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ABSTRACT. Converting nonlinear boundary value problems to fixed point problems of an integral

operator with a Green’s function kernal is a common technique to find or approximate solutions of

boundary value problems. It is often difficult to apply Banach’s Theorem since it is challenging

to find an initial estimate with a contractive constant less than one. We decompose the integral

operator associated to a conjugate boundary value problem creating multiple fixed point problems

which have contractive constants less than one. We then provide conditions for the original boundary

value problem to have a solution that can be found by iteration using the decomposition through a

fixed point of a real valued function which matches the fixed points of our decomposition.
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1. Introduction

The Banach Fixed Point Theorem [2] is a powerful tool that can be used to find

solutions of nonlinear initial and boundary value problems that have been converted

to fixed point problems. The Picard-Lindelöf Theorem (see the fixed point books

by Zeidler [5] or Dugundji-Granas [3]) is used to find unique solutions for a first

order nonlinear initial value problem where the key is to restrict the interval so the

operator whose fixed points are solutions on the interval is k-contractive. This is

the first manuscript that we are aware of that follows an approach similar to the

initial value problem approach by Picard-Lindelöf for boundary value problems, that

is, restricting the interval so an associated operator is k-contractive.
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Consider the second-order conjugate boundary value problem given by

y′′(t) + h(y(t)) = 0, t ∈ (0, 1),(1.1)

y(0) = 0 = y(1),(1.2)

where h : [0,∞) → [0,∞) is differentiable. The Green’s function for (1.1), (1.2) is

given by

H(t, s) =

t(1− s) if 0 ≤ t ≤ s ≤ 1,

s(1− t) if 0 ≤ s ≤ t ≤ 1;

and the fixed points of the operator T defined by

(1.3) Ty(t) =

∫ 1

0

H(t, s)h(y(s)) ds

are the solutions of (1.1), (1.2). Define the cone P of C[0, 1] by

P = {y ∈ C[0, 1] : y(0) = 0 = y(1), y is concave and symmetric} .

Following an argument similar to that of Avery-Henderson [1], we will show that T

is symmetric then we will decompose the matrix T using symmetry arguments. For

y ∈ P and t ∈ [0, 1] we have

(Ty)(1− t) =

∫ 1

0

H(1− t, s)h(y(s)) ds

=

∫ 1−t

0

H(1− t, s)h(y(s)) ds+

∫ 1

1−t

H(1− t, s)h(y(s)) ds

=

∫ 1−t

0

sth(y(s)) ds+

∫ 1

1−t

(1− t)(1− s)h(y(s)) ds

=

∫ 1−t

0

sth(y(1− s)) ds+

∫ 1

1−t

(1− t)(1− s)h(y(1− s)) ds

=

∫ t

1

−(1− u)th(y(u)) du+

∫ 0

t

−(1− t)ug(y(u)) du

=

∫ 1

t

(1− s)th(y(s)) ds+

∫ t

0

s(1− t)h(y(s)) ds

= (Ty)(t),

thus we have that T : P → P since for all y ∈ P we just verified that T is symmetric,

that is Ty(1− t) = Ty(t) for all t ∈ [0, 1], and clearly Ty is concave since (Ty)′′(t) =

−h(y(t) < 0. Also notice that if y ∈ P with y(t) = (Ty)(t) for all t ∈
[
0, 1

2

]
then we

have that y is a fixed point of T by the symmetry of both y and Ty. For y ∈ P define

the concave functional α : P → [0,∞) by

(1.4) α(y) = min
t∈[ 14 ,

3
4 ]
y(t) = y

(
1

4

)
,
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and for 0 < r < R define

P (α, r,R) = {y ∈ P : r ≤ α(y), ∥y∥ ≤ R},

which is referred to as a Leggett-Williams [4] functional wedge. We will search for

fixed points of T in P (α, r, R). Note that functional wedges are closed, convex subsets

