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1. INTRODUCTION

In this article, we are interested in the following Kirchhoff type problem with the

Dirichlet boundary value condition

(1.1)


−M(δ [u])△(a(k − 1, |△u(k − 1)|)△u(k − 1))

= λf(k, u(k)), k ∈ Z [1, T ] ,

u(0) = u(T + 1) = 0,

where T ≥ 2 is a fixed positive integer, Z [a, b] for a < b, a, b ∈ Z denotes a discrete

interval {a, a+1, . . . , b−1, b}, δ[u] is a non-local term defined by the following relation

δ[u] =
T+1∑
k=1

A0(k − 1, |△u(k − 1)|),

λ > 0 is a real parameter, △u(k) = u(k+1)−u(k) is the forward difference operator,

f : Z [1, T ]×R → R is Carathéodory, a(k, ·),M : [0,∞) → [0,∞) are two continuous

functions for all k ∈ Z [1, T ], t ∈ [0,∞) with the function t → M(t) nondecreasing,

Received June 3, 2023 ISSN 1056-2176(Print); ISSN 2693-5295 (online)

www.dynamicpublishers.org https://doi.org/10.46719/dsa2023.32.13

$15.00 © Dynamic Publishers, Inc.
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A0 : Z [1, T ] × [0,∞) → [0,∞) which satisfies A0(k, s) =

∫ t

0

a(k, ξ)ξ dξ and the

function p : Z [0, T ] → (1,∞) is bounded.

we denote for short

p+ := max
k∈Z[0,T ]

p(k) and p− := min
k∈Z[0,T ]

p(k).

The presence of the non-local term δ[u] is an important feature of this article. Kirch-

hoff in 1876 (see [31]) proposed a model given by the equation

(1.2) ρ
∂2u

∂t2
=

(
T0 +

Ea

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
,

where ρ > 0 is the mass per unit length, T0 is the base tension, E is the Young

modulus, a is the area of cross section and L is the initial length of the string.

Equation (1.2) takes into account the change of the tension on the string which is

caused by the change of its length during the vibration. After that, several physicists

also considered such equations for their researches in the theory of nonlinear vibra-

tions theoretically or experimentally [16, 17, 41, 43]. Moreover, Kirchhoff equation

received a lot of attention only after Lions in 1978 (see [35]) suggested an abstract

framework to the problem which is related to the stationary analogue of the equation

of Kirchhoff type. Many authors have investigated Kirchhoff type equations, we refer

the readers to [4, 18] and the references therein. For the recent papers of the discrete

problems of Kirchhoff type, we refer the readers to [19, 28, 44, 42, 32, 48, 49, 50] and

the references therein. For example, in [50] Yucedag obtained, by using variational

approach and applying the Mountain Pass theorem, existence of at least one nontriv-

ial solution for an anisotropic discrete boundary value problem of p(k)-Kirchhoff type

in T -dimensional Hilbert space. In [32], Koné et al. proved, by using minimization

method, existence of a weak solution to a family of discrete boundary value problems

whose right-hand side belongs to a discrete Hilbert space. More recently, Heidarkhani

et al. (see [28]) have dealt with the p(k)-Kirchhoff type problems by using variational

methods and critical point theory.

The importance of problem (1.1) arises mainly from the existence of the nonho-

mogeneous differential operator

△(a(k − 1, |△u(k − 1)|)△u(k − 1)).

This operator generalizes the usual operators with variable exponent. For instance,

if a(k, ξ) = ξp(k)−2 then we obtain the standard p(·)-Laplace difference operator, that
is,

△p(k−1)u(k − 1) := △
(
|△u(k − 1)|p(k−1)−2△u(k − 1)

)
.
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The differential equations and variational problems involving non-homogeneous

differential operators have been intensively studied in the last few decades since they

can model various phenomena arising from the study of elastic mechanics [55], elec-

trorheological fluids [45, 46] and image restoration [20].

In recent years, many authors have discussed the existence and multiplicity of

solutions for discrete boundary value problems by using variational methods. For

the papers involving the discrete p(k)-Laplacian operator, we refer the readers to

[5, 21, 22, 23, 24, 29, 36, 38]. In the case where p(k) is a constant called the dis-

crete p-Laplacian operator, we refer to recent works [1, 2, 10, 11, 12, 13, 14] and

references therein. The discrete p(k)-Laplacian operator has more complicated non-

linearities than the discrete p-Laplacian operator, for example, it is not homogeneous.

The nonlinear problems involving the discrete p(k)-Laplacian have firstly been dis-

cussed by the authors in [33, 39]. For example, in [39] the authors proved, by using

critical point theory, existence of a continuous spectrum of eigenvalues for a discrete

anisotropic problem. In [33], Koné and Ouaro proved, by using minimization method,

the existence and uniqueness of weak solutions for anisotropic discrete boundary value

problems. We refer the readers to the recent article done by Kyelem et al [34] for the

applications of variational methods on difference equations.

Problem (1.1) can be seen as a discrete variant of the following variable exponent

anisotropic problem

(1.3)


−

N∑
i=1

∂

∂xi
ai

(
x,

∣∣∣∣ ∂u∂xi
∣∣∣∣) ∂u

∂xi
= λf(x, u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in RN with Lipschitz boundary ∂Ω, f : Ω × R −→ R
satisfies a Carathéodory condition, pi continuous on Ω such that 1 < pi(x) for each

x ∈ Ω and every i ∈ {1, 2, . . . , N}, and λ is a positive real parameter and it was

recently analysed by I.H. Kim and Y.H. Kim [30].

In this paper, we prove the existence of solutions of the discrete nonlinear bound-

ary value problem of p(k)-Kirchhoff type equations, by using variational methods

and critical point theory. We apply a result of Ricceri for functionals (see [47]) to

obtain the existence of at least one nontrivial solution and also a result of Mawhin

and Willem (see [37]), to obtain the existence of at least two solutions.

