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ABSTRACT.

The phenomenon of vibrational resonance (VR) has been investigated in a parametric quintic os-

cillator with five cases of double-well potential V (x) = − 1
2
ω2

0(1 + q cosωpt) x
2 + 1

4
β x4 + 1

6
γx6

while driven by both low-frequency force f cosωt and high-frequency force g cosΩt with ΩÀ ω. We

restrict our analysis to the parametric choices (i) ω2
0 , β, γ > 0 (double-well), (ii) ω2

0 , γ > 0, β < 0

(double-well) (iii) ω2
0 , β > 0, γ < 0, 4ω2

0γ < β2 < 16
3
ω2

0γ (double-hump double-well) (iv) ω
2
0 , β > 0,

γ < 0, β2 = 4ω2
0γ (double-hump double-well) and (v) ω

2
0 .β > 0, γ < 0, β2 > 16

3
ω2

0γ (double-hump

double-well). For Ω À ω, the solution of the system consists of slow motion with frequency ω and

fast motion with frequency Ω. The flow equation approach is used to drive the response amplitude

a0(ω) analytically from the equation for slow motion of the system, in terms of the parameters of

the high-frequency signal and the parametric excitation. From the analytical expression of a0(ω),

we determine the values of g (denoted as gV R) at which VR occurs. Numerical simulations are

carried out to validate the theoretical results. We show that for fixed values of the parameters of

the system, as g is varied, single or multiple vibrational resonances occur in the double-well cases

of the system. gV R is found to be independent of the damping strength d. Moreover, the effect of

damping strength d is found to decrease the response amplitude a0(ω).
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1. INTRODUCTION

Recently, considerable attention has been devoted both theoretically and experimen-

tally to the phenomenon of vibrational resonance (VR), which appears in a bistable

systems being excited by two periodic signals with different frequencies [1-10]. A dis-

tinctive feature of VR is that the response at the low-frequency signal passes through

a maximum depending on the amplitude of an additional high-frequency modula-

tion. Landa and McClintock [1] first reported the VR in bistable system. Later

on, a theoretical treatment for analyzing VR has been proposed by Gitterman [2]

and Blekhman and Landa [3]. Since this introduction, VR has now been demon-

strated and analyzed theoretically, numerically and experimentally in various model

systems, including communication [11,12], laser physics [13], acoustics [14], medicine

[15], neuroscience [16], geosciences [17] and ecology [18]. The phenomenon has gained

enormous research attention in the last two decades and has been extensively in-

vestigated due its several potential industrial and biomedical applications in a wide

range of contexts including bistable systems [19,20], multistable systems [21], ratchet

devices [22], excitable systems [23], quintic oscillator [24-26], coupled oscillators [27],

delayed dynamical systems [26], asymmetrical potential, fractional order potential

oscillators [28], neural models [29], oscillating networks [30,31], biological nonlinear

systems [32], parametrically excited systems [33] and deformable potential [34], har-

monically trapped and roughed potentials [35,36]. More importantly, VR has been

demonstrated in experimental realizations, especially in multiple systems, arrays of

hard limiters [37], bistable vertical-cavity surface emitting lasers (VCSELs) [38], and

Chua circuits [39]. The potential applications of VR has been explored in, for instance,

improving energy harvesting from mechanical vibrations, energy detectors [40], the

detection, transmission and application of signals [41,42] and the detection of faults

in bearings [43] as well as in the design of Dual Input Multiple Output (DIMO) logic

gates and memory devices [44-46].

Among the various types of nonlinear systems in research on VR, parametrically

driven nonlinear systems have received less attention [47-49]. Such systems are abun-

dant in nature, however, and have a wide range of engineering applications. They are

found in Bose-Einstein Condensates (BECs) models for cold atoms and laser models

including semiconductor, diode and fiber lasers and VCSELs. For example, in diode

lasers, high-frequency modulation is an important building block for transmitters used

to encode optical communications through cavity loss or pump current modulation

[50,51]. In addition parametric driving plays an important role in signal amplification,

filtering and sensing, especially in macro- and nanoscale materials [52]. Recently, VR

has been observed in a model Rayleigh-Plesset bubble oscillator in an incompressible

fluid [53] and in a gyroscope driven by dual-frequency forcing [54]. Roy et al. [49]

studied the nonlinear response of a certain parametrically driven bistable oscillator
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subjected to two external periodic drives of widely different frequencies and the same

authors explored the possibility of supercritical Hopf bifurcation in a typical para-

metric nonlinear oscillator with dual-frequency forces [55]. In this paper, we consider

a parametric quintic oscillator with five cases of double-well potentials and analyze

the occurrence of VR.

