DECOMPOSING A CONJUGATE FIXED-POINT PROBLEM INTO MULTIPLE FIXED-POINT PROBLEMS

RICHARD AVERY¹, DOUGLAS R. ANDERSON², JOHNNY HENDERSON³

¹College of Arts and Sciences, Dakota State University, Madison SD 57042, USA e-mail: Rich.Avery@dsu.edu
²Department of Mathematics, Concordia College, Moorhead, MN 56562, USA email: andersod@cord.edu
³Department of Mathematics, Baylor University, Waco TX 76798, USA email: Johnny_Henderson@Baylor.edu

ABSTRACT. Converting nonlinear boundary value problems to fixed point problems of an integral operator with a Green's function kernal is a common technique to find or approximate solutions of boundary value problems. It is often difficult to apply Banach's Theorem since it is challenging to find an initial estimate with a contractive constant less than one. We decompose the integral operator associated to a conjugate boundary value problem creating multiple fixed point problems which have contractive constants less than one. We then provide conditions for the original boundary value problem to have a solution that can be found by iteration using the decomposition through a fixed point of a real valued function which matches the fixed points of our decomposition.

AMS (MOS) Subject Classification. 47H10, 34B18

Key Words and Phrases. Fixed point theorems, alternative inversion, iteration.

1. Introduction

The Banach Fixed Point Theorem [2] is a powerful tool that can be used to find solutions of nonlinear initial and boundary value problems that have been converted to fixed point problems. The Picard-Lindelöf Theorem (see the fixed point books by Zeidler [5] or Dugundji-Granas [3]) is used to find unique solutions for a first order nonlinear initial value problem where the key is to restrict the interval so the operator whose fixed points are solutions on the interval is k-contractive. This is the first manuscript that we are aware of that follows an approach similar to the initial value problem approach by Picard-Lindelöf for boundary value problems, that is, restricting the interval so an associated operator is k-contractive.

Received August 2, 2023
 ISSN 1056-2176(Print); ISSN 2693-5295 (online)

 www.dynamicpublishers.org
 https://doi.org/10.46719/dsa2023.32.14

 \$15.00 © Dynamic Publishers, Inc.
 https://doi.org/10.46719/dsa2023.32.14

Consider the second-order conjugate boundary value problem given by

(1.1)
$$y''(t) + h(y(t)) = 0, \quad t \in (0,1),$$

(1.2)
$$y(0) = 0 = y(1),$$

where $h: [0, \infty) \to [0, \infty)$ is differentiable. The Green's function for (1.1), (1.2) is given by

$$H(t,s) = \begin{cases} t(1-s) & \text{if } 0 \le t \le s \le 1, \\ s(1-t) & \text{if } 0 \le s \le t \le 1; \end{cases}$$

and the fixed points of the operator T defined by

(1.3)
$$Ty(t) = \int_0^1 H(t,s)h(y(s)) \, ds$$

are the solutions of (1.1), (1.2). Define the cone P of C[0,1] by

 $P = \{y \in C[0,1] : y(0) = 0 = y(1), y \text{ is concave and symmetric} \}.$

Following an argument similar to that of Avery-Henderson [1], we will show that T is symmetric then we will decompose the matrix T using symmetry arguments. For $y \in P$ and $t \in [0, 1]$ we have

$$\begin{aligned} (Ty)(1-t) &= \int_0^1 H(1-t,s)h(y(s)) \, ds \\ &= \int_0^{1-t} H(1-t,s)h(y(s)) \, ds + \int_{1-t}^1 H(1-t,s)h(y(s)) \, ds \\ &= \int_0^{1-t} sth(y(s)) \, ds + \int_{1-t}^1 (1-t)(1-s)h(y(s)) \, ds \\ &= \int_0^{1-t} sth(y(1-s)) \, ds + \int_{1-t}^1 (1-t)(1-s)h(y(1-s)) \, ds \\ &= \int_1^t -(1-u)th(y(u)) \, du + \int_t^0 -(1-t)ug(y(u)) \, du \\ &= \int_t^1 (1-s)th(y(s)) \, ds + \int_0^t s(1-t)h(y(s)) \, ds \\ &= (Ty)(t), \end{aligned}$$

thus we have that $T: P \to P$ since for all $y \in P$ we just verified that T is symmetric, that is Ty(1-t) = Ty(t) for all $t \in [0, 1]$, and clearly Ty is concave since (Ty)''(t) = -h(y(t) < 0. Also notice that if $y \in P$ with y(t) = (Ty)(t) for all $t \in [0, \frac{1}{2}]$ then we have that y is a fixed point of T by the symmetry of both y and Ty. For $y \in P$ define the concave functional $\alpha : P \to [0, \infty)$ by

(1.4)
$$\alpha(y) = \min_{t \in \left[\frac{1}{4}, \frac{3}{4}\right]} y(t) = y\left(\frac{1}{4}\right),$$

and for 0 < r < R define

$$P(\alpha, r, R) = \{ y \in P : r \le \alpha(y), \|y\| \le R \},\$$

which is referred to as a Leggett-Williams [4] functional wedge. We will search for fixed points of T in $P(\alpha, r, R)$. Note that functional wedges are closed, convex subsets of P. For $t, s \in [0, 1]$ define

$$D(t,s) = \min\{t,s\}$$

and note that for $y \in P$ we can write Ty as

$$(Ty)(t) = \int_0^1 H(t,s)h(y(s)) \, ds$$

= $\int_0^{\frac{1}{4}} H(t,s)h(y(s)) \, ds + \int_{\frac{1}{4}}^{\frac{3}{4}} H(t,s)h(y(s)) \, ds + \int_{\frac{3}{4}}^{1} H(t,s)h(y(s)) \, ds$

and for $t\in[0,\frac{1}{4}]$ we can define the operator

$$\begin{aligned} (Jy)(t) &= \int_0^{\frac{1}{4}} H(t,s)h(y(s)) \, ds + \int_{\frac{3}{4}}^1 H(t,s)h(y(s)) \, ds \\ &= \int_0^t s(1-t)h(y(s)) \, ds + \int_t^{\frac{1}{4}} t(1-s)h(y(s)) \, ds + \int_{\frac{3}{4}}^1 t(1-s)h(y(1-s)) \, ds \\ &= \int_0^t s(1-t)h(y(s)) \, ds + \int_t^{\frac{1}{4}} t(1-s)h(y(s)) \, ds + \int_{\frac{1}{4}}^0 -tuh(y(u)) \, du \\ &= \int_0^t s(1-t)h(y(s)) \, ds + \int_t^{\frac{1}{4}} t(1-s)h(y(s)) \, ds + \int_0^{\frac{1}{4}} sth(y(s)) \, ds \\ &= \int_0^t sh(y(s)) \, ds + \int_t^{\frac{1}{4}} th(y(s)) \, ds \\ &= \int_0^{\frac{1}{4}} D(t,s) \, h(y(s)) \, ds \end{aligned}$$