The rest of the paper is organized as follows. In Section 2, the variational frame-

work associated with problem (1.1) is established, the abstract critical point theorem

and our main tools are recalled. Some definitions and lemmas which are essential to

show our main results are also stated. In Section 3, we investigate the existence of at
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least one nontrivial solution for (1.1). Finally, in Section 4, we focus on the existence

of at least two nontrivial solutions.

2. PRELIMINARIES

In this section, we provide a variational framework associated with problem (1.1).

We consider the following T -dimensional Banach space.

W = {u : Z [0, T + 1] → R such that u(0) = u(T + 1) = 0} ,

equipped with the norm

∥u∥ =

(
T+1∑
k=1

|△u(k − 1)|p−
)1/p−

.

Moreover, we will also use the following norm

∥u∥p+ =

(
T+1∑
k=1

|△u(k − 1)|p+
)1/p+

and by using the discrete Hölder inequality ([25]), one has

T+1∑
k=1

|△u(k − 1)|p
−

≤

(
T+1∑
k=1

{1}
p+

p+−p−

) p+−p−

p+
(

T+1∑
k=1

(
|△u(k − 1)|p

−
) p+

p−

) p−

p+

≤ (T + 1)
p+−p−

p+

(
T+1∑
k=1

|△u(k − 1)|p+
) p−

p+

= (T + 1)
p+−p−

p+ ∥u∥p
−

p+ .

Consequently,

∥u∥ ≤ (T + 1)
p+−p−

p+p− ∥u∥p+ .(2.1)

On the space W we can also introduce the Luxemburg norm

∥u∥p(·) = inf

{
µ > 0 :

T+1∑
k=1

∣∣∣∣△u(k − 1)

µ

∣∣∣∣p(k−1)

≤ 1

}
.

For our purpose, since W is of finite dimensional, these norms are equivalent. There-

fore there exist two constants 0 < K1 < K2 such that

K1∥u∥p(·) ≤ ∥u∥ ≤ K2∥u∥p(·).(2.2)
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Next, let φ : W → R be given by

φ(u) =
T+1∑
k=1

|△u(k − 1)|p(k−1).

It is easy to check that for any un, u ∈ W , the following relations hold true.

∥u∥p(·) > 1 ⇒ ∥u∥p
−

p(·) ≤ φ(u) ≤ ∥u∥p
+

p(·),(2.3)

∥u∥p(·) < 1 ⇒ ∥u∥p
+

p(·) ≤ φ(u) ≤ ∥u∥p
−

p(·),(2.4)

∥un − u∥p(·) → 0 ⇔ φ(un − u) → 0 as n→ ∞.(2.5)

We also consider another norm in W , that is

∥u∥∞ = max
k∈Z[1,T ]

|u(k)|.

For every u ∈ W , there exists τ ∈ Z [1, T ] such that

∥u∥∞ = |u(τ)| ≤ 1

2

T+1∑
k=1

|△u(k − 1)| ≤ (T + 1)(p
−−1)/p−

2
∥u∥.(2.6)

Let Φ,Ψ : W → R be two functionals defined by

Φ(u) = M̂(δ[u]),(2.7)

Ψ(u) =
T∑

k=1

F (k, u(k)),(2.8)

where

M̂(t) =

∫ t

0

M(ξ) dξ and F (k, t) =

∫ t

0

f(k, ξ) dξ.

Then, for any λ > 0, we define the energy functional Iλ : W → R corresponding to

problem (1.1) and given by

Iλ(u) := Φ(u)− λΨ(u),(2.9)

for every u ∈ W .

We recall that a critical point of Iλ is a point u ∈ W such that

M (δ[u])
T+1∑
k=1

a(k − 1, |△u(k − 1)|)△u(k − 1)△v(k − 1)(2.10)

= λ

T∑
k=1

f(k, u(k))v(k),

for any v ∈ W .
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It is easy to verify that Φ and Ψ are two functionals of class C1(W,R) whose

Gâteaux derivatives at the point u ∈ W are given by

(2.11) ⟨Φ′(u), v⟩ =M (δ[u])
T+1∑
k=1

a(k − 1, |△u(k − 1)|)△u(k − 1)△v(k − 1)

and

(2.12) ⟨Ψ′(u), v⟩ =
T∑

k=1

f(k, u(k))v(k),

for all u, v ∈ W .

By (2.11) and (2.12), we observe that Iλ is of class C1(W,R) and

⟨I ′λ(u), v⟩ = ⟨Φ′(u), v⟩ − λ ⟨Ψ′(u), v⟩ ,

for all u, v ∈ W .

Thus, for every v ∈ W and taking v(0) = v(T + 1) = 0 into account, one has

M (δ[u])
T+1∑
k=1

a(k − 1, |△u(k − 1)|)△u(k − 1)△v(k − 1)

= −M (δ[u])
T+1∑
k=1

△(a(k − 1, |△u(k − 1)|)△u(k − 1))v(k),

then,

⟨I ′λ(u), v⟩ =
T∑

k=1

[−M(δ [u])△(a(k − 1, |△u(k − 1)|)△u(k − 1))− λf(k, u(k))] v(k).

Consequently, the critical points of Iλ inW are exactly the solutions of problem (1.1).

In the sequel, we will use the following auxiliary result.

Lemma 2.1. (i) Let u ∈ W and ∥u∥ > 1. Then,

T+1∑
k=1

|△u(k − 1)|p(k−1) ≥ ∥u∥p− − (T + 1).

(ii) Let u ∈ W and ∥u∥ < 1. Then,

T+1∑
k=1

|△u(k − 1)|p(k−1) ≥ (T + 1)
p−−p+

p− ∥u∥p+ .

(iii) For any m ≥ 2, one has

T∑
k=1

|u(k)|m ≤

(
(T + 1)(p

−−1)/p−

2

)m

T∥u∥m, for every u ∈ W.
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Proof. Fix u ∈ W with ∥u∥ > 1. By a similar argument as in [24], we define for each

k ∈ Z [0, T ],

βk :=

p+ if |△u(k)| ≤ 1,

p− if |△u(k)| > 1.