of P . For t, s ∈ [0, 1] define

D(t, s) = min{t, s}

and note that for y ∈ P we can write Ty as

(Ty)(t) =

∫ 1

0

H(t, s)h(y(s)) ds

=

∫ 1
4

0

H(t, s)h(y(s)) ds+

∫ 3
4

1
4

H(t, s)h(y(s)) ds+

∫ 1

3
4

H(t, s)h(y(s)) ds

and for t ∈ [0, 1
4
] we can define the operator

(Jy)(t) =

∫ 1
4

0

H(t, s)h(y(s)) ds+

∫ 1

3
4

H(t, s)h(y(s)) ds

=

∫ t

0

s(1− t)h(y(s)) ds+

∫ 1
4

t

t(1− s)h(y(s)) ds+

∫ 1

3
4

t(1− s)h(y(1− s)) ds

=

∫ t

0

s(1− t)h(y(s)) ds+

∫ 1
4

t

t(1− s)h(y(s)) ds+

∫ 0

1
4

−tuh(y(u)) du

=

∫ t

0

s(1− t)h(y(s)) ds+

∫ 1
4

t

t(1− s)h(y(s)) ds+

∫ 1
4

0

sth(y(s)) ds

=

∫ t

0

sh(y(s)) ds+

∫ 1
4

t

th(y(s)) ds

=

∫ 1
4

0

D(t, s) h(y(s)) ds



258 AVERY, ANDERSON, HENDERSON

and for t ∈ [1
4
, 1
2
] we can define the operator

(Ky)(t) =

∫ 3
4

1
4

H(t, s)h(y(s)) ds

=

∫ t

1
4

s(1− t)h(y(s)) ds+

∫ 1
2

t

t(1− s)h(y(s)) ds+

∫ 3
4

1
2

t(1− s)h(y(1− s)) ds

=

∫ t

1
4

s(1− t)h(y(s)) ds+

∫ 1
2

t

t(1− s)h(y(s)) ds+

∫ 1
4

1
2

−tuh(y(u)) du

=

∫ t

1
4

s(1− t)h(y(s)) ds+

∫ 1
2

t

t(1− s)h(y(s)) ds+

∫ 1
2

1
4

tsh(y(s)) ds

=

∫ t

1
4

sh(y(s)) ds+

∫ 1
2

t

th(y(s)) ds

=

∫ 1
2

1
4

D(t, s)h(y(s)) ds.

Utilizing the operators J and K as well as symmetry we can write the operator T in

the form

(Ty)(t) =


(Jy)(t) + 4t(Ky)(1

4
) 0 ≤ t ≤ 1

4

(Jy)(1
4
) + (Ky)(t) 1

4
≤ t ≤ 1

2

(Ty)(1− t) 1
2
< t ≤ 1

and in what follows we will show how fixed points of operators associated to J and K

will lead to a fixed point of the operator T which is a solution of our original boundary

value problem (1.1), (1.2). Moreover we will show how one can use the bisection

method to create an iterative scheme to approximate a solution of the conjugate

boundary value problem (1.1), (1.2).

2. Preliminaries

Let

Q =

{
y ∈ C

[
1

4
,
1

2

]
: y is non-negative and non-decreasing

}
,

which is a cone in the Banach Space Bu = C
[
1
4
, 1
2

]
with the sup norm, that is, for

y ∈ Bu let

∥y∥u = max
t∈[ 14 ,

1
2 ]
|y(t)|.

Furthermore, let

S =

{
y ∈ C

[
0,

1

4

]
: y is non-negative and increasing with y(0) = 0

}
,
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which is a cone in the Banach Space Bν = C
[
0, 1

4

]
with the sup norm, that is, for

y ∈ Bν let

∥y∥ν = max
t∈[0, 14 ]

|y(t)|.

Let

Q[r, R] =

{
y ∈ Q : r ≤ y(t) ≤ R for all t ∈

[
1

4
,
1

2

]}
and

SR =

{
y ∈ S : y(t) ≤ R for all t ∈

[
0,

1

4

]}
.

Our decomposition will involve operators Al : S → S defined by

(2.1) Aly(t) =

∫ 1
4

0

D(t, s)h(y(s)) ds+ 4tl = Jy(t) + 4tl

for each non-negative real number l, and operators Dm : Q→ Q defined by

(2.2) Dmy(t) = m+

∫ 1
2

1
4

D(t, s)h(y(s)) ds = m+Ky(t)

for each non-negative real number m.

Lemma 2.1. Let τ, R be positive real numbers, l ∈ [0, R], and

(A1) h : [0, R] → [0, 8R] be differentiable;

(A3) |h′(a)| ≤ τ < 32 for all a ∈ [0, R].

For a(l, 0) ≡ 0, define the recursive sequence

a(l, n+ 1) = Ala(l, n)

for Al given in (2.1), then

a(l, n) → a∗(l) ∈ SR

and for ka =
τ
32
,

∥a∗(l)− a(l, n)∥ν ≤ Rkna
1− ka

.

Proof. Let y, z ∈ SR and for each s ∈
[
0, 1

4

]
, let w(s) be between y(s) and z(s) such

that

h(y(s))− h(z(s)) = h′(w(s))(y(s)− z(s)).
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Hence

∥Aly − Alz∥ν = max
t∈[0, 1

4
]

∣∣∣∣∣
∫ 1

4

0

D(t, s)h(y(s)) ds+ 4tl −
∫ 1

4

0

H(t, s)h(z(s)) ds− 4tl

∣∣∣∣∣
≤ max

t∈[0, 1
4
]

∫ 1
4

0

D(t, s) |h(y(s))− h(z(s))| ds

=

∫ 1
4

0

D(
1

4
, s) |h(y(s))− h(z(s))| ds

≤
∫ 1

4

0

s |h′(w(s))(y(s)− z(s))| ds

≤ τ

∫ 1
4

0

s∥y − z∥ν ds =
τ∥y − z∥ν

32

and

∥Aly∥ν = max
t∈[0, 1

4
]

∣∣∣∣∣
∫ 1

4

0

D(t, s)h(y(s)) ds+ 4tl

∣∣∣∣∣
=

∫ 1
4

0

D(
1

4
, s)h(y(s)) ds+

l

4

≤
∫ 1

4

0

8Rs ds+
R

4

≤ R

4
+
R

4
=
R

2
.

Therefore Al : SR → SR is a contraction since τ
32
< 1 and SR is a closed, convex

subset of the Banach space Bν . Therefore by the Banach contraction principle there

is an a∗(l) ∈ SR such that a(l, n) → a∗(l). Thus

a∗(l)(t) =

∫ 1
4

0

H(t, s)h(a∗(l)(s)) ds+ 4tl, t ∈
[
0,

1

4

]
.