and for $t \in [\frac{1}{4}, \frac{1}{2}]$ we can define the operator

$$\begin{split} (Ky)(t) &= \int_{\frac{1}{4}}^{\frac{3}{4}} H(t,s)h(y(s)) \, ds \\ &= \int_{\frac{1}{4}}^{t} s(1-t)h(y(s)) \, ds + \int_{t}^{\frac{1}{2}} t(1-s)h(y(s)) \, ds + \int_{\frac{1}{2}}^{\frac{3}{4}} t(1-s)h(y(1-s)) \, ds \\ &= \int_{\frac{1}{4}}^{t} s(1-t)h(y(s)) \, ds + \int_{t}^{\frac{1}{2}} t(1-s)h(y(s)) \, ds + \int_{\frac{1}{2}}^{\frac{1}{4}} -tuh(y(u)) \, du \\ &= \int_{\frac{1}{4}}^{t} s(1-t)h(y(s)) \, ds + \int_{t}^{\frac{1}{2}} t(1-s)h(y(s)) \, ds + \int_{\frac{1}{4}}^{\frac{1}{2}} tsh(y(s)) \, ds \\ &= \int_{\frac{1}{4}}^{t} sh(y(s)) \, ds + \int_{t}^{\frac{1}{2}} th(y(s)) \, ds \\ &= \int_{\frac{1}{4}}^{\frac{1}{2}} D(t,s)h(y(s)) \, ds. \end{split}$$

Utilizing the operators J and K as well as symmetry we can write the operator T in the form

$$(Ty)(t) = \begin{cases} (Jy)(t) + 4t(Ky)(\frac{1}{4}) & 0 \le t \le \frac{1}{4} \\ (Jy)(\frac{1}{4}) + (Ky)(t) & \frac{1}{4} \le t \le \frac{1}{2} \\ (Ty)(1-t) & \frac{1}{2} < t \le 1 \end{cases}$$

and in what follows we will show how fixed points of operators associated to J and K will lead to a fixed point of the operator T which is a solution of our original boundary value problem (1.1), (1.2). Moreover we will show how one can use the bisection method to create an iterative scheme to approximate a solution of the conjugate boundary value problem (1.1), (1.2).

2. Preliminaries

Let

$$Q = \left\{ y \in C\left[\frac{1}{4}, \frac{1}{2}\right] : y \text{ is non-negative and non-decreasing} \right\},\$$

which is a cone in the Banach Space $B_u = C\left[\frac{1}{4}, \frac{1}{2}\right]$ with the sup norm, that is, for $y \in B_u$ let

$$||y||_u = \max_{t \in \left[\frac{1}{4}, \frac{1}{2}\right]} |y(t)|.$$

Furthermore, let

$$S = \left\{ y \in C\left[0, \frac{1}{4}\right] : y \text{ is non-negative and increasing with } y(0) = 0 \right\},\$$

which is a cone in the Banach Space $B_{\nu} = C\left[0, \frac{1}{4}\right]$ with the sup norm, that is, for $y \in B_{\nu}$ let

$$||y||_{\nu} = \max_{t \in [0, \frac{1}{4}]} |y(t)|.$$

Let

$$Q[r,R] = \left\{ y \in Q : r \le y(t) \le R \text{ for all } t \in \left[\frac{1}{4}, \frac{1}{2}\right] \right\}$$

and

$$S_R = \left\{ y \in S : y(t) \le R \text{ for all } t \in \left[0, \frac{1}{4}\right] \right\}.$$

Our decomposition will involve operators $A_l: S \to S$ defined by

(2.1)
$$A_l y(t) = \int_0^{\frac{1}{4}} D(t,s) h(y(s)) \, ds + 4tl = Jy(t) + 4tl$$

for each non-negative real number l, and operators $D_m: Q \to Q$ defined by

(2.2)
$$D_m y(t) = m + \int_{\frac{1}{4}}^{\frac{1}{2}} D(t,s)h(y(s)) \, ds = m + Ky(t)$$

for each non-negative real number m.

Lemma 2.1. Let τ, R be positive real numbers, $l \in [0, R]$, and

(A1) $h: [0, R] \rightarrow [0, 8R]$ be differentiable; (A3) $|h'(a)| \leq \tau < 32$ for all $a \in [0, R]$.

For $a(l,0) \equiv 0$, define the recursive sequence

$$a(l, n+1) = A_l a(l, n)$$

for A_l given in (2.1), then

$$a(l,n) \to a^*(l) \in S_R$$

and for $k_a = \frac{\tau}{32}$,

$$||a^*(l) - a(l,n)||_{\nu} \le \frac{Rk_a^n}{1-k_a}.$$

Proof. Let $y, z \in S_R$ and for each $s \in [0, \frac{1}{4}]$, let w(s) be between y(s) and z(s) such that

$$h(y(s)) - h(z(s)) = h'(w(s))(y(s) - z(s)).$$

Hence

$$\begin{split} \|A_{l}y - A_{l}z\|_{\nu} &= \max_{t \in [0, \frac{1}{4}]} \left| \int_{0}^{\frac{1}{4}} D(t, s)h(y(s)) \, ds + 4tl - \int_{0}^{\frac{1}{4}} H(t, s)h(z(s)) \, ds - 4tl \right| \\ &\leq \max_{t \in [0, \frac{1}{4}]} \int_{0}^{\frac{1}{4}} D(t, s) \left| h(y(s)) - h(z(s)) \right| \, ds \\ &= \int_{0}^{\frac{1}{4}} D(\frac{1}{4}, s) \left| h(y(s)) - h(z(s)) \right| \, ds \\ &\leq \int_{0}^{\frac{1}{4}} s \left| h'(w(s))(y(s) - z(s)) \right| \, ds \\ &\leq \tau \int_{0}^{\frac{1}{4}} s \|y - z\|_{\nu} \, ds = \frac{\tau \|y - z\|_{\nu}}{32} \end{split}$$

and

$$\begin{aligned} \|A_l y\|_{\nu} &= \max_{t \in [0, \frac{1}{4}]} \left| \int_0^{\frac{1}{4}} D(t, s) h(y(s)) \, ds + 4tl \right| \\ &= \int_0^{\frac{1}{4}} D(\frac{1}{4}, s) h(y(s)) \, ds + \frac{l}{4} \\ &\leq \int_0^{\frac{1}{4}} 8Rs \, ds + \frac{R}{4} \\ &\leq \frac{R}{4} + \frac{R}{4} = \frac{R}{2}. \end{aligned}$$