(i) We deduce that

T+1∑
k=1

|△u(k − 1)|p(k−1) ≥
T+1∑
k=1

|△u(k − 1)|βk−1

=
T+1∑
k=1

|△u(k − 1)|p− −
T+1∑

k=1,βk−1=p+

(
|△u(k − 1)|p− − |△u(k − 1)|p+

)

≥
T+1∑
k=1

|△u(k − 1)|p− − (T + 1) = ∥u∥p− − (T + 1),

for all u ∈ W such that ∥u∥ > 1.

(ii) By relation (2.1) as |△u(k)| < 1 since ∥u∥ < 1, we deduce that

T+1∑
k=1

|△u(k − 1)|p(k−1) ≥
T+1∑
k=1

|△u(k − 1)|p+

= ∥u∥p
+

p+ ≥ (T + 1)
p−−p+

p− ∥u∥p+ .

(iii) Note that by relation (2.2), one has

|u(k)|m ≤

(
(T + 1)(p

−−1)/p−

2

)m

∥u∥m, for every k ∈ Z [1, T ] .

Then, summing up k from 1 to T , we obtain

T∑
k=1

|u(k)|m ≤

(
(T + 1)(p

−−1)/p−

2

)m

T∥u∥m,

for every u ∈ W and any m ≥ 2. Hence, we conclude that Lemma 2.1 holds true.

We also assume that a and M satisfy the following assumptions.

(H1) a1 : Z [0, T ] → [0,∞) and there exists a constant a2 > 0 such that

|a(k, |ξ|)ξ| ≤ a1(k) + a2|ξ|p(k)−1,

for all k ∈ Z [0, T ] and ξ ∈ R.
(H2) For all k ∈ Z [0, T ] and ξ > 0, one has

0 ≤ a(k, |ξ|)ξ2 ≤ p+
∫ |ξ|

0

a(k, s)s ds.
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(H3) There exists a positive constant c such that

min

{
a(k, |ξ|), |ξ|∂a

∂ξ
(k, |ξ|) + a(k, |ξ|)

}
≥ c|ξ|p(k)−2,

for all k ∈ Z [0, T ] and ξ ∈ R.
(H4) M : (0,∞) → (0,∞) is continuous, nondecreasing and there exist positive reals

numbers A, B with A ≤ B and α ≥ 1 such that

Asα−1 ≤M(s) ≤ Bsα−1 for s ≥ s∗ > 0.

Example 2.1 As examples of functions A0 and a satisfying the above assumptions,

we can give the following.

(1) If we take

M(A0(k, |ξ|)) =
1

p(k)
|ξ|p(k) and M(t) = 1,

then

a(k, |ξ|) = |ξ|p(k)−2, for all (k, ξ) ∈ Z [1, T ]× R.

(2) Now, if we take

M(A0(k, |ξ|)) = a+
b

p(k)

[(
1 + |ξ|2

) p(k)
2 − 1

]
and M(t) = a+ bt,

then

a(k, |ξ|) =
(
1 + |ξ|2

) p(k)−2
2 , for all (k, ξ) ∈ Z [1, T ]× R.

We now introduce some necessary definitions.

Definition 2.2. An element u ∈ E is a critical point of the functional I : E → R if

⟨I ′(u), v⟩ = 0, for all v ∈ E.

Definition 2.3. We say that I satisfies the Palais-Smale condition ((PS) condition for short)

if for any sequence {un} ⊂ E such that {I(un)} is bounded and I ′(un) → 0 as n→ ∞,

there exists a subsequence of {un} which is convergent in E.

Definition 2.4. We say that a sequence {un} ⊂ E is said to satisfy the (PS)c

condition if

I(un) → c ∈ R and I ′(un) → 0 as n→ ∞.

Our first tool and approach is based on a local minimum theorem due to Bo-

nanno [7, Theorem 5.1], which is inspired by the Ricceri variational principle (see

[47, Theorem 2.5] ). We refer the readers to the papers [3, 6, 8, 9, 26, 40] in which

Theorem 2.5 below have been successfully employed to get the existence of at least

one nontrivial solution for boundary value problems.
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For a given nonempty set X and two functionals Φ,Ψ : X → R, we define the

following functions.

β(r1, r2) = inf
v∈Φ−1(r1,r2)

sup
u∈Φ−1(r1,r2)

Ψ(u)−Ψ(v)

r2 − Φ(v)

and

ρ(r1, r2) = sup
v∈Φ−1(r1,r2)

Ψ(v)− sup
u∈Φ−1(−∞,r1]

Ψ(u)

Φ(v)− r1
,

for all r1, r2 ∈ R, with r1 < r2.

Theorem 2.5. ([7, Theorem 5.1] ). Let X be a real Banach space, Φ : X → R
be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux

differentiable function whose Gâteaux derivative admits a continuous inverse on X∗

and Ψ : X → R be a continuously Gâteaux differentiable function whose Gâteaux

derivative is compact. Further, set Iλ := Φ − λΨ and assume that there are two

constants r1, r2 ∈ R, with r1 < r2, such that

β(r1, r2) < ρ(r1, r2).

Then, for each λ ∈
(

1
ρ(r1,r2)

, 1
β(r1,r2)

)
there is u0,λ ∈ Φ−1(r1, r2) such that Iλ(u0, λ) ≤

Iλ(u) for all u ∈ Φ−1(r1, r2) and I
′
λ(u0,λ) = 0.

Our second main tool and approach are based on theorems 2.6 and 2.7 below.

We refer the readers to the papers [15, 53] in which Theorem 2.6 have been applied

to obtain multiple solutions for boundary value problems. On the other hand, in

[27, 54], theorems 2.6 and 2.7 have been successfully employed to prove the existence

of two solutions for boundary value problems.