Also, for any natural numbers n and j by mathematical induction we have

∥a(l, n+ j + 1)− a(l, n+ j)∥ν = ∥Ala(l, n+ j)− Ala(l, n+ j − 1)∥ν
≤ ka∥a(l, n+ j)− a(l, n+ j − 1)∥ν
≤ · · · ≤ kja∥a(l, n+ 1)− a(l, n)∥ν
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hence, for any natural numbers n and p, applying the triangle inequality, we have

∥a(l, n+ p)− a(l, n)∥ν ≤
p−1∑
j=0

∥a(l, n+ j + 1)− a(l, n+ j)∥ν

≤
p−1∑
j=0

kja∥a(l, n+ 1)− a(l, n)∥ν

≤
∞∑
j=0

kja∥a(l, n+ 1)− a(l, n)∥ν

=

(
1

1− ka

)
∥a(l, n+ 1)− a(l, n)∥ν

≤
(

kna
1− ka

)
∥a(l, 1)− a(l, 0)∥ν

=

(
kna

1− ka

)
∥a(l, 1)∥ν

≤ Rkna
1− ka

.

Hence letting p→ ∞ we have that

∥a∗(l)− a(l, n)∥ν ≤ Rkna
1− ka

.

This ends the proof.

Lemma 2.2. Let µ, r, R be positive real numbers with 0 < r < R, m ∈
[
0, R

4

]
, and

(A1) h : [0, R] → [0, 8R] be differentiable;

(A2) h(x) ≥ 16r for x ∈ [r,R];

(A4) |h′(b)| ≤ µ < 32
3
for all b ∈ [0, R].

For b0 ≡ r define the recursive sequence

b(m,n+ 1) = Dmb(m,n)

for Dm given in (2.2), then

b(m,n) → b∗(m) ∈ Q[r, R]

and for kb =
3µ
32
,

∥b∗(m)− b(m,n)∥u ≤ Rknb
1− kb

.

Proof. Let y, z ∈ Q[r,R] and for each s ∈
[
1
4
, 1
2

]
, let w(s) be between y(s) and z(s)

such that

h(y(s))− h(z(s)) = h′(w(s))(y(s)− z(s)).
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Hence

∥Dmy −Dmz∥u = max
t∈[ 1

4
, 1
2
]

∣∣∣∣∣m+

∫ 1
2

1
4

D(t, s)h(y(s)) ds−m−
∫ 1

2

1
4

H(t, s)h(z(s)) ds

∣∣∣∣∣
≤ max

t∈[ 1
4
, 1
2
]

∫ 1
2

1
4

D(t, s) |h(y(s))− h(z(s))| ds

=

∫ 1
2

1
4

D(
1

2
, s) |h(y(s))− h(z(s))| ds

≤
∫ 1

2

1
4

s |h′(w(s))(y(s)− z(s))| ds

≤ µ

∫ 1
2

1
4

s∥y − z∥u ds =
3µ∥y − z∥u

32
,

∥Dmy∥u = max
t∈[ 1

4
, 1
2
]

∣∣∣∣∣m+

∫ 1
2

1
4

D(t, s)h(y(s)) ds

∣∣∣∣∣
= m+

∫ 1
2

1
4

D(
1

2
, s)h(y(s)) ds

≤ R

4
+

∫ 1
2

1
4

8Rs ds

=
R

4
+

24R

32
= R,

and

α(Dmy) = min
t∈[ 1

4
, 1
2
]

∣∣∣∣∣m+

∫ 1
2

1
4

D(t, s)h(y(s)) ds

∣∣∣∣∣
= m+

∫ 1
2

1
4

D(
1

4
, s)h(y(s)) ds

≥
(
1

4

)∫ 1
2

1
4

16r ds = r.

Therefore Dm : Q[r, R] → Q[r, R] is a contraction since 3µ
32
< 1 and Q[r, R] is a closed,

convex subset of the Banach space Bu. Therefore by the Banach contraction principle

there is an b∗(m) ∈ Q[r,R] such that b(m,n) → b∗(m). Thus

b∗(m)(t) = m+

∫ 1
2

1
4

H(t, s)h(b∗(m)(s)) ds, t ∈
[
1

4
,
1

2

]
.
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Also, for any natural numbers n and j by mathematical induction we have

∥b(m,n+ j + 1)− b(m,n+ j)∥u = ∥Dmb(m,n+ j)−Dmb(m,n+ j − 1)∥u
≤ kb∥b(m,n+ j)− b(m,n+ j − 1)∥u
≤ · · · ≤ kjb∥b(m,n+ 1)− b(m,n)∥u

hence, for any natural numbers n and p, applying the triangle inequality, we have

∥b(m,n+ p)− b(m,n)∥u ≤
p−1∑
j=0

∥b(m,n+ j + 1)− b(m,n+ j)∥u

≤
p−1∑
j=0

kjb∥b(m,n+ 1)− b(m,n)∥u

≤
∞∑
j=0

kjb∥b(m,n+ 1)− b(m,n)∥u

=

(
1

1− kb

)
∥b(m,n+ 1)− b(m,n)∥u

≤
(

knb
1− kb

)
∥b(m, 1)− b(m, 0)∥u

≤ Rknb
1− kb

.