Therefore $A_l : S_R \to S_R$ is a contraction since $\frac{\tau}{32} < 1$ and S_R is a closed, convex subset of the Banach space B_{ν} . Therefore by the Banach contraction principle there is an $a^*(l) \in S_R$ such that $a(l, n) \to a^*(l)$. Thus

$$a^*(l)(t) = \int_0^{\frac{1}{4}} H(t,s)h(a^*(l)(s)) \ ds + 4tl, \quad t \in \left[0, \frac{1}{4}\right].$$

Also, for any natural numbers n and j by mathematical induction we have

$$\begin{aligned} \|a(l,n+j+1) - a(l,n+j)\|_{\nu} &= \|A_{l}a(l,n+j) - A_{l}a(l,n+j-1)\|_{\nu} \\ &\leq k_{a}\|a(l,n+j) - a(l,n+j-1)\|_{\nu} \\ &\leq \cdots \leq k_{a}^{j}\|a(l,n+1) - a(l,n)\|_{\nu} \end{aligned}$$

hence, for any natural numbers n and p, applying the triangle inequality, we have

$$\begin{split} \|a(l,n+p) - a(l,n)\|_{\nu} &\leq \sum_{j=0}^{p-1} \|a(l,n+j+1) - a(l,n+j)\|_{\nu} \\ &\leq \sum_{j=0}^{p-1} k_a^j \|a(l,n+1) - a(l,n)\|_{\nu} \\ &\leq \sum_{j=0}^{\infty} k_a^j \|a(l,n+1) - a(l,n)\|_{\nu} \\ &= \left(\frac{1}{1-k_a}\right) \|a(l,n+1) - a(l,n)\|_{\nu} \\ &\leq \left(\frac{k_a^n}{1-k_a}\right) \|a(l,1) - a(l,0)\|_{\nu} \\ &= \left(\frac{k_a^n}{1-k_a}\right) \|a(l,1)\|_{\nu} \\ &\leq \frac{Rk_a^n}{1-k_a}. \end{split}$$

Hence letting $p \to \infty$ we have that

$$||a^*(l) - a(l,n)||_{\nu} \le \frac{Rk_a^n}{1 - k_a}.$$

This ends the proof.

Lemma 2.2. Let μ, r, R be positive real numbers with $0 < r < R, m \in [0, \frac{R}{4}]$, and

 $\begin{array}{ll} (A1) \ h: [0,R] \to [0,8R] \ be \ differentiable; \\ (A2) \ h(x) \geq 16r \ for \ x \in [r,R]; \\ (A4) \ |h'(b)| \leq \mu < \frac{32}{3} \ for \ all \ b \in [0,R]. \end{array}$

For $b_0 \equiv r$ define the recursive sequence

$$b(m, n+1) = D_m b(m, n)$$

for D_m given in (2.2), then

$$b(m,n) \to b^*(m) \in Q[r,R]$$

and for $k_b = \frac{3\mu}{32}$,

$$||b^*(m) - b(m,n)||_u \le \frac{Rk_b^n}{1-k_b}.$$

Proof. Let $y, z \in Q[r, R]$ and for each $s \in \left[\frac{1}{4}, \frac{1}{2}\right]$, let w(s) be between y(s) and z(s) such that

$$h(y(s)) - h(z(s)) = h'(w(s))(y(s) - z(s)).$$

Hence

$$\begin{split} \|D_m y - D_m z\|_u &= \max_{t \in [\frac{1}{4}, \frac{1}{2}]} \left| m + \int_{\frac{1}{4}}^{\frac{1}{2}} D(t, s) h(y(s)) \, ds - m - \int_{\frac{1}{4}}^{\frac{1}{2}} H(t, s) h(z(s)) \, ds \right| \\ &\leq \max_{t \in [\frac{1}{4}, \frac{1}{2}]} \int_{\frac{1}{4}}^{\frac{1}{2}} D(t, s) \left| h(y(s)) - h(z(s)) \right| \, ds \\ &= \int_{\frac{1}{4}}^{\frac{1}{2}} D(\frac{1}{2}, s) \left| h(y(s)) - h(z(s)) \right| \, ds \\ &\leq \int_{\frac{1}{4}}^{\frac{1}{2}} s \left| h'(w(s))(y(s) - z(s)) \right| \, ds \\ &\leq \mu \int_{\frac{1}{4}}^{\frac{1}{2}} s \|y - z\|_u \, ds = \frac{3\mu \|y - z\|_u}{32}, \end{split}$$

$$\begin{split} \|D_m y\|_u &= \max_{t \in [\frac{1}{4}, \frac{1}{2}]} \left| m + \int_{\frac{1}{4}}^{\frac{1}{2}} D(t, s) h(y(s)) \, ds \right| \\ &= m + \int_{\frac{1}{4}}^{\frac{1}{2}} D(\frac{1}{2}, s) h(y(s)) \, ds \\ &\leq \frac{R}{4} + \int_{\frac{1}{4}}^{\frac{1}{2}} 8Rs \, ds \\ &= \frac{R}{4} + \frac{24R}{32} = R, \end{split}$$

and

$$\begin{aligned} \alpha(D_m y) &= \min_{t \in [\frac{1}{4}, \frac{1}{2}]} \left| m + \int_{\frac{1}{4}}^{\frac{1}{2}} D(t, s) h(y(s)) \, ds \right| \\ &= m + \int_{\frac{1}{4}}^{\frac{1}{2}} D(\frac{1}{4}, s) h(y(s)) \, ds \\ &\geq \left(\frac{1}{4}\right) \int_{\frac{1}{4}}^{\frac{1}{2}} 16r \, ds = r. \end{aligned}$$

Therefore $D_m: Q[r, R] \to Q[r, R]$ is a contraction since $\frac{3\mu}{32} < 1$ and Q[r, R] is a closed, convex subset of the Banach space B_u . Therefore by the Banach contraction principle there is an $b^*(m) \in Q[r, R]$ such that $b(m, n) \to b^*(m)$. Thus

$$b^*(m)(t) = m + \int_{\frac{1}{4}}^{\frac{1}{2}} H(t,s)h(b^*(m)(s)) \, ds, \quad t \in \left[\frac{1}{4}, \frac{1}{2}\right].$$