Theorem 2.6. ([37, Theorem 4.10] ). If X is a reflexive Banach space, I ∈ C1(X,R)
and I satisfies the Palais-Smale condition. Assume that there exist u0, u1 ∈ X and a

bounded neighborhood Ω of u0 satisfying u1 /∈ Ω and

inf
u∈∂Ω

I(u) > max{I(u0), I(u1)},

then there exists a critical point ũ ∈ X of I such that J(ũ) > max{I(u0), I(u1)}.

Theorem 2.7. ([52, Theorem 38]). For the functional F :M ⊆ X → (−∞,∞) with

M ̸= ∅, min
u∈M

F (u) = α has a solution in case where the following conditions hold.

(i) X is a real reflexive Banach space,

(ii) M is bounded and weakly sequentially closed,

(iii) F is weakly sequentially lower semi-continuous onM , i.e., by definition, for each

sequence {un} in M such that un ⇀ u as n→ ∞, one has F (u) ≤ lim inf
n→∞

F (un)

holds.
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Proposition 2.8. Assume that the condition (H3) is fulfilled. Then, the following

estimate

⟨a(k, |u|)u− a(k, |v|)v, u− v⟩

≥

c (|u|+ |v|)p(k)−2 |u− v|2 if 1 < p(k) < 2

42−p+c|u− v|p(k) if p(k) ≥ 2

holds true for all u, v ∈ R and k ∈ Z [1, T ] such that (u, v) ̸= (0, 0).

Proof. Let u, v ∈ R with (u, v) ̸= (0, 0). Let us define ψ(k, u) = a(k, |u|)u. From

condition (H3), we see that, for all u ∈ R\{0},

∂ψ(k, u)

∂u
= |u|∂a

∂u
(k, |u|) + a(k, |u|)

≥ c|u|p(k)−2.(2.13)

Note that

ψ(k, u)− ψ(k, v) =

∫ 1

0

∂ψ(k, v + t(u− v))

∂u
(u− v)dt.(2.14)

Suppose that k ∈ Z [0, T ] such that p(k) ≥ 2. Thus, it follows from (2.13) and (2.14)

that

⟨a(k, |u|)u− a(k, |v|)v, u− v⟩ =

∫ 1

0

∂ψ

∂u
(k, v + t(u− v))(u− v)(u− v) dt

≥
∫ 1

0

c|v + t(u− v)|p(k)−2|u− v|2dt.

Without loss of generality, we may assume that |u| ≤ |v|. Thus, |u− v| ≤ 2|v|.
For any t ∈ [0, 1/4], we get

|v + t(u− v)| ≥ |v| − 1

4
|u− v|,

then

|v + t(u− v)| ≥ 1

4
|u− v|.

Consequently,

⟨a(k, |u|)u− a(k, |v|)v, u− v⟩ ≥
∫ 1

0

c|v + t(u− v)|p(k)−2|u− v|2dt

≥ 42−p+c|u− v|p(k).

Suppose now that k ∈ Z [0, T ] such that 1 < p(k) < 2. By the preceding arguments,

we deduce by condition (H3) that, for all u ∈ R \ {0},

∂ψ(k, u)

∂u
= |u|∂a

∂u
(k, |u|) + a(k, |u|)

≥ c|u|p(k)−2.
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Using the fact that |tu+ (1− t)v| ≤ |u|+ |v|, we clearly obtain

⟨a(k, |u|)u− a(k, |v|)v, u− v⟩ ≥
∫ 1

0

c|v + t(u− v)|p(k)−2|u− v|2dt

≥ c (|u|+ |v|)p(k)−2 |u− v|2.

This ends the proof.

Lemma 2.9. Assume that (H1), (H3) and (H4) are fulfilled. Then, the operator

Φ′ : W → W ∗ is strictly monotone on W and verifies the (S+) condition, i.e., for

every sequence {un} ⊂ W such that un ⇀ u in W as n → ∞ and lim sup
n→∞

⟨Φ′(un) −

Φ′(u), un − u⟩ ≤ 0, one has un → u in W as n → ∞. Here, ⟨·, ·⟩ denotes the duality

pairing between W and its dual W ∗.

Proof. We prove that Φ′ is a strictly monotone operator.

For that, we consider the functional ϕ : W → R given by

ϕ(u) = δ[u] =
T+1∑
k=1

∫ |△u(k−1)|

0

a(k − 1, ξ)ξdξ, for all u ∈ W.

Then, ϕ ∈ C1(W,R) and its Gâteaux derivative at the point u ∈ W is

⟨ϕ′(u), v⟩ =
T+1∑
k=1

a(k − 1, |△u(k − 1)|)△u(k − 1)△v(k − 1),

for all u, v ∈ W .

For all u, v ∈ W with u ̸= v, we get

⟨ϕ′(u)− ϕ′(v), u− v⟩

=
T+1∑
k=1

(a(k−1, |△u(k−1)|)△u(k−1)− a(k−1, |△v(k−1)|)△v(k−1)) (△u(k−1)−△v(k−1)) .

By Proposition 2.8, one obtains

⟨ϕ′(u)− ϕ′(v), u− v⟩

≥


c
T+1∑
k=1

(|△u(k−1)|+ |△v(k−1)|)p(k−1)−2 |△u(k−1)−△v(k−1)|2 > 0 if 1 < p(k−1) < 2,

42−p+c

T+1∑
k=1

|△u(k−1)−△v(k−1)|p(k−1) > 0 if p(k−1) ≥ 2.

Thus, ϕ′ is strictly monotone. Therefore, by Proposition 25.10 of [51], it follows that

ϕ is strictly convex. Furthermore, since M is nondecreasing, then M̂ is convex in

(0,∞). Thus, for all u, v ∈ W with u ̸= v and every s, t ∈ (0, 1) with s + t = 1, one

has

M̂ (ϕ(su+ tv)) < M̂ (sϕ(u) + tϕ(v)) ≤ sM̂ (ϕ(u)) + tM̂ (ϕ(v)) .