2. Parametric Quintic Oscillator

The equation of motion of the parametric quintic oscillator driven by two periodic

forces is given by

(2.1) ẍ+ dẋ+ ω2

0
(1 + q cosωpt)x+ βx3 + γx5 = f cosωt+ g cosΩt,

where ΩÀ ω. In Eq.(2.1), ω0 is the natural frequency of the system without viscous

damping, d is the damping coefficient, ωp is the parametric frequency and β and γ

are the cubic and quintic nonlinear coefficients. f cosωt is the term denoting the

lower frequency drive while g cosΩt represents the higher frequency drive. Here (f, g)

and (ω,Ω) are the amplitudes and frequencies of the low- and high-frequency drives,

respectively. The parameter q is the strength of the parametric drive. The potential

of the system in the absence of parametric excitation, damping and external force is

(2.2) V (x) =
1

2
ω2

0
x2 +

1

4
β x4 +

1

6
γx6,

The potential V (x) → ∞ for γ > 0 and V (x) → −∞ for γ < 0. Figure (1) depicts

the shape of the potential V (x) for various specific choices of the parameters ω2
0
, β

and γ. The potential can be a single-well as shown in Figs. (1a) and (1c); single-well

with double-hump (Figs. (1b)) and (1h); double-well (Figs.( 1g)) and (1m); double-

well with double-hump (Figs. (1j)), (1k) and (1l); triple-well (Figs. (1d)), (1e) and

(1f) and inverted single-well (Figs. (1i)) and (1n).

The model oscillator that we are studying here is given by the following equation:

(2.3) ẍ+ dẋ− ω2

0
(1 + q cosωpt)x+ βx3 + γx5 = f cosωt+ g cosΩt, Ω >> ω,

The minus sign before ω2
0
in Eq.(2.3) indicates that the oscillator is a double-well

potential. The function (1+ q cosωpt) is always positive when the range of parameter

q is −1 < q < 1. So the shape of the potential is always a double-well potential.

The objective of the present paper is to bring in a periodic variation in the natural

frequency of the oscillator with a frequency that coincides with the lower forcing

frequency and the magnitude of the parametric frequency will be chosen to be ωp = ω0.

The potential of the parametric quintic oscillator (Eq.2.3) system in the absence of

damping and external forcing is

(2.4) V (x) = −1

2
ω2

0
(1 + q cosωpt) x

2 +
1

4
β x4 +

1

6
γx6,
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Figure 1. Dependence of shape of the potential of the quintic oscil-

lator. (a) ω2
0
, β, γ > 0.(b) ω2

0
, β > 0, γ < 0. (c) ω2

0
, γ > 0, β < 0

and β2 < 4ω2
0
γ. (d) ω2

0
, γ > 0, β < 0 and 4ω2

0
γ < β2 < 16

3
ω2

0
γ. (e) ω2

0
,

γ > 0, β < 0 and β2 = 16

3
ω2

0
γ.(f) ω2

0
, γ > 0, β < 0 and β2 > 16

3
ω2

0
γ.(g)

ω2
0
< 0, β, γ > 0. (h) ω2

0
> 0, β, γ < 0. (i) ω2

0
, γ < 0, β > 0 and

β2 < 4ω2
0
γ. (j) ω2

0
, γ < 0, β > 0 and 4ω2

0
γ < β2 < 16

3
ω2

0
γ. (k) ω2

0
,

γ < 0, β > 0 and β2 = 16

3
ω2

0
γ. (l) ω2

0
, γ < 0, β > 0 and β2 > 16

3
ω2

0
γ.