Also, for any natural numbers n and j by mathematical induction we have

$$\begin{aligned} \|b(m, n+j+1) - b(m, n+j)\|_{u} &= \|D_{m}b(m, n+j) - D_{m}b(m, n+j-1)\|_{u} \\ &\leq k_{b}\|b(m, n+j) - b(m, n+j-1)\|_{u} \\ &\leq \dots \leq k_{b}^{j}\|b(m, n+1) - b(m, n)\|_{u} \end{aligned}$$

hence, for any natural numbers n and p, applying the triangle inequality, we have

$$\begin{split} \|b(m,n+p) - b(m,n)\|_{u} &\leq \sum_{j=0}^{p-1} \|b(m,n+j+1) - b(m,n+j)\|_{u} \\ &\leq \sum_{j=0}^{p-1} k_{b}^{j} \|b(m,n+1) - b(m,n)\|_{u} \\ &\leq \sum_{j=0}^{\infty} k_{b}^{j} \|b(m,n+1) - b(m,n)\|_{u} \\ &= \left(\frac{1}{1-k_{b}}\right) \|b(m,n+1) - b(m,n)\|_{u} \\ &\leq \left(\frac{k_{b}^{n}}{1-k_{b}}\right) \|b(m,1) - b(m,0)\|_{u} \\ &\leq \frac{Rk_{b}^{n}}{1-k_{b}}. \end{split}$$

Hence letting $p \to \infty$ we have that

$$\|b^*(m) - b(m,n)\|_u \le \frac{Rk_b^n}{1-k_b}.$$

This ends the proof.

For $l \in [0, R]$ let

$$m(l) = \int_0^{\frac{1}{4}} D\left(\frac{1}{4}, s\right) h(a^*(l)(s)) \, ds = \int_0^{\frac{1}{4}} sh(a^*(l)(s)) \, ds,$$

and define the real valued function g by

(2.3)
$$g(l) = \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b^*(m(l))(s)) \, ds.$$

Theorem 2.3. If $l \in [0, R]$ and l = g(l), then

$$y_*(t) = \begin{cases} a^*(l)(t) & 0 \le t \le \frac{1}{4} \\ b^*(m(l))(t) & \frac{1}{4} \le t \le \frac{1}{2} \\ y_*(1-t) & \frac{1}{2} < t \le 1 \end{cases}$$

is a solution of (1.1), (1.2).

Proof. Since

$$l = g(l) = \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b^*(m(l))(s)) \, ds$$

and

$$m(l) = \int_0^{\frac{1}{4}} D\left(\frac{1}{4}, s\right) h(a^*(l)(s)) \, ds,$$

we have that for $t\in\left[0,\frac{1}{2}\right]$

$$\begin{aligned} y_*(t) &= \begin{cases} a^*(l)(t) & 0 \le t \le \frac{1}{4} \\ b^*(m(l))(t) & \frac{1}{4} \le t \le \frac{1}{2} \end{cases} \\ &= \begin{cases} \int_0^{\frac{1}{4}} D(t,s)h(a^*(l)(s)) \, ds + 4tl & 0 \le t \le \frac{1}{4} \\ m(l) + \int_{\frac{1}{4}}^{\frac{1}{2}} D(t,s)h(b^*(m(l))(s)) \, ds & \frac{1}{4} \le t \le \frac{1}{2} \end{cases} \\ &= \begin{cases} \int_0^{\frac{1}{4}} D(t,s)h(a^*(l)(s)) \, ds + 4t \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4},s\right) h(b^*(m(l))(s)) \, ds & 0 \le t \le \frac{1}{4} \\ \int_0^{\frac{1}{4}} D\left(\frac{1}{4},s\right) h(a^*(l)(s)) \, ds + \int_{\frac{1}{4}}^{\frac{1}{2}} D(t,s)h(b^*(m(l))(s)) \, ds & 0 \le t \le \frac{1}{4} \end{cases} \\ &= \begin{cases} \int_0^{\frac{1}{4}} D(t,s)h(a^*(l)(s)) \, ds + \int_{\frac{1}{4}}^{\frac{1}{2}} t h(b^*(m(l))(s)) \, ds & 0 \le t \le \frac{1}{4} \\ \int_0^{\frac{1}{4}} D(t,s)h(a^*(l)(s)) \, ds + \int_{\frac{1}{4}}^{\frac{1}{2}} D(t,s)h(b^*(m(l))(s)) \, ds & \frac{1}{4} \le t \le \frac{1}{2} \end{cases} \\ &= \begin{cases} \int_0^{\frac{1}{4}} D(t,s)h(a^*(l)(s)) \, ds + \int_{\frac{1}{4}}^{\frac{1}{2}} D(t,s)h(b^*(m(l))(s)) \, ds & \frac{1}{4} \le t \le \frac{1}{2} \end{cases} \\ &= \begin{cases} \int_0^{\frac{1}{4}} D(t,s)h(y_*(s)) \, ds + \int_{\frac{1}{4}}^{\frac{1}{2}} D(t,s)h(y_*(s)) \, ds & 0 \le t \le \frac{1}{4} \\ \int_0^{\frac{1}{4}} D(t,s)h(y_*(s)) \, ds + \int_{\frac{1}{4}}^{\frac{1}{2}} D(t,s)h(y_*(s)) \, ds & \frac{1}{4} \le t \le \frac{1}{2} \end{cases} \\ &= \begin{cases} \int_0^{\frac{1}{2}} D(t,s)h(y_*(s)) \, ds & 0 \le t \le \frac{1}{4} \\ \int_0^{\frac{1}{2}} D(t,s)h(y_*(s)) \, ds & 0 \le t \le \frac{1}{4} \\ \int_0^{\frac{1}{2}} D(t,s)h(y_*(s)) \, ds & \frac{1}{4} \le t \le \frac{1}{2} \end{cases} \\ &= Ty_*(t) \end{cases} \end{aligned}$$

and since $Ty_*(t) = Ty_*(1-t)$ for $t \in \left[\frac{1}{2}, 1\right]$ we have that

$$Ty_*(t) = y_*(t)$$

for all $t \in [0, 1]$. Therefore y_* is a fixed point of the operator T and thus a solution of the boundary value problem (1.1), (1.2).