Then, it follows that Φ is stictly convex and so Φ′ is strictly monotone in W .
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Now, we claim that the operator Φ′ is of type (S+). Let {un} ⊂ W be a sequence

such that un ⇀ u in W as n→ ∞ and

lim sup
n→∞

⟨Φ′(un)− Φ′(u), un − u⟩ ≤ 0.

We will show that un → u in W as n→ ∞.

Since lim sup
n→∞

⟨Φ′(un)−Φ′(u), un − u⟩ ≤ 0 and according to the strict monotonicity of

Φ′, one has

lim
n→∞

⟨Φ′(un)− Φ′(u), un − u⟩ = 0.

Thus,

lim
n→∞

⟨Φ′(un), un − u⟩ = 0,

which means that

lim
n→∞

M (δ[un])
T+1∑
k=1

a(k − 1, |△un(k − 1)|)△un(k − 1)△(un − u)(k − 1) = 0.(2.15)

We deduce by hypothesis (H1) that

δ[un] =
T+1∑
k=1

∫ |△un(k−1)|

0

a(k − 1, ξ)ξdξ

≤
T+1∑
k=1

a1(k − 1)|△un(k − 1)|+
T+1∑
k=1

a2
p(k − 1)

|△un(k − 1)|p(k−1)

≤ max
k∈Z[1,T ]

a1(k)
T+1∑
k=1

|△un(k − 1)|+ a2
p−

T+1∑
k=1

|△un(k − 1)|p(k−1)

≤ K1 +K2

T+1∑
k=1

|△un(k − 1)|p(k−1),

where K1 and K2 are positive constants.

It is immediate to see that

T+1∑
k=1

|△un(k − 1)|p(k−1) = ∥un∥p
∗
=

∥un∥p
+

if ∥un∥ > 1,

∥un∥p
−

if ∥un∥ < 1.

Then,

δ[un] ≤ K1 +K2∥un∥p
∗ ≤ K

(
1 + ∥un∥p

∗)
.

Hence, we infer that (δ[un])n≥1 is bounded.

Since M is continuous, up to a subsequence there is s0 ≥ 0 such that

M (δ[un]) →M(s0) ≥ Asα−1
0 as n→ ∞.(2.16)
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Thus, it follows from (2.15) and (2.16) that

lim
n→∞

T+1∑
k=1

a(k − 1, |△un(k − 1)|)△un(k − 1)△(un − u)(k − 1) = 0.

Therefore,

lim
n→∞

⟨ϕ′(un), un − u⟩ = 0.

Then,

lim
n→∞

⟨ϕ′(un)− ϕ′(u), un − u⟩ = 0.(2.17)

On the other hand, by Proposition 2.8, one has

⟨ϕ′(un)− ϕ′(u), un − u⟩

(2.18)

≥


c
T+1∑
k=1

û(k − 1)p(k−1)−2|△un(k − 1)−△u(k − 1)|2 > 0 if 1 < p(k − 1) < 2,

42−p+c
T+1∑
k=1

|△un(k − 1)−△u(k − 1)|p(k−1) > 0 if p(k − 1) ≥ 2.

where û(k − 1) = |△un(k − 1)|+ |△u(k − 1)|.
By using the discrete Hölder inequality (see [25]), we get

T+1∑
k=1

|△un(k − 1)−△u(k − 1)|p(k−1)

=
T+1∑
k=1

û(k − 1)
p(k−1)(2−p(k−1))

2

(
û(k − 1)

p(k−1)(p(k−1)−2)
2 |△un(k − 1)−△u(k − 1)|p(k−1)

)
≤ K ′∥û

p(·)(2−p(·))
2 ∥ 2

2−p(·)
∥û

p(·)(p(·)−2)
2 |△un(k − 1)−△u(k − 1)|p(·)∥ 2

p(·)

≤ K ′∥û∥sp(·)

(
T+1∑
k=1

û(k − 1)p(k−1)−2|△un(k − 1)−△u(k − 1)|2
)v

,

where s is either p−(2− p)/2 or p(2− p−)/2 and v is either p−/2 or p/2 with

p = max
{k∈Z[0,T ]:1<p(k)<2}

p(k). Therefore, taking the above inequality and (2.17)-(2.18)

into account, one has

lim
n→∞

T+1∑
k=1

|△un(k − 1)−△u(k − 1)|p(k−1) = 0.(2.19)

Combining (2.5) with (2.19), we see that

lim
n→∞

∥un − u∥p(·) = 0.

Thus, Φ′ is of type (S+). The proof of Lemma 2.9 is complete.
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Lemma 2.10. Suppose that (H1), (H3) and (H4) are satisfied. Then, Φ is weakly

lower semi-continuous, i.e., un ⇀ u inW as n→ ∞ implies that Φ(u) ≤ lim inf
n→∞

Φ(un).

Proof. Assuming that un ⇀ u in W as n → ∞. Then, it follows from (2.11) and

Lemma 2.9 that Φ is convex (see [52, Proposition 42.6]) and we deduce that for any

n ∈ N,

Φ(un) ≥ Φ(u) + ⟨Φ′(u), un − u⟩.

Then,

lim inf
n→∞

Φ(un) ≥ Φ(u) + lim inf
n→∞

⟨Φ′(u), un − u⟩,

which means that

lim inf
n→∞

Φ(un) ≥ Φ(u).

We conclude that Φ is weakly lower semi-continuous and the proof is complete.

3. EXISTENCE OF A NONTRIVIAL SOLUTION

In this section, we prove that problem (1.1) has at least one nontrivial solution

using Theorem 2.5. Let ϵ and b be two positive constants with

(ϵκ)αp
∗
Acα(T + 1)α(p

−−p+)/p−

α(p+)α
̸= M̂

(∫ b

0

(a(0, ξ) + a(T, ξ)) ξ dξ

)
.