(m) ω2
0
, β < 0, γ > 0. (n) ω2

0
, β, γ < 0.

When q = 0, the potential V (x) is used to model optical bistability in a dispersive

medium where the refractive index is dependent on the optical intensity [56]. Equation

(2.1) in the absence of external periodic forces, models a magneto-elastic beam in

the nonuniform field of permanent magnets [59]. In recent years, Jeyakumari et al.

studied the occurrence of VR in a quintic oscillator without parametric excitation

[24,25]. In the paper, we restrict our analysis to the parametric choices in the system

(Eq.2.3)

Case (i) ω2
0
, β, γ > 0 (double-well) (Fig.1g),

Case (ii) ω2
0
, γ > 0, β < 0 (double-well)(Fig.1m)

Case (iii) ω2
0
, β > 0, γ < 0, 4ω2

0
γ < β2 < 16

3
ω2

0
γ(double-hump double-well)(Fig.1j)

Case (iv) ω2
0
, β > 0, γ < 0, β2 = 4ω2

0
γ(double-hump double-well)(Fig.1k) and

Case (v) ω2
0
.β > 0, γ < 0, β2 > 16

3
ω2

0
γ(double-hump double-well) (Fig.1l).

In the following sections, we theoretically and numerically analyze the occurrence of

VR in a quintic oscillator with five cases of double-well potentials driven by both

low-frequency force f cosωt and high-frequency force g cosΩt with ΩÀ ω.
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3. Calculation of Response Amplitude

In this section, first we discuss how the parametric and the fast frequency drives com-

bine to produce an effective frequency and the next section focuses on the amplitude

and phase flow equations.

3.1. The effective frequency: Here we use the method of direct separation of mo-

tions described by Blekhman [3] as the most effective formulation of vibrational me-

chanics to obtain the equation of the slow motion which can be modulated by param-

eters of the fast driving signal analytically. For a long time Ω >> ω and τ = Ωt, we

seek the solution of Eq.(2.3) such that

(3.1) x(t) = s(t, ωt) + ψ(t,Ωt).

If ψ is a periodic function with period 2π/Ω or 2π-periodic function of fast time

τ = Ωt and its mean value with respect to the time τ is given by

(3.2) < ψ(t, τ) >=
1

2π

∫

2π

0

ψ(t, τ)dτ = 0

then, the aim is to obtain two systems of integral-differential equations from Eq.(2.3)

such that if a pair (s, ψ) is a solution to the two integro-differential equations, then

x = s+ψ factoring in Eq.(3.2) completely solves Eq.(2.3). Thus substituting Eq.(3.2)

in to Eq.(2.3), we have ẋ = ṡ+ ψ̇ and ẍ = s̈+ ψ̈, then

s̈+ ψ̈ + dṡ+ dψ̇ − ω2

0
(1 + q cosωp)s− ω2

0
(1 + q cosωp)ψ + β(s3 + 3s2ψ + 3sψ2 + ψ3) +

γ(s5 + 5s4ψ + 5sψ4 + 10s3ψ2 + 10s2ψ3 + ψ5) = f cosωt+ g cosΩt.(3.3)

Using Eq.(3.2) and averaging the Eq.(3.3) with respect to fast time τ , we have

s̈+ ψ̈ + dṡ+ dψ̇ − sF0(t)− ψF0(t) + β
(

s3 + 3s2ψ + 3sψ2 + ψ3
)

−β
[

(ψ3− < ψ3 >) + 3s2(ψ− < ψ >) + 3s(ψ2− < ψ2 >)
]

+γ
[

s5 + 5s4ψ + 5sψ4 + 10s3ψ2 + 10s2ψ3 + ψ5
]

−γ
[

(ψ5− < ψ5 > +5s4(ψ− < ψ >) + 5s(ψ4− < ψ4 >)
]

−γ
[

10s3(ψ2− < ψ2 >) + 10s2(ψ3− < ψ3 >)
]

= f cosωt+ g cosωt.(3.4)

Because ψ is a fast motion, we assume that ψ̈ À ψ̇, ψ, ψ2, ψ3, ψ4, ψ5. This allows us

to split the Eq.(3.4) into the following equation of motion for s and ψ.