3. Main Results

At this stage we have verified the existence of a solution of the boundary value problem (1.1), (1.2) using iterative techniques, provided we can find a fixed point of the real valued function g by applying Theorem 2.3. In our main results we will show that the real valued function g under the conditions in Theorem 2.3 has a fixed point, so we know that our boundary value problem will have a solution and we'll show how

to use the power of iteration to get as close to a solution as desired iteratively. Note that the quantity

$$m(l) = \int_0^{\frac{1}{4}} D\left(\frac{1}{4}, s\right) h(a^*(l)(s)) \, ds = \int_0^{\frac{1}{4}} sh(a^*(l)(s)) \, ds$$

is calculated from the $a^*(l)$ part of our solution on the interval $\left[0, \frac{1}{4}\right]$, which we will want to approximate. For each natural number n, from Lemma 2.1 we have that $a(l, n) \in S_R$ with

$$||a^*(l) - a(l,n)||_{\nu} \le \frac{Rk_a^n}{1 - k_a}$$

where $k_a = \frac{\tau}{32}$ and our approximation of m(l) will be derived from the approximations of $a^*(l)$ by the elements a(l, n). Let

$$m(l,p) = \int_0^{\frac{1}{4}} D\left(\frac{1}{4},s\right) h(a(l,p)(s)) \, ds = \int_0^{\frac{1}{4}} sh(a(l,p)(s)) \, ds$$

the next lemma gives an error bound on our approximation of m(l) by m(l, p).

Lemma 3.1. Let μ, τ, r, R be positive real numbers with 0 < r < R, such that

(A1) $h: [0, R] \to [0, 8R]$ be differentiable; (A2) $h(x) \ge 16r$ for $x \in [r, R]$; (A3) $|h'(a)| \le \tau < 32$ for all $a \in [0, R]$; (A4) $|h'(b)| \le \mu < \frac{32}{3}$ for all $b \in [0, R]$.

For $k_a = \frac{\tau}{32}$ and a natural number p,

$$\|b^*(m(l)) - b^*(m(l,p))\|_u \le \frac{\tau R k_a^p}{(32 - 3\mu)(1 - k_a)}$$

and

$$|m(l) - m(l,p)| \le \frac{\tau R k_a^p}{32(1-k_a)}.$$

Proof. Let p be a natural number and for each $s \in [0, \frac{1}{4}]$, let w(s) be between $a^*(l)(s)$ and a(l, p)(s) such that

$$h(a^*(l)(s)) - h(a(l,p)(s)) = h'(w(s))(a^*(l)(s) - a(l,p)(s))$$

by the mean value theorem, thus from Lemma 2.1 we have

$$\begin{split} |m(l) - m(l,p)| &= \left| \int_{0}^{\frac{1}{4}} sh(a^{*}(l)(s)) \, ds - \int_{0}^{\frac{1}{4}} sh(a(l,p)(s)) \, ds \right| \\ &\leq \int_{0}^{\frac{1}{4}} s \left| h(a^{*}(l)(s)) - h(a(l,p)(s)) \right| \, ds \\ &\leq \int_{0}^{\frac{1}{4}} s \left| h'(w(s))(a^{*}(l)(s) - a(l,p)(s)) \right| \, ds \\ &\leq \tau \int_{0}^{\frac{1}{4}} s \|a^{*}(l) - a(l,p)\|_{\nu} \, ds \\ &= \frac{\tau \|a^{*}(l) - a(l,p)\|_{\nu}}{32} \\ &\leq \frac{\tau Rk_{a}^{p}}{32(1 - k_{a})}. \end{split}$$

By Lemma 2.2 there exist $b^*(m(l)), b^*(m(l,p)) \in Q[r,R]$ such that

$$b^*(m(l)) = D_{m(l)}b^*(m(l))$$
 and $b^*(m(l,p)) = D_{m(l,p)}b^*(m(l,p)).$

For each $s \in \left[\frac{1}{4}, 1\right]$, let z(s) be between $b^*(m(l))(s)$ and $b^*(m(l, p))(s)$ such that

$$h(b^*(m(l))(s)) - h(b^*(m(l,p))(s)) = h'(z(s))(b^*(m(l))(s) - b^*(m(l,p))(s))$$

by the mean value theorem, hence

$$\begin{split} \|b^*(m(l)) - b^*(m(l,p))\|_u \\ &= \max_{t \in [\frac{1}{4},1]} \left| m(l) + \int_{\frac{1}{4}}^{\frac{1}{2}} D(t,s)h(b^*(m(l))(s)) \, ds \right| \\ &- m(l,p) - \int_{\frac{1}{4}}^{\frac{1}{2}} D(t,s)h(b^*(m(l,p))(s)) \, ds \right| \\ &\leq |m(l) - m(l,p)| + \max_{t \in [\frac{1}{4},\frac{1}{2}]} \int_{\frac{1}{4}}^{\frac{1}{2}} D(t,s) \left| h(b^*(m(l))(s)) - h(b^*(m(l,p))(s)) \right| \, ds \\ &\leq |m(l) - m(l,p)| + \int_{\frac{1}{4}}^{\frac{1}{2}} s \left| h'(z(s))(b^*(m(l))(s) - b^*(m(l,p))(s)) \right| \, ds \\ &\leq |m(l) - m(l,p)| + \mu \int_{\frac{1}{4}}^{\frac{1}{2}} s \|b^*(m(l)) - b^*(m(l,p))\|_u \, ds \\ &= |m(l) - m(l,p)| + \frac{3\mu \|b^*(m(l)) - b^*(m(l,p))\|_u}{32} \\ &\leq \frac{\tau Rk_a^p}{32(1-k_a)} + \frac{3\mu \|b^*(m(l)) - b^*(m(l,p))\|_u}{32}. \end{split}$$

Therefore

$$||b^*(m(l)) - b^*(m(l,p))||_u \le \frac{\tau Rk_a^p}{(32 - 3\mu)(1 - k_a)}.$$

This ends the proof.

In the following theorem we will show that the function g is continuous.

Lemma 3.2. Let μ, τ, r, R be positive real numbers with 0 < r < R, such that

 $\begin{array}{ll} (A1) \ h: [0,R] \to [0,8R] \ be \ differentiable; \\ (A2) \ h(x) \geq 16r \ for \ x \in [r,R]; \\ (A3) \ |h'(a)| \leq \tau < 32 \ for \ all \ a \in [0,R]; \\ (A4) \ |h'(b)| \leq \mu < \frac{32}{3} \ for \ all \ b \in [0,R]. \end{array}$

Then the function g given in (2.3) is uniformly continuous on $\left[0, \frac{3R}{2}\right]$.

Proof. If we let $l, j \in [0, \frac{3R}{2}]$, then by Lemma 2.1 there exist $a^*(l), a^*(j) \in S_R$ such that

$$a^*(l) = A_l a^*(l)$$
 and $a^*(j) = A_j a^*(l)$.