Hence letting p→ ∞ we have that

∥b∗(m)− b(m,n)∥u ≤ Rknb
1− kb

.

This ends the proof.

For l ∈ [0, R] let

m(l) =

∫ 1
4

0

D

(
1

4
, s

)
h(a∗(l)(s)) ds =

∫ 1
4

0

sh(a∗(l)(s)) ds,

and define the real valued function g by

(2.3) g(l) =

∫ 1
2

1
4

D

(
1

4
, s

)
h(b∗(m(l))(s)) ds.

Theorem 2.3. If l ∈ [0, R] and l = g(l), then

y∗(t) =


a∗(l)(t) 0 ≤ t ≤ 1

4

b∗(m(l))(t) 1
4
≤ t ≤ 1

2

y∗(1− t) 1
2
< t ≤ 1

is a solution of (1.1), (1.2).
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Proof. Since

l = g(l) =

∫ 1
2

1
4

D

(
1

4
, s

)
h(b∗(m(l))(s)) ds

and

m(l) =

∫ 1
4

0

D

(
1

4
, s

)
h(a∗(l)(s)) ds,

we have that for t ∈
[
0, 1

2

]
y∗(t) =

{
a∗(l)(t) 0 ≤ t ≤ 1

4

b∗(m(l))(t) 1
4
≤ t ≤ 1

2

=


∫ 1

4

0
D(t, s)h(a∗(l)(s)) ds+ 4tl 0 ≤ t ≤ 1

4

m(l) +
∫ 1

2
1
4

D(t, s)h(b∗(m(l))(s)) ds 1
4
≤ t ≤ 1

2

=


∫ 1

4

0
D(t, s)h(a∗(l)(s)) ds+ 4t

∫ 1
2
1
4

D
(
1
4
, s
)
h(b∗(m(l))(s)) ds 0 ≤ t ≤ 1

4∫ 1
4

0
D

(
1
4
, s
)
h(a∗(l)(s)) ds+

∫ 1
2
1
4

D(t, s)h(b∗(m(l))(s)) ds 1
4
≤ t ≤ 1

2

=


∫ 1

4

0
D(t, s)h(a∗(l)(s)) ds+

∫ 1
2
1
4

t h(b∗(m(l))(s)) ds 0 ≤ t ≤ 1
4∫ 1

4

0
D (t, s)h(a∗(l)(s)) ds+

∫ 1
2
1
4

D(t, s)h(b∗(m(l))(s)) ds 1
4
≤ t ≤ 1

2

=


∫ 1

4

0
D(t, s)h(y∗(s)) ds+

∫ 1
2
1
4

D(t, s)h(y∗(s)) ds 0 ≤ t ≤ 1
4∫ 1

4

0
D (t, s)h(y∗(s)) ds+

∫ 1
2
1
4

D(t, s)h(y∗(s)) ds
1
4
≤ t ≤ 1

2

=

{ ∫ 1
2

0
D(t, s)h(y∗(s)) ds 0 ≤ t ≤ 1

4∫ 1
2

0
D (t, s)h(y∗(s)) ds

1
4
≤ t ≤ 1

2

= Ty∗(t)

and since Ty∗(t) = Ty∗(1− t) for t ∈
[
1
2
, 1
]
we have that

Ty∗(t) = y∗(t)

for all t ∈ [0, 1]. Therefore y∗ is a fixed point of the operator T and thus a solution

of the boundary value problem (1.1), (1.2).

3. Main Results

At this stage we have verified the existence of a solution of the boundary value

problem (1.1), (1.2) using iterative techniques, provided we can find a fixed point of

the real valued function g by applying Theorem 2.3. In our main results we will show

that the real valued function g under the conditions in Theorem 2.3 has a fixed point,

so we know that our boundary value problem will have a solution and we’ll show how
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to use the power of iteration to get as close to a solution as desired iteratively. Note

that the quantity

m(l) =

∫ 1
4

0

D

(
1

4
, s

)
h(a∗(l)(s)) ds =

∫ 1
4

0

sh(a∗(l)(s)) ds

is calculated from the a∗(l) part of our solution on the interval
[
0, 1

4

]
, which we will

want to approximate. For each natural number n, from Lemma 2.1 we have that

a(l, n) ∈ SR with

∥a∗(l)− a(l, n)∥ν ≤ Rkna
1− ka

where ka =
τ
32

and our approximation ofm(l) will be derived from the approximations

of a∗(l) by the elements a(l, n). Let

m(l, p) =

∫ 1
4

0

D

(
1

4
, s

)
h(a(l, p)(s)) ds =

∫ 1
4

0

sh(a(l, p)(s)) ds,

the next lemma gives an error bound on our approximation of m(l) by m(l, p).

Lemma 3.1. Let µ, τ, r, R be positive real numbers with 0 < r < R, such that

(A1) h : [0, R] → [0, 8R] be differentiable;

(A2) h(x) ≥ 16r for x ∈ [r,R];

(A3) |h′(a)| ≤ τ < 32 for all a ∈ [0, R];

(A4) |h′(b)| ≤ µ < 32
3
for all b ∈ [0, R].