(3.5) s̈+ dṡ− sF0(t) + βF1(s, ψ) + γF2(s, ψ) = f cosωt.

(3.6) ψ̈ + dψ̇ − ψF0(t) + βF3(s, ψ) + γF4(s, ψ) = g cosΩt,

where

(3.7) F0(t) = ω2

0
(1 + q cosωpt)
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(3.8) F1(s, ψ) = s3 + 3s2 < ψ > +3s < ψ2 > + < ψ3 >

(3.9)

F2(s, ψ) = s5 + 5s4 < ψ > +5s < ψ4 > +10s3 < ψ2 > +10s2 < ψ3 > + < ψ5 >

(3.10) F3(s, ψ) = (ψ3− < ψ >3) + 3s2(ψ− < ψ >) + 3s(ψ2− < ψ >2)

F4(s, ψ) = (ψ5− < ψ >5) + 5s4(ψ− < ψ >) + 5s(ψ4− < ψ >4) + 10s3(ψ2− < ψ >2)

+10s2(ψ3− < ψ >3)(3.11)

In Eq.(3.6), since the terms βF3 and γF4 are smaller than the others, we ignore it and

proceed to solve the rest of the equation self-consistently (first stopping the paramet-

rically oscillating term, solving the rest of the equation, and finally re-invoking this

term ) to obtain the equation

(3.12) ψ̈ + dψ̇ = gB cos(Ωt+ φ) + gQ [cos(χt+ α) + cos(ξt+ α)] ,

where χ, ξ are new frequencies and B,Q are new amplitude factors, which are defined

as

χ = Ω+ ωp, ξ = Ω− ωp(3.13a)

B = [(Ω2 − ω2

0
)2 + d2Ω2]1/2/Ω(Ω2 + d2)1/2(3.13b)

Q =
qA

2
(3.13c)

where A is a dimensionless parameter and is given by

(3.14) A =
ω2

0

Ω
√
Ω2 + d2

Also, the new phase terms are

α = tan−1

[

d

Ω

]

(3.15)

φ = tan−1

[

dΩ

Ω2 − ω2
0

]

(3.16)

The solution of Eq.(3.12) evaluates with three term forcing terms and is given by

(3.17) ψ(t) =
g

µ1

cos(Ωt+ φ+ θ) +
g

µ2

cos(χt+ α + δ) + +
g

µ3

cos(ξt+ α + ν)

Substituting the first and second derivatives of ψ(t) in Eq.(3.12) and equating the

coefficients, we get the additional amplitudes and phase terms are

µ1 =
Ω2(Ω2 + d2)

√

(Ω2 − ω2
0
)2 + Ω2d2

, θ = tan−1(d/Ω)(3.18)

µ2 =
2χΩ

qω2
0

[

(χ2 + d2)(Ω2 + d2)
]1/2

, δ = tan−1(d/χ)(3.19)

µ3 =
2ξΩ

qω2
0

[

(ξ2 + d2) (Ω2 + d2)
]1/2

, ν = tan−1(d/ξ)(3.20)
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Next we find the average of < ψ2 >,< ψ3 >,< ψ4 > and < ψ5 >. Already we

know that the high-frequency periodic functions constituting the form of ψ(t) in

Eq.(3.17) confirm the average of ψ(t) over a complete period is zero. From Eq.(3.17),

the average of ψ(t) are < ψ >=< ψ3 >=< ψ5 >= 0, < ψ2(t) >= g2

2

∑

1

µ2
i

and

< ψ4(t) >= 3

8
g4

∑

1

µ4
i

, where i = 1, 2, 3. The values of the averages of the < ψ(t) >,

< ψ2 >,< ψ3 >,< ψ4 > and < ψ5 > can be invoked in Eq.(3.5) to obtain the

following equation for the slow variable s(t, ωt) with the help of Eq.(3.5), which is

(3.21) s̈+ dṡ+ (ω2 − ω2

0
q cosωpt)s+

[

(β + 10γ < ψ2 >)s3 + γs5
]