For each $s \in [0, \frac{1}{4}]$, let w(s) be between $a^*(l)(s)$ and $a^*(j)(s)$ such that

$$h(a^*(l)(s)) - h(a^*(j)(s)) = h'(w(s))(a^*(l)(s) - a^*(j)(s))$$

by the mean value theorem, thus

$$\begin{split} \|a^*(l) - a^*(j)\|_{\nu} \\ &= \max_{t \in [0, \frac{1}{4}]} \left| \int_0^{\frac{1}{4}} D(t, s) h(a^*(l)(s)) \, ds + 4tl - \int_0^{\frac{1}{4}} D(t, s) h(a^*(j)(s)) \, ds - 4tj \right| \\ &\leq \max_{t \in [0, \frac{1}{4}]} \int_0^{\frac{1}{4}} D(t, s) \left| h(a^*(l)(s)) - h(a^*(j)(s)) \right| \, ds + |l - j| \\ &\leq \int_0^{\frac{1}{4}} s \left| h'(w(s))(a^*(l)(s) - a^*(j)(s)) \right| \, ds + |l - j| \\ &\leq \tau \int_0^{\frac{1}{4}} s \|a^*(l) - a^*(j)\|_{\nu} \, ds + |l - j| \\ &= \frac{\tau \|a^*(l) - a^*(j)\|_{\nu}}{32} + |l - j|. \end{split}$$

Therefore

$$||a^*(l) - a^*(j)||_{\nu} \le \frac{32|l-j|}{32-\tau},$$

and for

$$m(l) = \int_0^{\frac{1}{4}} sh(a^*(l)(s)) \, ds$$
 and $m(j) = \int_0^{\frac{1}{4}} sh(a^*(j)(s)) \, ds$

we have

$$\begin{split} |m(l) - m(j)| &= \left| \int_{0}^{\frac{1}{4}} sh(a^{*}(l)(s)) \, ds - \int_{0}^{\frac{1}{4}} sh(a^{*}(j)(s)) \, ds \right| \\ &\leq \int_{0}^{\frac{1}{4}} s \left| h(a^{*}(l)(s)) - h(a^{*}(j)(s)) \right| \, ds \\ &\leq \int_{0}^{\frac{1}{4}} s \left| h'(w(s))(a^{*}(l)(s) - a^{*}(j)(s)) \right| \, ds \\ &\leq \tau \int_{0}^{\frac{1}{4}} s \|a^{*}(l) - a^{*}(j)\|_{\nu} \, ds \\ &= \frac{\tau \|a_{l*} - a_{j*}\|_{\nu}}{32} \\ &\leq \frac{\tau |l - j|}{32 - \tau}. \end{split}$$

By Lemma 2.2 there exist $b^*(m(l)), b^*(m(j)) \in Q[r,R]$ such that

$$b^*(m(l)) = D_{m(l)}b^*(m(l))$$
 and $b^*(m(j)) = D_{m(j)}b^*(m(j)).$

For each $s \in \left[\frac{1}{4}, 1\right]$, let z(s) be between $b^*(m(l))$ and $b^*(m(j))$ such that

$$h(b^*(m(l))(s)) - h(b^*(m(j))(s)) = h'(z(s))(b^*(m(l))(s) - b^*(m(j))(s))$$

by the mean value theorem, hence

$$\begin{split} \|b^*(m(l)) - b^*(m(j))\|_u \\ &= \max_{t \in \left[\frac{1}{4}, \frac{1}{2}\right]} \left| m(l) + \int_{\frac{1}{4}}^{\frac{1}{2}} D(t, s)g(b^*(m(l))(s)) \, ds - m(j) - \int_{\frac{1}{4}}^{\frac{1}{2}} D(t, s)g(b^*(m(j))(s)) \, ds \right| \\ &\leq \|m(l) - m(j)\| + \max_{t \in \left[\frac{1}{4}, \frac{1}{2}\right]} \int_{\frac{1}{4}}^{\frac{1}{2}} D(t, s) \|h(b^*(m(l))(s)) - h(b^*(m(j))(s))\| \, ds \\ &\leq \|m(l) - m(j)\| + \int_{\frac{1}{4}}^{\frac{1}{2}} s \|g'(z(s))(b^*(m(l))(s) - b^*(m(j))(s))\| \, ds \\ &\leq \|m(l) - m(j)\| + \mu \int_{\frac{1}{4}}^{\frac{1}{2}} s \|b^*(m(l)) - b^*(m(j))\|_u \, ds \\ &= \|m(l) - m(j)\| + \frac{3\mu \|b^*(m(l)) - b^*(m(j))\|_u}{32} \\ &\leq \frac{\tau \|l - j\|}{32 - \tau} + \frac{3\mu \|b^*(m(l)) - b^*(m(j))\|_u}{32}. \end{split}$$

Therefore

$$||b^*(m(l)) - b^*(m(j))||_u \le \frac{32\tau |l-j|}{(32-\tau)(32-3\mu)},$$

and from the work embedded the argument above we have

$$\begin{aligned} |g(l) - g(j)| &= \left| \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b^*(m(l))(s)) \, ds - \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b^*(m(j))(s)) \, ds \right| \\ &\leq \frac{3\mu \|b^*(m(l)) - b^*(m(j))\|_u}{32} \\ &\leq \frac{3\mu\tau |l - j|}{(32 - \tau)(32 - 3\mu)}. \end{aligned}$$

Therefore g is uniformly continuous on $\left[0, \frac{3R}{2}\right]$.

We have shown that if l = g(l) then there is a solution given by y_* in Theorem 2.3. In the following Theorem we show how the bisection method can be used to iterate to a fixed point of the real valued function g.

Theorem 3.3. Let μ, τ, r, R be positive real numbers with 0 < r < R, such that

 $\begin{array}{ll} (A1) \ h: [0,R] \to [0,8R] \ be \ differentiable; \\ (A2) \ h(x) \geq 16r \ for \ x \in [r,R]; \\ (A3) \ |h'(a)| \leq \tau < 32 \ for \ all \ a \in [0,R]; \\ (A4) \ |h'(b)| \leq \mu < \frac{32}{3} \ for \ all \ b \in [0,R]. \end{array}$

Then there exists a $\psi \in \left[0, \frac{R}{2}\right]$ such that $g(\psi) = \psi$ for g in (2.3), and thus

$$y_*(t) = \begin{cases} a^*(\psi)(t) & 0 \le t \le \frac{1}{4} \\ b^*(m(\psi))(t) & \frac{1}{4} \le t \le \frac{1}{2} \\ y_*(1-t) & \frac{1}{2} \le t \le 1 \end{cases}$$

is a solution of (1.1), (1.2). Moreover, there is a sequence $\{\psi_n\}_{n=0}^{\infty} \subseteq [0, \frac{R}{2}]$ such that

