness of hybrid control method. Assume

that a = 88.14, b = 0.5, c = 0.7, d = 150 and k = 500 are substituted in system

(5.2). A variation in controllability interval is observed with variation of bifurcation

parameter r in chaotic region [201.966, 340]. Due to this variation, it is observed

that length of controllability interval can be increased by shifting the value of bifur-

cation parameter at the left end of chaotic region. Variation of controllability with

respect to control parameter r is distributed in Fig. 13 in rα-plane. Similarly, to

see the effectiveness of third chaos control method (exponential control), we choose
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Figure 13. For a = 88.14, b = 0.5, c = 0.7, d = 150 and k = 500

controllability region of system (5.2).

a = 88.14, b = 0.5, c = 0.7, d = 150 and k = 500 for system (5.4). For these

selected values and r ∈ [201.966, 340], the controllability region of system (5.4) is de-

picted in Fig. 14 in rs1s2-space. Case (ii): Secondly, for demonstration of Neimark-

Sacker bifurcation in system (1.2), we choose parametric values of system (1.2) as

follows: k = 350 ∈ [300, 700], a = 50.23 ∈ [26.3846, 149.889], d = 0.9 ∈ [0, 300],

b = 0.4 ∈ [0.4, 0.6], c = 0.9 ∈ [0.5, 0.9] and r ∈ [240, 380] with initial conditions

(x0, y0) = (0.7357, 0.325). Then, system (1.2) undergoes Neimark-Sacker bifurca-

tion about fixed point (x∗, y∗) = (0.735778, 0.325295) with critical value of bifurcation

parameter r1 = 295.294. On the other hand, at k = 350, a = 50.23, d = 0.9, b = 0.4,

c = 0.9 and r = 295.294, the characteristic polynomial for variational matrix of

system (1.2) is calculated as follows:

P (τ) = τ 2 − 0.779227τ + 1.

Then, multipliers of variational matrix (roots of P (τ)) are given as τ 1 = 0.389613 −
0.920979i and τ 2 = 0.389613 + 0.920979i with |τ 1| = |τ 2| = 1. Moreover, bifurcation

diagrams and maximum Lyapunov exponents (MLE) of system are depicted in Fig.

15. At the end of this section, we again demonstrate validity of chaos control methods

related to Neimark-Sacker bifurcation. For this, first we see the effectiveness of hybrid

control method. Assume that k = 350, a = 50.23, d = 0.9, b = 0.4 and c = 0.9 are

substituted in system (5.2). A variation in controllability interval is observed with

variation of bifurcation parameter r in chaotic region [295.294, 380]. Due to this

variation, it is observed that length of controllability interval can be increased by
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Figure 14. For a = 88.14, b = 0.5, c = 0.7, d = 150 and k = 500

controllability region of system (5.4).

shifting the value of bifurcation parameter at the left end of chaotic region. Variation

of controllability with respect to control parameter r is distributed in Fig. 16 in

rα-plane. From Fig. 16, it is clear that hybrid control method is more effective for

controlling chaotic behavior in system (1.2) under the influence of Neimark-Sacker

bifurcation, whereas in case of period-doubling bifurcation its chaos controlling speed

is slow. Finally, to see the effectiveness of exponential type control strategy, we choose

k = 350, a = 50.23, d = 0.9, b = 0.4 and c = 0.9 for system (5.4). For these selected

values and r ∈ [295.294, 380], the controllability region of system (5.4) is depicted in

Fig. 17 in rs1s2-space.

Concluding remarks

In the list of complex dynamics, interaction of larch budmoth in Swiss Alps has

remained one of the best topic for investigation with respect to both theoretical and

experimental point of views. During such interaction, remarkable regular oscillations

are observed, and moth population fluctuates up to surprising extent of densities dur-

ing a particular cycle [11]. Taking into account the interaction between budmoth and

quality of larch trees located in the Swiss Alps, a two-dimensional discrete system is

proposed and studied in this paper. The Ivlev type functional response concerning

the plant quality is replaced to its better nonlinear approximation. Due to implemen-

tation of such nonlinear approximation, proposed model shows excellent agreement
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(a) Bifurcation diagram for xn (b) Bifurcation diagram for yn

(c) Maximum Lyapunov exponents

Figure 15. Bifurcation diagrams and MLE for system (1.2) with k =

350, a = 50.23, d = 0.9, b = 0.4, c = 0.9, r ∈ [240, 380] and (x0, y0) =

(0.7357, 0.325).

Figure 16. For k = 350, a = 50.23, d = 0.9, b = 0.4, c = 0.9 and

r ∈ [295.294, 380] controllability region of system (5.2).
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Figure 17. For k = 350, a = 50.23, d = 0.9, b = 0.4, c = 0.9 and

r ∈ [295.294, 380] controllability regions of system (5.4).

with field and experimental data. Furthermore, mathematical analysis related to

existence of positive fixed point in closed form, stability and bifurcation analysis

are more appropriate for this proposed model. We investigate qualitative aspects of

this discrete-time system for interaction between budmoth and quality of larch trees.

Boundedness of solutions, existence of fixed points and their topological classifica-

tion is carried out. It is proved that system experiences period-doubling bifurcation

at its positive fixed point with utilizing center manifold theorem and normal forms

theory. Moreover, existence and direction for torus bifurcation are also investigated

for larch budmoth interaction. Bifurcating and fluctuating behaviors of system are

controlled through utilization of three chaos control strategies. Our study reveals that

OGY method is unable to control fluctuating and chaotic behavior of model under

the influence of both bifurcations. On the other hand, hybrid control method and

chaos control strategy of exponential type are remarkably effective for both types of

bifurcations.
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