We put

Θϵ(b) =

T∑
k=1

max
|t|≤ϵ

F (k, t)−
T∑

k=1

F (k, b)

(ϵκ)αp∗Acα(T + 1)α(p
−−p+)/p−

α(p+)α
− M̂

(∫ b

0

(a(0, ξ) + a(T, ξ)) ξ dξ

) .
Theorem 3.1. Assume that there exist three positive constants ϵ1, b and ϵ2 with

ϵ1 <
(α(p+)α)

1/αp∗

κ(Acα)1/αp∗(T + 1)(p−−p+)/p∗p−

[
M̂

(∫ b

0

(a(0, ξ) + a(T, ξ)) ξ dξ

)]1/αp∗
< ϵ2,

such that

Θϵ2(b) < Θϵ1(b).

Then, for each λ ∈
(

1
Θϵ1 (b)

, 1
Θϵ2 (b)

)
, problem (1.1) admits at least one nontrivial solu-

tion ǔ ∈ W such that

(ϵ1κ)
αp∗Acα(T + 1)α(p

−−p+)/p−

α(p+)α
< M̂(δ[ǔ]) <

(ϵ2κ)
αp∗Acα(T + 1)α(p

−−p+)/p−

α(p+)α
.
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Proof. We are going to apply Theorem 2.5 to problem (1.1). Take X = W and put

Φ, Ψ and Iλ as given in (2.7), (2.8) and (2.9), respectively. Clearly, the regularity

assertions are required on Φ and Ψ. Moreover, the critical points of Iλ are exactly

the solutions of problem (1.1). Now, put

r1 =
(ϵ1κ)

αp∗Acα(T + 1)α(p
−−p+)/p−

α(p+)α
and r2 =

(ϵ2κ)
αp∗Acα(T + 1)α(p

−−p+)/p−

α(p+)α

and define the function u : W → R as follows.

u(k) =

b if k ∈ Z [1, T ] ,

0 otherwise.

Then, we deduce that Ψ(u) =
T∑

k=1

F (k, u(k)) =
T∑

k=1

F (k, b) and

Φ(v) = M̂

(∫ b

0

(a(0, ξ) + a(T, ξ)) ξ dξ

)
.

By (2.6), one has

∥u∥∞ := max
k∈Z[1,T ]

|u(k)| ≤ 1

κ
∥u∥,

for each u ∈ W , where

κ :=
2

(T + 1)(p−−1)/p−
.

We also use the following notation.

βαp∗ :=

βαp+ if β > 1,

βαp− if 0 < β < 1.

Thus, we obtain

∥u∥∞ ≤ r
1/αp∗
1

κ

(
α(p+)α

Acα(T + 1)α(p−−p+)/p−

)1/αp∗

= ϵ1,

for all u ∈ W such that

∥u∥ ≤ r
1/αp∗
1

(
α(p+)α

Acα(T + 1)α(p−−p+)/p−

)1/αp∗

and

∥u∥∞ ≤ r
1/αp∗
2

κ

(
α(p+)α

Acα(T + 1)α(p−−p+)/p−

)1/αp∗

= ϵ2,

for all u ∈ W such that

∥u∥ ≤ r
1/αp∗
2

(
α(p+)α

Acα(T + 1)α(p−−p+)/p−

)1/αp∗

.
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Therefore, one has

sup
u∈Φ−1(−∞,r1]

Ψ(u) = sup
Φ(u)≤r1

T∑
k=1

F (k, u(k)) ≤
T∑

k=1

max
|t|≤ϵ1

F (k, t)

as well as

sup
u∈Φ−1(−∞,r2)

Ψ(u) ≤
T∑

k=1

max
|t|≤ϵ2

F (k, t).

Hence, it follows that

β(r1, r2) ≤
sup

u∈Φ−1(−∞,r2)

Ψ(u)−Ψ(u)

r2 − Φ(u)

≤

T∑
k=1

max
|t|≤ϵ2

F (k, t)−
T∑

k=1

F (k, b)

(ϵ2κ)
αp∗Acα(T + 1)α(p

−−p+)/p−

α(p+)α
− M̂

(∫ b

0

(a(0, ξ) + a(T, ξ)) ξ dξ

)
= Θϵ2(b).(3.1)

Moreover, arguing as before, one has

ρ(r1, r2) ≥
Ψ(u)− sup

u∈Φ−1(−∞,r1]

Ψ(u)

Φ(u)− r1

≥

T∑
k=1

F (k, b)−
T∑

k=1

max
|t|≤ϵ1

F (k, t)

M̂

(∫ b

0

(a(0, ξ) + a(T, ξ)) ξdξ

)
− (ϵ1κ)

αp∗Acα(T + 1)α(p
−−p+)/p−

α(p+)α

= Θϵ1(b).(3.2)

Combining (3.1) and (3.2), we obtain β(r1, r2) < ρ(r1, r2). Furthermore, again from

Θϵ1(b) and Θϵ2(b), one has λ ∈
(

1
Θϵ1 (b)

, 1
Θϵ2 (b)

)
. Therefore, the functional Iλ admits at

least one critical point ǔ, which is solution of problem (1.1) such that r1 < Φ(ǔ) < r2,

that is

(ϵ1κ)
αp∗Acα(T + 1)α(p

−−p+)/p−

α(p+)α
< M̂(δ[ǔ]) <

(ϵ2κ)
αp∗Acα(T + 1)α(p

−−p+)/p−

α(p+)α
,

and the proof is complete.

4. MULTIPLE SOLUTIONS

In this section, one uses theorems 2.6 and 2.7 in order to get the existence re-

sults of multiple solutions of problem (1.1). We introduce firstly some additional

assumptions.
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(H5) lim
|t|→∞

f(k, t)

|t|p−−1
= 0, for any k ∈ Z [1, T ].

(H6) There exist two constants c1 > 0 and s < αp+ such that

|f(k, t)| ≤ c1
(
1 + |t|s−1

)
for all (k, t) ∈ Z [1, T ]× R.

(H7) There exist t1, θ, A,B ∈ (0,∞) and α ≥ 1, which satisfy A ≤ B, θ >
B

A
αp+,

such that

0 < θF (k, t) := θ

∫ t

0

f(k, s) ds ≤ f(k, t)t for all k ∈ Z [1, T ] and t ∈ R with |t| ≥ t1.