 $\psi_n \to \psi$

with

$$|\psi - \psi_n| \le \frac{R}{2^{n+2}}$$

Proof. If we let $l \in \left[0, \frac{R}{2}\right]$, then

$$g(l) = \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b^*(m(l))(s)) \ ds \ge \left(\frac{1}{4}\right) \int_{\frac{1}{4}}^{\frac{1}{2}} 16r \ ds = r > 0$$

and

$$g(l) = \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b^*(m(l))(s)) \, ds \le \left(\frac{1}{4}\right) \int_{\frac{1}{4}}^{\frac{1}{2}} 8R \, ds = \frac{R}{2}.$$

Hence $g: \left[0, \frac{R}{2}\right] \to \left[0, \frac{R}{2}\right]$ is a continuous real valued function. By the intermediate value theorem applied to

$$f(x) = g(x) - x,$$

there exists a $\psi \in \left[0, \frac{R}{2}\right]$ such that $f(\psi) = 0$, which implies that

 $g(\psi) = \psi$

and by Theorem 2.3

$$y_*(t) = \begin{cases} a^*(\psi)(t) & 0 \le t \le \frac{1}{4} \\ b^*(m(\psi))(t) & \frac{1}{4} \le t \le \frac{1}{2} \\ y_*(1-t) & \frac{1}{2} \le t \le 1 \end{cases}$$

is a solution of (1.1), (1.2). Let

$$c_0 = 0, \ d_0 = \frac{R}{2} \text{ and } \ \psi_0 = \frac{c_0 + d_0}{2}$$

then recursively define the sequences $\{c_n\}_{n=0}^{\infty}, \{d_n\}_{n=0}^{\infty}$ and $\{\psi_n\}_{n=0}^{\infty}$ by

$$c_{n+1} = \psi_n, d_{n+1} = d_n \text{ and } \psi_{n+1} = \frac{c_{n+1} + d_{n+1}}{2}$$

if $g(\psi_n) \ge \psi_n$ and

$$c_{n+1} = c_n, d_{n+1} = \psi_n$$
 and $\psi_{n+1} = \frac{c_{n+1} + d_{n+1}}{2}$

if $g(\psi_n) < \psi_n$. Observe that for each natural number n that

$$h(c_n) \ge c_n$$
 and $h(d_n) \le d_n$

thus by the intermediate value theorem there is $\psi \in [c_n, d_n]$ such that $h(\psi) = \psi$. By induction we have that

$$d_n - c_n = \frac{d_{n-1} - c_{n-1}}{2} = \frac{d_0 - c_0}{2^n} = \frac{R}{2^{n+1}}$$

and since ψ_n is the midpoint of the interval $[c_n, d_n]$ and $\psi \in [c_n, d_n]$ we have that

$$|\psi - \psi_n| \le \frac{R}{2^{n+2}}$$

This ends the proof.

Our first approximation of the real valued function g(l) given by

(3.1)
$$g(l) = \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b^*(m(l))(s)) \, ds$$

will be by the function g(l, p) defined by

(3.2)
$$g(l,p) = \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4},s\right) h(b^*(m(l,p))(s)) \, ds$$

and this will be approximated by the real valued function

(3.3)
$$g(l,p,p) = \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4},s\right) h(b(m(l,p),p)(s)) \, ds.$$

Below we provide the tools to determine the sequence ψ_n which converges to ψ where $g(\psi) = \psi$. The key to find the sequence $\{\psi_n\}$ is being able to provide a condition

that when verified tells us that $g(\psi_n, p, p) - \psi_n$ and $g(\psi_n) - \psi_n$ are both non-negative or are both non-positive.

Lemma 3.4. Let n be a whole number, p be a natural number and suppose that

$$|g(\psi_n) - g(\psi_n, p, p)| \le |g(\psi_n, p, p) - \psi_n|$$

then

if
$$g(\psi_n, p, p) \ge \psi_n$$
 then $g(\psi_n) \ge \psi_n$

and

if
$$g(\psi_n, p, p) < \psi_n$$
 then $g(\psi_n) \le \psi_n$.

Proof. Either $g(\psi_n, p, p) \ge \psi_n$ or $g(\psi_n, p, p) < \psi_n$.

Claim 1: if $g(\psi_n, p, p) \ge \psi_n$ then $g(\psi_n) \ge \psi_n$. Since

$$\psi_n - g(\psi_n, p, p) \le g(\psi_n) - g(\psi_n, p, p) \le g(\psi_n, p, p) - \psi_n$$

we have $\psi_n < g(\psi_n)$.

Claim 2: if $g(psi_n, p, p) < \theta_n$ then $g(\psi_n) < \psi_n$. Since

$$g(\psi_n, p, p) - \psi_n \le g(\psi_n) - g(\psi_n, p, p) \le \psi_n - g(\psi_n, p, p)$$

we have $g(\psi_n) \leq \psi_n$.

In the following lemma we provide the justification for $g(\psi_n) - g(\psi_n, p, p) \to 0$ as $p - \infty$, hence the left side of the inequality

$$|g(\psi_n) - g(\psi_n, p, p)| \le |g(\psi_n, p, p) - \psi_n|$$

from Lemma 3.4 goes to zero as p goes to infinity.

Lemma 3.5. Let n be a whole number and p be a natural number then

$$|g(\psi_n) - g(\psi_n, p, p)| \le \frac{(64 - 3\mu)\tau Rk_a^p}{32(32 - 3\mu)(1 - k_a)} + \frac{Rk_b^{p+1}}{1 - k_b}.$$

Proof. From Lemma 2.2 we have

$$\begin{split} &|g(\psi_n, p) - g(\psi_n, p, p)| \\ &= \left| \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b^*(m(\psi_n, p))(s)) \, ds - \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b(m(\psi_n, p), p)(s)) \, ds \right| \\ &= \left| m(\psi_n, p) + \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b^*(m(\psi_n, p))(s)) \, ds \right| \\ &- m(\psi_n, p) - \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b(m(\psi_n, p), p)(s)) \, ds \right| \\ &= \left| b^*(m(\psi_n, p)) \left(\frac{1}{4}\right) - b(m(\psi_n, p), p+1) \left(\frac{1}{4}\right) \right| \\ &\leq \left\| b^*(m(\psi_n, p) - b(m(\psi_n, p), p+1) \right\|_u \\ &\leq \frac{Rk_b^{p+1}}{1 - k_b}, \end{split}$$