= f cosωt

and the new frequency term is given by

ω2(g) = 3β ′ < ψ2 > +5γ < ψ4 > −ω2

0

=
3

2
g2β′

3
∑

i=1

1

µ2
i

+
15

8
g4

3
∑

i=1

1

µ4
i

− ω2

0
(3.22)

From Eq.(3.21), we defined the time dependent effective frequency and the effective

potential as

ωeff (t) =
√

ω2 − ω2
0
q cosωpt,(3.23)

Veff (s, t) =
1

2
ω2

eff (t)s
2 +

1

4
β′s4 +

1

6
γs6(3.24)

where

β′ = β + 10γ < ψ2 >= β + 10γ
g2

2

3
∑

i=1

1

µ2
i

= β + 5γg2

3
∑

i=1

1

µ2
i

(3.25)

3.2. The flow equations: Now we shall derive the amplitude-flow and the phase-

flow equations from Eq.(3.21). Recalling the main objective of the present paper

which as mentioned in the Sec.2 is to study the nonlinear response when the frequency

of the parametric oscillation coincides with that of the low-frequency drive, ie. ω = ωp.

Now we rewrite the Eq.(3.21) with ωp = ω, then

(3.26) s̈+ dṡ+
(

ω2(g)− ω2

0
q cosωt

)

s+ β ′s3 + γs5 = f cosωt

The main objective of the present work is to study the nonlinear response when the

frequency of the parametric oscillation (ωp) coincides with the low-frequency drive

(ω) called the primary resonance, that is, by tuning ω close to the frequency ω given

by Eq.(3.22). To do this, we introduce a detuning parameter σ, such that ω = ω+εσ,

where ε is a perturbation parameter. To apply the perturbation technique, Eq.(3.26)

is rearranged as follows

(3.27) s̈+ ω2s = ε
[

−dṡ+ ω2

0
q(cosωt)s− β ′s3 − γs5 + f cosωt

]
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Introducing the dimensionless time τ = ωt and rescaled the parameters ω2

ω2 = 1 −
εσ,Γ = d

ω2 ,Λ = β′

ω2 , α = γ
ω2 , f = Fω2 and K = ω0

ω2 , then we can rearrange the

Eq.(3.27) as

(3.28) s̈+ s = ε
[

−Γṡ+K cos τs+ Λs3 + αs5 + f cos τ + σs
]

The flow equations can be arrived at through the method of averaging, the details of

which have described in refs.[60,61]. For using the method of averaging we can write

s = u cosωt− v sinωt with u(t) = a(t) cos θ(t) and v(t) = a(t) sin θ(t) and proceeding

as usual [60,61], we arrive at the amplitude and phase flow equations

(3.29) ȧ = −ω [Γa+ F sin θ] ,

where F = f
ω2 and Γ = d/ω2

(3.30) θ̇ = ω

[

−σ +
3

4
Λa2 +

5

8
αa4 − F

a
cos θ

]

For the fixed points (a0, θ0) of this dynamical system, we obtain the following expres-

sion in the modified detuning parameter σ as,

(3.31) σ =

[

3

4
Λa2

0
+

5

8
αa4

0

]

±
√

F 2

a2
0

− Γ2

Now substitute the value of σ (Eq.(3.31)) in the modified detuning parameter, then

ω2 = ω2 − εω2σ, ie., ω2

ω2 = 1− εσ,

(3.32) ω2 = ω2 − ε
{

[

3β′a2
0

4
+

5

8
γa4

0

]

±
√

f 2

a2
0

− d2ω2

}

Substituting the value of β ′ in Eq.(3.22), we get

(3.33) ω2 =
3

2
g2β

3
∑

i=1

1

µ2
i

+
75

8
γg4

3
∑

i=1

1

µ4
i

− ω2

0

Now combining the Eqs.(3.32) and (3.33), we get

(3.34)
3

2
g2β

3
∑

i=1

1

µ2
i

+
75

8
γg4

3
∑

i=1

1

µ4
i

−ω2

0
= ω2−ε

{

[

3β′a2
0

4
+

5

8
γa4

0

]