For ka =
τ
32

and a natural number p,

∥b∗(m(l))− b∗(m(l, p))∥u ≤ τRkpa
(32− 3µ)(1− ka)

and

|m(l)−m(l, p)| ≤ τRkpa
32(1− ka)

.

Proof. Let p be a natural number and for each s ∈
[
0, 1

4

]
, let w(s) be between a∗(l)(s)

and a(l, p)(s) such that

h(a∗(l)(s))− h(a(l, p)(s)) = h′(w(s))(a∗(l)(s)− a(l, p)(s))

by the mean value theorem, thus from Lemma 2.1 we have
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|m(l)−m(l, p)| =

∣∣∣∣∣
∫ 1

4

0

sh(a∗(l)(s)) ds−
∫ 1

4

0

sh(a(l, p)(s)) ds

∣∣∣∣∣
≤

∫ 1
4

0

s |h(a∗(l)(s))− h(a(l, p)(s))| ds

≤
∫ 1

4

0

s |h′(w(s))(a∗(l)(s)− a(l, p)(s))| ds

≤ τ

∫ 1
4

0

s∥a∗(l)− a(l, p)∥ν ds

=
τ∥a∗(l)− a(l, p)∥ν

32

≤ τRkpa
32(1− ka)

.

By Lemma 2.2 there exist b∗(m(l)), b∗(m(l, p)) ∈ Q[r,R] such that

b∗(m(l)) = Dm(l)b
∗(m(l)) and b∗(m(l, p)) = Dm(l,p)b

∗(m(l, p)).

For each s ∈
[
1
4
, 1
]
, let z(s) be between b∗(m(l))(s) and b∗(m(l, p))(s) such that

h(b∗(m(l))(s))− h(b∗(m(l, p))(s)) = h′(z(s))(b∗(m(l))(s)− b∗(m(l, p))(s))

by the mean value theorem, hence

∥b∗(m(l))− b∗(m(l, p))∥u

= max
t∈[ 1

4
,1]

∣∣∣∣∣m(l) +

∫ 1
2

1
4

D(t, s)h(b∗(m(l))(s)) ds

−m(l, p)−
∫ 1

2

1
4

D(t, s)h(b∗(m(l, p))(s)) ds

∣∣∣∣∣
≤ |m(l)−m(l, p)|+ max

t∈[ 14 ,
1
2 ]

∫ 1
2

1
4

D(t, s) |h(b∗(m(l))(s))− h(b∗(m(l, p))(s))| ds

≤ |m(l)−m(l, p)|+
∫ 1

2

1
4

s |h′(z(s))(b∗(m(l))(s)− b∗(m(l, p))(s))| ds

≤ |m(l)−m(l, p)|+ µ

∫ 1
2

1
4

s∥b∗(m(l))− b∗(m(l, p))∥u ds

= |m(l)−m(l, p)|+ 3µ∥b∗(m(l))− b∗(m(l, p))∥u
32

≤ τRkpa
32(1− ka)

+
3µ∥b∗(m(l))− b∗(m(l, p))∥u

32
.

Therefore

∥b∗(m(l))− b∗(m(l, p))∥u ≤ τRkpa
(32− 3µ)(1− ka)

.
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This ends the proof.

In the following theorem we will show that the function g is continuous.

Lemma 3.2. Let µ, τ, r, R be positive real numbers with 0 < r < R, such that

(A1) h : [0, R] → [0, 8R] be differentiable;

(A2) h(x) ≥ 16r for x ∈ [r,R];

(A3) |h′(a)| ≤ τ < 32 for all a ∈ [0, R];

(A4) |h′(b)| ≤ µ < 32
3
for all b ∈ [0, R].

Then the function g given in (2.3) is uniformly continuous on
[
0, 3R

2

]
.

Proof. If we let l, j ∈
[
0, 3R

2

]
, then by Lemma 2.1 there exist a∗(l), a∗(j) ∈ SR such

that

a∗(l) = Ala
∗(l) and a∗(j) = Aja

∗(l).

For each s ∈
[
0, 1

4

]
, let w(s) be between a∗(l)(s) and a∗(j)(s) such that

h(a∗(l)(s))− h(a∗(j)(s)) = h′(w(s))(a∗(l)(s)− a∗(j)(s))

by the mean value theorem, thus

∥a∗(l)− a∗(j)∥ν

= max
t∈[0, 1

4
]

∣∣∣∣∣
∫ 1

4

0

D(t, s)h(a∗(l)(s)) ds+ 4tl −
∫ 1

4

0

D(t, s)h(a∗(j)(s)) ds− 4tj

∣∣∣∣∣
≤ max

t∈[0, 1
4
]

∫ 1
4

0

D(t, s) |h(a∗(l)(s))− h(a∗(j)(s))| ds+ |l − j|

≤
∫ 1

4

0

s |h′(w(s))(a∗(l)(s)− a∗(j)(s))| ds+ |l − j|

≤ τ

∫ 1
4

0

s∥a∗(l)− a∗(j)∥ν ds+ |l − j|

=
τ∥a∗(l)− a∗(j)∥ν

32
+ |l − j|.