(H8) f(k, t) = ◦(|t|αp+−1), as t→ 0 for all k ∈ Z [1, T ] uniformly.

Our main result in this section is the following theorem.

Theorem 4.1. Assume hypotheses (H1) − (H8) are satisfied. Then, there exists

λ∗ > 0 such that for each λ ∈ (0, λ∗), problem (1.1) has at least two nonzero solutions.

The next lemma proves that Iλ has a mountain pass geometry.

Lemma 4.2. Assume that the hypotheses of Theorem 4.1 are satisfied. Then,

(i) There exist λ∗, ν, ϱ, ρ > 0 such that for each λ ∈ (0, λ∗), one has

Iλ(u) ≥ ϱ > 0 for all u ∈ ∂Bρ with ∥u∥ = ρ.

(ii) There exists e ∈ W with ∥e∥ > ρ such that

Iλ(e) < 0.

Proof. (i) We will verify that the functional Iλ satisfies the conditions of Theorem

2.6.

From (H6) and (H8), for any ε > 0, there exists a constant cε > 0 such that

|F (k, t)| ≤ ε|t|αp+ + cε|t|s for all k ∈ Z [1, T ] and t ∈ R.(4.1)

Let Bν = {u ∈ W such that ∥u∥ < ν}. So by (2.6), one has

|u(k)| ≤ (T + 1)(p
−−1)/p−

2
∥u∥, for any k ∈ Z [1, T ] .

Take u ∈ Bν with ∥u∥ ≤ 1. Then, we obtain

|u(k)| ≤ (T + 1)(p
−−1)/p−

2
∥u∥ ≤ 1, for any k ∈ Z [1, T ] .
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Put ν = 2(T + 1)(1−p−)/p− . For u ∈ ∂Bν with ∥u∥ ≤ ν, by (4.1), (H2)-(H4) and

Lemmas 2.1− (ii)− (iii), it follows that

Iλ(u) = M̂(δ[u])− λ

T∑
k=1

F (k, u(k))

≥ A

α
(δ[u])α − λ

T∑
k=1

(
ε|u(k)|αp+ + cε|u(k)|s

)
≥ Acα

α(p+)α
(T + 1)

(p−−p+)α

p− ∥u∥αp+ − λε

T∑
k=1

|u(k)|αp+ − λcε

T∑
k=1

|u(k)|s

≥ Acα

α(p+)α
(T + 1)

(p−−p+)α

p− ∥u∥αp+ − λε

(
(T + 1)(p

−−1)/p−

2

)αp+

T∥u∥αp+

− λcε

(
(T + 1)(p

−−1)/p−

2

)s

T∥u∥s.

Let ε > 0 be small enough such that λε
(

(T+1)(p
−−1)/p−

2

)αp+
T < Acα

2α(p+)α
(T+1)

(p−−p+)α

p− .

Then, it follows that

Iλ(u) ≥ Acα

2α(p+)α
(T + 1)

(p−−p+)α

p− ∥u∥αp+ − λcε

(
(T + 1)(p

−−1)/p−

2

)s

T∥u∥s

= ∥u∥αp+
(

Acα

2α(p+)α
(T + 1)

(p−−p+)α

p− − λcε

(
(T + 1)(p

−−1)/p−

2

)s

T∥u∥s−αp+

)
.(4.2)

We set

η(σ) = bλσs−αp+ , σ ∈ (0, 1),

where b = cε

(
(T+1)(p

−−1)/p−

2

)s
T . Since s < αp+, we obtain that η(σ) → ∞ as σ → 0+.

Thus, η possesses a minimum at u0 ̸= 0 since Iλ(0) = 0. Now, we will show that

u0 ∈ Bν and therefore according to Thorem 2.7, Iλ has a local minimum u0 ∈ Bν .

We deduce that for u ∈ ∂Bρ with ∥u∥ = ρ, the following inequality holds.

Iλ(u) ≥ Acα

2α(p+)α
(T + 1)

(p−−p+)α

p− ∥u∥αp+ − λb∥u∥s

=

(
Acα

2α(p+)α
(T + 1)

(p−−p+)α

p− ραp
+−s − λb

)
ρs.

Then, there exists λ∗ = Acα

4bα(p+)α
(T + 1)

(p−−p+)α

p− ραp
+−s such that η(u0) <

Acα

2α(p+)α
(T +

1)
(p−−p+)α

p− for any λ ∈ (0, λ∗). On the other hand, relation (4.2) implies that

inf
u∈Bν

Iλ(u) ≥ ραp
+

(
Acα

2α(p+)α
(T + 1)

(p−−p+)α

p− − η(ρ)

)
= ϱ > 0 = Iλ(0) ≥ Iλ(u0).
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Hence, we infer that u0 ∈ Bν and I ′λ(u0) = 0. Choosing ν = ρ, then for each

λ ∈ (0, λ∗) there exists λ∗ = Acα

4bα(p+)α
(T + 1)

(p−−p+)α

p− ραp
+−s, ρ = 2(T + 1)(1−p−)/p− and

ϱ = ραp
+

(
Acα

2α(p+)α
(T + 1)

(p−−p+)α

p− − η(ρ)

)
such that Iλ(u) ≥ ϱ > 0 for all u ∈ ∂Bρ with ∥u∥ = ρ.

(ii) By assumption (H7), one has

F (k, t) ≥ C|t|θ,(4.3)

for all (k, t) ∈ Z [1, T ]× R and for some constant C > 0.