where $k_b = \frac{3\mu}{32}$ and from Lemma 3.1 we have

$$\begin{split} &|g(\psi_n) - g(\psi_n, p)| \\ &= \left| \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b^*(m(\psi_n))(s)) \, ds - \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b^*(m(\psi_n, p))(s)) \, ds \right| \\ &= \left| m(\psi_n) + \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b^*(m(\psi_n))(s)) \, ds \right| \\ &- m(\psi_n, p) - \int_{\frac{1}{4}}^{\frac{1}{2}} D\left(\frac{1}{4}, s\right) h(b^*(m(\psi_n, p))(s)) \, ds - (m(\psi_n) - m(\psi_n, p)) \right| \\ &= \left| b^*(\psi_n) \left(\frac{1}{4}\right) - b^*(m(\psi_n, p)) \left(\frac{1}{4}\right) - (m(\psi_n) - m(\psi_n, p)) \right| \\ &\leq \left| |b^*(m(\psi_n)) - b^*(m(\psi_n, p))| |_u + |(m(\psi_n) - m(\psi_n, p))| \\ &\leq \frac{\tau Rk_n^p}{(32 - 3\mu)(1 - k_a)} + \frac{\tau Rk_n^p}{32(1 - k_a)} = \frac{(64 - 3\mu)\tau Rk_n^p}{32(32 - 15\mu)(1 - k_a)}. \end{split}$$

Therefore

$$\begin{aligned} |g(\psi_n) - g(\psi_n, p, p)| &\leq |g(\psi_n) - g(\psi_n, p)| + |g(\psi_n, p) - g(\psi_n, p, p)| \\ &\leq \frac{(64 - 3\mu)\tau Rk_a^p}{32(32 - 3\mu)(1 - k_a)} + \frac{Rk_b^{p+1}}{1 - k_b}. \end{aligned}$$

This ends the proof.

Note that for every whole number n we have that

$$\lim_{p \to \infty} |g(\psi_n) - g(\psi_n, p, p)| = 0.$$

In the Theorem below we summarize the iterative scheme which will converge to a solution of (1.1), (1.2).

Theorem 3.6. Let μ, τ, r, R be positive real numbers with 0 < r < R, such that

(A1) $h: [0, R] \to [0, 8R]$ be differentiable; (A2) $h(x) \ge 16r$ for $x \in [r, R]$; (A3) $|h'(a)| \le \tau < 32$ for all $a \in [0, R]$; (A4) $|h'(b)| \le \mu < \frac{32}{3}$ for all $b \in [0, R]$.

Then there exists an iterative scheme converging to a solution of (1.1), (1.2).

Proof. For natural numbers n and p let

$$y_{n,p}(t) = \begin{cases} a(\psi_n, p)(t) & 0 \le t \le \frac{1}{4} \\ b(m(\psi_n, p), p)(t) & \frac{1}{4} \le t \le \frac{1}{2} \\ y_{n,p}(1-t) & \frac{1}{2} \le t \le 1. \end{cases}$$

From the work in Lemma 3.2 we have

$$||a^*(\psi) - a^*(\psi_n)||_{\nu} \le \frac{32|\psi - \psi_n|}{32 - \tau}$$

and from the work on Lemma 2.1 we have

$$||a^*(\psi_n) - a(\psi_n, p)||_{\nu} \le \frac{Rk_a^p}{1 - k_a}$$

for $k_a = \frac{\tau}{32}$, thus we have

$$\begin{aligned} \|a^*(\psi) - a(\psi_n, p)\|_{\nu} &\leq \|a^*(\psi) - a^*(\psi_n)\|_{\nu} + \|a^*(\psi_n) - a(\psi_n, p)\|_{\nu} \\ &\leq \frac{32|\psi - \psi_n|}{32 - \tau} + \frac{Rk_a^p}{1 - k_a}. \end{aligned}$$

From the work in Lemma 3.2 we have

$$\|b^*(m(\psi)) - b^*(m(\psi_n))\|_u \le \frac{32\tau |\psi - \psi_n|}{(32 - \tau)(32 - 3\mu)}$$

and from the work in Lemma 3.1 we have

$$\|b^*(m(\psi_n)) - b^*(m(\psi_n, p))\|_u \le \frac{\tau Rk_a^p}{(32 - 3\mu)(1 - k_a)}$$

and from the work in Lemma 2.2 we have

$$\|b^*(m(\psi_n, p)) - b(m(\psi_n, p), p)\|_u \le \frac{Rk_b^p}{1 - k_b}$$

thus we have

$$\begin{aligned} \|b^*(m(\psi)) - b(m(\psi_n, p), p)\|_u \\ &\leq \|b^*(m(\psi)) - b^*(m(\psi_n))\|_u + \|b^*(m(\psi_n)) - b^*(m(\psi_n, p))\|_u \\ &+ \|b^*(m(\psi_n, p)) - b(m(\psi_n, p), p)\|_u \\ &\leq \frac{32\tau |\psi - \psi_n|}{(32 - \tau)(32 - 3\mu)} + \frac{\tau Rk_a^p}{(32 - 3\mu)(1 - k_a)} + \frac{Rk_b^p}{1 - k_b}. \end{aligned}$$

Therefore

$$||y_* - y_{n,p}|| \le \max\{||a^*(\psi) - a(\psi_n, p)||_{\nu}, ||b^*(m(\psi)) - b(m(\psi_n, p), p)||_u\}.$$

For $\epsilon_n = \frac{1}{n}$ let N_n be a natural number such that

$$\max\left\{\frac{32\tau|\psi-\psi_n|}{(32-\tau)(32-3\mu)}, \frac{32|\psi-\psi_n|}{32-\tau}\right\} < \frac{\epsilon_n}{2}$$

and let P_n be a natural number such that

$$\max\left\{\frac{\tau Rk_a^p}{(32-3\mu)(1-k_a)} + \frac{Rk_b^p}{1-k_b}, \frac{Rk_a^p}{1-k_a}\right\} < \frac{\epsilon_n}{2}.$$

For every natural number n define

$$z_n = y_{N_n, P_n}$$

thus

$$\|y_* - z_n\| \le \max\{\|a^*(\psi) - a(\psi_{N_n}, P_n)\|_{\nu}, \|b^*(m(\psi)) - b(m(\psi_{N_n}, P_n), P_n)\|_u\} < \epsilon_n$$

so $\{z_n\}$ is a sequence of functions that converges to y_* a solution of (1.1), (1.2). This ends the proof.

REFERENCES

- R. I. Avery and J. Henderson. Three symmetric positive solutions for a second-order boundary value problem. Appl. Math. Lett., 13(3):1–7, 2000.
- [2] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math. 3 (1922), 133–181.
- [3] A. Granas and J. Dugundji, *Fixed point theory*, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.
- [4] R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), 673–688.
- [5] E. Zeidler, Nonlinear Functional Analysis and its Applications I, Fixed Point Theorems, Springer-Verlag, New York, 1986.