Therefore

∥a∗(l)− a∗(j)∥ν ≤ 32|l − j|
32− τ

,

and for

m(l) =

∫ 1
4

0

sh(a∗(l)(s)) ds and m(j) =

∫ 1
4

0

sh(a∗(j)(s)) ds
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we have

|m(l)−m(j)| =

∣∣∣∣∣
∫ 1

4

0

sh(a∗(l)(s)) ds−
∫ 1

4

0

sh(a∗(j)(s)) ds

∣∣∣∣∣
≤

∫ 1
4

0

s |h(a∗(l)(s))− h(a∗(j)(s))| ds

≤
∫ 1

4

0

s |h′(w(s))(a∗(l)(s)− a∗(j)(s))| ds

≤ τ

∫ 1
4

0

s∥a∗(l)− a∗(j)∥ν ds

=
τ∥al∗ − aj∗∥ν

32

≤ τ |l − j|
32− τ

.

By Lemma 2.2 there exist b∗(m(l)), b∗(m(j)) ∈ Q[r, R] such that

b∗(m(l)) = Dm(l)b
∗(m(l)) and b∗(m(j)) = Dm(j)b

∗(m(j)).

For each s ∈
[
1
4
, 1
]
, let z(s) be between b∗(m(l)) and b∗(m(j)) such that

h(b∗(m(l))(s))− h(b∗(m(j))(s)) = h′(z(s))(b∗(m(l))(s)− b∗(m(j))(s))

by the mean value theorem, hence

∥b∗(m(l))− b∗(m(j))∥u

= max
t∈[ 14 ,

1
2 ]

∣∣∣∣∣m(l) +

∫ 1
2

1
4

D(t, s)g(b∗(m(l))(s)) ds−m(j)−
∫ 1

2

1
4

D(t, s)g(b∗(m(j))(s)) ds

∣∣∣∣∣
≤ |m(l)−m(j)|+ max

t∈[ 1
4
, 1
2
]

∫ 1
2

1
4

D(t, s) |h(b∗(m(l))(s))− h(b∗(m(j))(s))| ds

≤ |m(l)−m(j)|+
∫ 1

2

1
4

s |g′(z(s))(b∗(m(l))(s)− b∗(m(j))(s))| ds

≤ |m(l)−m(j)|+ µ

∫ 1
2

1
4

s∥b∗(m(l))− b∗(m(j))∥u ds

= |m(l)−m(j)|+ 3µ∥b∗(m(l))− b∗(m(j))∥u
32

≤ τ |l − j|
32− τ

+
3µ∥b∗(m(l))− b∗(m(j))∥u

32
.

Therefore

∥b∗(m(l))− b∗(m(j))∥u ≤ 32τ |l − j|
(32− τ)(32− 3µ)

,
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and from the work embedded the argument above we have

|g(l)− g(j)| =

∣∣∣∣∣
∫ 1

2

1
4

D

(
1

4
, s

)
h(b∗(m(l))(s)) ds−

∫ 1
2

1
4

D

(
1

4
, s

)
h(b∗(m(j))(s)) ds

∣∣∣∣∣
≤ 3µ∥b∗(m(l))− b∗(m(j))∥u

32

≤ 3µτ |l − j|
(32− τ)(32− 3µ)

.

Therefore g is uniformly continuous on
[
0, 3R

2

]
.

We have shown that if l = g(l) then there is a solution given by y∗ in Theorem

2.3. In the following Theorem we show how the bisection method can be used to

iterate to a fixed point of the real valued function g.

Theorem 3.3. Let µ, τ, r, R be positive real numbers with 0 < r < R, such that

(A1) h : [0, R] → [0, 8R] be differentiable;

(A2) h(x) ≥ 16r for x ∈ [r,R];

(A3) |h′(a)| ≤ τ < 32 for all a ∈ [0, R];

(A4) |h′(b)| ≤ µ < 32
3
for all b ∈ [0, R].

Then there exists a ψ ∈
[
0, R

2

]
such that g(ψ) = ψ for g in (2.3), and thus

y∗(t) =


a∗(ψ)(t) 0 ≤ t ≤ 1

4

b∗(m(ψ))(t) 1
4
≤ t ≤ 1

2

y∗(1− t) 1
2
≤ t ≤ 1

is a solution of (1.1), (1.2). Moreover, there is a sequence {ψn}∞n=0 ⊆
[
0, R

2

]
such

that

ψn → ψ

with

|ψ − ψn| ≤
R

2n+2
.

Proof. If we let l ∈
[
0, R

2

]
, then

g(l) =

∫ 1
2

1
4

D

(
1

4
, s

)
h(b∗(m(l))(s)) ds ≥

(
1

4

)∫ 1
2

1
4

16r ds = r > 0

and

g(l) =

∫ 1
2

1
4

D

(
1

4
, s

)
h(b∗(m(l))(s)) ds ≤

(
1

4

)∫ 1
2

1
4

8R ds =
R

2
.