From (H4), we deduce as t ≥ t∗ > 0 since A ≤ B and α ≥ 1, that

M̂(t) ≤ B

α
tα ≤ B

α
t
B
A
α.(4.4)

Thus, it follows from (4.3) and (4.4) that for v ∈ W \ {0} and t > 1,

Iλ(tv) = M̂ (δ[tv])− λ
T∑

k=1

F (k, tv(k))

≤ B

α
t
B
A
αp+ (δ[v])α − λCtθ

T∑
k=1,|v(k)|>t1

|v(k)|θ + λMT,

with M := max {|F (k, t)| : k ∈ Z [1, T ] , |t| ≤ t1}.
Since θ >

B

A
αp+, we infer that Iλ(tv) → −∞ as t → ∞. Thus, there exists a

sufficiently large t0 > ν such that u = t0v ∈ W and Iλ(u) < 0 with ∥u∥ > ρ. So, it

follows that inf
u∈∂Bν

Iλ(u) > max{Iλ(u0), Iλ(u1)}. Then, by Theorem 2.6, the functional

Iλ has a second critical point û.

Lemma 4.3. Assume the hypotheses of Theorem 4.1 are satisfied. Then, Iλ satisfies

the Palais-Smale condition.

Proof. Let {un} ⊂ W be a Palais-Smale sequence such that

Iλ(un) → c and I ′λ(un) → 0 as n→ ∞.

We first show that {un} is bounded in W . For this, assume by contradiction that

{un} is unbounded, so ∥un∥ → ∞ as n → ∞. Thus, assuming that ∥un∥ > 1 for n

large enough, we deduce by condition (H2) that

Iλ(un)−
1

θ
⟨I ′λ(un), un⟩

≥ A

∫ δ[un]

0

ξα−1dξ − Bp+

θ
(δ[un])

α + λ

T∑
k=1

(
1

θ
f(k, un(k))un(k)− F (k, un(k))

)

≥
(
A

α
− Bp+

θ

)
(δ[un])

α + λ

T∑
k=1

(
1

θ
f(k, un(k))un(k)− F (k, un(k))

)
.
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Put

M = max

{∣∣∣∣1θf(k, t)t− F (k, t)

∣∣∣∣ : k ∈ Z [1, T ] , |t| ≤ t1

}
.

Thus, we get by (H7) that(
A

α
− Bp+

θ

)
(δ[un])

α ≤ Iλ(un)−
1

θ
⟨I ′λ(un), un⟩

− λ
T∑

k=1,|un(k)|>t1

(
1

θ
f(k, un(k))un(k)− F (k, un(k))

)
+ λMT

≤ Iλ(un)−
1

θ
⟨I ′λ(un), un⟩+ λMT,

for n large enough. From (H2), (H3) and Lemma 2.1(i), we obtain(
A

α
− Bp+

θ

)
cα

(p+)α
∥un∥αp

− ≤ Iλ(un)−
1

θ
⟨I ′λ(un), un⟩+K(α, T )Tα + λMT.

Since θ >
B

A
αp+ and αp− > 1, this last inequality is absurd and so {un} is bounded

in W . Thus, up to a subsequence un ⇀ u weakly in W and

δ[un] =
T+1∑
k=1

∫ |△un(k−1)|

0

a(k − 1, ξ)ξdξ → m0 as n→ ∞.(4.5)

If m0 = 0, then ∥un∥ → 0 as n→ ∞ and the proof is complete. Assume that m0 > 0

and show that ∥un − u∥ → 0 as n→ ∞. From Iλ = Φ− λΨ, one has

⟨Φ′(un), un − u⟩ = ⟨I ′λ(un), un − u⟩+ λ
T∑

k=1

f(k, un(k))(un(k)− u(k)).

Therefore,

(4.6)

M(δ[un])
T+1∑
k=1

(a(k − 1, |△un(k − 1)|)△un(k − 1)− a(k − 1, |△un(k − 1)|)

×△un(k − 1))△(un − u)(k − 1)

= ⟨I ′λ(un), un − u⟩ −M (δ[un])
T+1∑
k=1

a(k − 1, |△un(k − 1)|)△un(k − 1)△(un − u)(k − 1)

+λ
T∑

k=1

f(k, un(k))(un(k)− u(k)).

Since un ⇀ u in W as n→ ∞, we get

(4.7)


⟨I ′λ(un), un − u⟩ → 0,
T+1∑
k=1

a(k − 1, |△un(k − 1)|)△un(k − 1)△(un − u)(k − 1) → 0.
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Besides, by (H5) there exists a constant c1 > 0 such that

|f(k, t)| ≤ c2

(
1 + |t|p−−1

)
for all (k, t) ∈ Z [1, T ]× R.

Then, by the discrete Hölder inequality and lemma 2.1(iii), we obtain

T∑
k=1

|f(k, un(k))||(un(k)− u(k))|

≤ c2

T∑
k=1

|un(k)− u(k)|+ c2

T∑
k=1

|un(k)|p
−−1|un(k)− u(k)|

≤ c2
(T + 1)(p

−−1)/p−

2
T

1 +

(
(T + 1)(p

−−1)/p−

2

)p−−1

∥un∥p
−−1

 ∥un − u∥.

Since un ⇀ u in W as n→ ∞, one has

lim
n→∞

T∑
k=1

|f(k, un(k))||un(k)− u(k)| = 0.(4.8)

On the other hand, by the continuity of M , it follows from (4.5)-(4.8) that

lim
n→∞

M(δ[un])
T+1∑
k=1

(a(k − 1, |△un(k − 1)|)△un(k − 1)− a(k − 1, |△un(k − 1)|)

×△un(k − 1))△(un − u)(k − 1) = 0,

which means that

lim
n→∞

⟨Φ′(un)− Φ′(u), un − u⟩ = 0.

Therefore, by the above equality, we deduce that

lim sup
n→∞

⟨Φ′(un)− Φ′(u), un − u⟩ ≤ 0.

But the operator Φ′ has the (S+) property and so it follows that un → u strongly in

W . This complete the proof of Lemma 4.3.

Proof of Theorem 4.1 From lemmas 4.2, 4.3 and the fact that Iλ(0) = 0, the

functional Iλ satisfies the assumptions of Theorem 2.6. Consequently, the functional

Iλ admits at least two critical points u0, û, which are solutions of problem (1.1) and

the proof is complete.
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