Hence g :
[
0, R

2

]
→

[
0, R

2

]
is a continuous real valued function. By the intermediate

value theorem applied to

f(x) = g(x)− x,
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there exists a ψ ∈
[
0, R

2

]
such that f(ψ) = 0, which implies that

g(ψ) = ψ

and by Theorem 2.3

y∗(t) =


a∗(ψ)(t) 0 ≤ t ≤ 1

4

b∗(m(ψ))(t) 1
4
≤ t ≤ 1

2

y∗(1− t) 1
2
≤ t ≤ 1

is a solution of (1.1), (1.2). Let

c0 = 0, d0 =
R

2
and ψ0 =

c0 + d0
2

then recursively define the sequences {cn}∞n=0, {dn}∞n=0 and {ψn}∞n=0 by

cn+1 = ψn, dn+1 = dn and ψn+1 =
cn+1 + dn+1

2

if g(ψn) ≥ ψn and

cn+1 = cn, dn+1 = ψn and ψn+1 =
cn+1 + dn+1

2

if g(ψn) < ψn. Observe that for each natural number n that

h(cn) ≥ cn and h(dn) ≤ dn

thus by the intermediate value theorem there is ψ ∈ [cn, dn] such that h(ψ) = ψ. By

induction we have that

dn − cn =
dn−1 − cn−1

2
=
d0 − c0
2n

=
R

2n+1

and since ψn is the midpoint of the interval [cn, dn] and ψ ∈ [cn, dn] we have that

|ψ − ψn| ≤
R

2n+2
.

This ends the proof.

Our first approximation of the real valued function g(l) given by

(3.1) g(l) =

∫ 1
2

1
4

D

(
1

4
, s

)
h(b∗(m(l))(s)) ds

will be by the function g(l, p) defined by

(3.2) g(l, p) =

∫ 1
2

1
4

D

(
1

4
, s

)
h(b∗(m(l, p))(s)) ds

and this will be approximated by the real valued function

(3.3) g(l, p, p) =

∫ 1
2

1
4

D

(
1

4
, s

)
h(b(m(l, p), p)(s)) ds.

Below we provide the tools to determine the sequence ψn which converges to ψ where

g(ψ) = ψ. The key to find the sequence {ψn} is being able to provide a condition



DECOMPOSING A CONJUGATE FIXED POINT ARGUMENT 271

that when verified tells us that g(ψn, p, p)−ψn and g(ψn)−ψn are both non-negative

or are both non-positive.

Lemma 3.4. Let n be a whole number, p be a natural number and suppose that

|g(ψn)− g(ψn, p, p)| ≤ |g(ψn, p, p)− ψn|

then

if g(ψn, p, p) ≥ ψn then g(ψn) ≥ ψn

and

if g(ψn, p, p) < ψn then g(ψn) ≤ ψn.

Proof. Either g(ψn, p, p) ≥ ψn or g(ψn, p, p) < ψn.

Claim 1: if g(ψn, p, p) ≥ ψn then g(ψn) ≥ ψn. Since

ψn − g(ψn, p, p) ≤ g(ψn)− g(ψn, p, p) ≤ g(ψn, p, p)− ψn

we have ψn < g(ψn).

Claim 2: if g(

psin, p, p) < θn then g(ψn) < ψn. Since

g(ψn, p, p)− ψn ≤ g(ψn)− g(ψn, p, p) ≤ ψn − g(ψn, p, p)

we have g(ψn) ≤ ψn.

In the following lemma we provide the justification for g(ψn)− g(ψn, p, p) → 0 as

p− >∞, hence the left side of the inequality

|g(ψn)− g(ψn, p, p)| ≤ |g(ψn, p, p)− ψn|

from Lemma 3.4 goes to zero as p goes to infinity.

Lemma 3.5. Let n be a whole number and p be a natural number then

|g(ψn)− g(ψn, p, p)| ≤
(64− 3µ)τRkpa

32(32− 3µ)(1− ka)
+
Rkp+1

b

1− kb
.
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Proof. From Lemma 2.2 we have

|g(ψn, p)− g(ψn, p, p)|

=

∣∣∣∣∣
∫ 1

2

1
4

D

(
1

4
, s

)
h(b∗(m(ψn, p))(s)) ds−

∫ 1
2

1
4

D

(
1

4
, s

)
h(b(m(ψn, p), p)(s)) ds

∣∣∣∣∣
=

∣∣∣∣∣m(ψn, p) +

∫ 1
2

1
4

D

(
1

4
, s

)
h(b∗(m(ψn, p))(s)) ds

−m(ψn, p)−
∫ 1

2

1
4

D

(
1

4
, s

)
h(b(m(ψn, p), p)(s)) ds

∣∣∣∣∣
=

∣∣∣∣b∗(m(ψn, p))

(
1

4

)
− b(m(ψn, p), p+ 1)

(
1

4

)∣∣∣∣
≤ ∥b∗(m(ψn, p)− b(m(ψn, p), p+ 1)∥u

≤ Rkp+1
b

1− kb
,

where kb =
3µ
32

and from Lemma 3.1 we have

|g(ψn)− g(ψn, p)|

=

∣∣∣∣∣
∫ 1

2

1
4

D

(
1

4
, s

)
h(b∗(m(ψn))(s)) ds−

∫ 1
2

1
4

D

(
1

4
, s

)
h(b∗(m(ψn, p))(s)) ds

∣∣∣∣∣
=

∣∣∣∣∣m(ψn) +

∫ 1
2

1
4

D

(
1

4
, s

)
h(b∗(m(ψn))(s)) ds

− m(ψn, p)−
∫ 1

2

1
4

D

(
1

4
, s

)
h(b∗(m(ψn, p))(s)) ds− (m(ψn)−m(ψn, p))

∣∣∣∣∣
=

∣∣∣∣b∗(ψn)

(
1

4

)
− b∗(m(ψn, p))

(
1

4

)
− (m(ψn)−m(ψn, p))

∣∣∣∣
≤ ∥b∗(m(ψn))− b∗(m(ψn, p))∥u + |(m(ψn)−m(ψn, p))|

≤ τRkpa
(32− 3µ)(1− ka)

+
τRkpa

32(1− ka)
=

(64− 3µ)τRkpa
32(32− 15µ)(1− ka)

.

Therefore

|g(ψn)− g(ψn, p, p)| ≤ |g(ψn)− g(ψn, p)|+ |g(ψn, p)− g(ψn, p, p)|

≤ (64− 3µ)τRkpa
32(32− 3µ)(1− ka)

+
Rkp+1

b

1− kb
.

This ends the proof.

Note that for every whole number n we have that

lim
p→∞

|g(ψn)− g(ψn, p, p)| = 0.
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In the Theorem below we summarize the iterative scheme which will converge to

a solution of (1.1), (1.2).

Theorem 3.6. Let µ, τ, r, R be positive real numbers with 0 < r < R, such that

(A1) h : [0, R] → [0, 8R] be differentiable;

(A2) h(x) ≥ 16r for x ∈ [r,R];

(A3) |h′(a)| ≤ τ < 32 for all a ∈ [0, R];

(A4) |h′(b)| ≤ µ < 32
3
for all b ∈ [0, R].

Then there exists an iterative scheme converging to a solution of (1.1), (1.2).

Proof. For natural numbers n and p let

yn,p(t) =


a(ψn, p)(t) 0 ≤ t ≤ 1

4

b(m(ψn, p), p)(t)
1
4
≤ t ≤ 1

2

yn,p(1− t) 1
2
≤ t ≤ 1.

From the work in Lemma 3.2 we have

∥a∗(ψ)− a∗(ψn)∥ν ≤ 32|ψ − ψn|
32− τ

and from the work on Lemma 2.1 we have

∥a∗(ψn)− a(ψn, p)∥ν ≤ Rkpa
1− ka

for ka =
τ
32
, thus we have

∥a∗(ψ)− a(ψn, p)∥ν ≤ ∥a∗(ψ)− a∗(ψn)∥ν + ∥a∗(ψn)− a(ψn, p)∥ν

≤ 32|ψ − ψn|
32− τ

+
Rkpa
1− ka

.

From the work in Lemma 3.2 we have

∥b∗(m(ψ))− b∗(m(ψn))∥u ≤ 32τ |ψ − ψn|
(32− τ)(32− 3µ)

and from the work in Lemma 3.1 we have

∥b∗(m(ψn))− b∗(m(ψn, p))∥u ≤ τRkpa
(32− 3µ)(1− ka)

and from the work in Lemma 2.2 we have

∥b∗(m(ψn, p))− b(m(ψn, p), p)∥u ≤ Rkpb
1− kb
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thus we have

∥b∗(m(ψ))− b(m(ψn, p), p)∥u
≤ ∥b∗(m(ψ))− b∗(m(ψn))∥u + ∥b∗(m(ψn))− b∗(m(ψn, p))∥u

+∥b∗(m(ψn, p))− b(m(ψn, p), p)∥u

≤ 32τ |ψ − ψn|
(32− τ)(32− 3µ)

+
τRkpa

(32− 3µ)(1− ka)
+

Rkpb
1− kb

.

Therefore

∥y∗ − yn,p∥ ≤ max{∥a∗(ψ)− a(ψn, p)∥ν , ∥b∗(m(ψ))− b(m(ψn, p), p)∥u}.

For ϵn = 1
n
let Nn be a natural number such that

max

{
32τ |ψ − ψn|

(32− τ)(32− 3µ)
,
32|ψ − ψn|
32− τ

}
<
ϵn
2

and let Pn be a natural number such that

max

{
τRkpa

(32− 3µ)(1− ka)
+

Rkpb
1− kb

,
Rkpa
1− ka

}
<
ϵn
2
.

For every natural number n define

zn = yNn,Pn

thus

∥y∗ − zn∥ ≤ max{∥a∗(ψ)− a(ψNn , Pn)∥ν , ∥b∗(m(ψ))− b(m(ψNn , Pn), Pn)∥u} < ϵn

so {zn} is a sequence of functions that converges to y∗ a solution of (1.1), (1.2). This

ends the proof.

REFERENCES

[1] R. I. Avery and J. Henderson. Three symmetric positive solutions for a second-order boundary

value problem. Appl. Math. Lett., 13(3):1–7, 2000.

[2] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations

integrales, Fund. Math. 3 (1922), 133–181.

[3] A. Granas and J. Dugundji, Fixed point theory, Springer Monographs in Mathematics, Springer-

Verlag, New York, 2003.

[4] R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on

ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), 673–688.

[5] E. Zeidler, Nonlinear Functional Analysis and its Applications I, Fixed Point Theorems, Springer-

Verlag, New York, 1986.