±
√

f 2

a2
0

− d2ω2

}

or

(3.35)
3

2
g2β′

3
∑

i=1

1

µ2
i

+
15

8
γg4

3
∑

i=1

1

µ4
i

−ω2

0
= ω2−ε

{

[

3β′a2
0

4
+

5

8
γa4

0

]

±
√

f 2

a2
0

− d2ω2

}

(3.36)

3

2
g2β′

3
∑

i=1

1

µ2
i

+
15

8
γg4

3
∑

i=1

1

µ4
i

= (ω2 + ω2

0
)− ε

{

[

3β′a2
0

4
+

5

8
γa4

0

]

±
√

f 2

a2
0

− d2ω2

}
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Figure 2. (a) Theoretically and numerically calculated a0(ω) rep-

resented by continuous curve and painted circles respectively for a

few values of Ω with q = 0.1 and d = 0.3 (b) Theoretical response

amplitude a0(ω) for a few values of q with Ω = 10 and d = 0.3

and (c) Theoretically and numerically calculated a0(ω) represented

by continuous curve and painted circles respectively for a few val-

ues of d with Ω = 10 and q = 0.1. The simulation parameters are

ω = ωp = ω0 = 1.0, β = 1.0, γ = 1.0 and f = 0.05.

In the following sections, we consider the system (2.3) with five double-well cases

of the potential V (x) separately and analyze the vibrational resonance (VR) using

Eq.(3.36) and verify the theoretical results numerically.

4. Analysis of VR

In this section, we investigate the effects of the different parameters (q, d and Ω) of the

system (Eq.2.3) with five cases of double-well potentials on the response amplitude

a0(ω). To compare with the theoretical a0(ω) given by Eq. (3.36), we compute a0(ω)

from the numerical solution of Eq. (2.3). Numerical a0(ω) is given by

a0(ω) =

√

a0(ω)
2

s
+ a0(ω)

2

c

f
,(4.1a)

where

a0(ω)s =
2

nT

∫ nT

0

x(t) sinωtdt, a0(ω)c =
2

nT

∫ nT

0

x(t) cosωtdt(4.1b)

with T = 2π/ω and n = 200.

4.1. VR with Double-well potential, (ω2
0
, β, γ > 0): For ω2

0
, β, γ > 0, V (x) is

a double-well potential. We fix the parameters as β = γ = 1, f = 0.05 and ω =

ωp = ω0 = 1. Figure 2(a) shows g versus a0(ω) for three values of Ω = 10, 15 and 20

respectively. Continuous curves represent theoretical result obtained from Eq.(3.36).
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Figure 3. Bifurcation diagrams of equation (2.3) with Ω = 15, d = 0.3

for three values q. The values of x are collected at t = n× 2π/ω, n =

1, 2, ..., 200. The values of the other parameters are ω = ωp = ω0 =

1.0, β = 1.0, γ = 1.0 and f = 0.05.

Painted circles represent numerically calculated a0(ω) from Eq.(4.1). Numerically

computed a0(ω) is in well agreement with the theoretical approximation. In Fig.2(a),

for all values of Ω, two resonances occur with nearly equal peak values. The first

and second resonances occur at g = (40.98, 83.07) for Ω = 10, g = (92.29, 187.13)

for Ω = 15 and g = (160.03, 325.15) for Ω = 20. For Ω = 10 and Ω = 15, the

motion is unbounded when g > 178 and g > 445. From Fig.2a, we clearly observed

that as the value of Ω increases, the position of the peaks increases in the direction

of g and the width of the first and second resonances also increases. The analytical

frequency-response curves obtained for three values of q = 0.1, 0.3, 0.5 respectively and

presented in Fig.2(b). For q = 0.1, two resonances occur at g = (40.98, 83.03), three

resonances occur at g = (20.70, 42.42, 83.07) for q = 0.3 and five resonances occur at

g = (29.64, 42.34, 50.47, 63.68, 83.07) for q = 0.5. We clearly see that the number of

resonances increases as the amplitude of the parametric excitation q increases, and

the effect of q on a0(ω) is a shift in the peak position in the opposite direction of g.

Figure 2(c) illustrates the effect of damping d on resonance. The maximum of the

resonance (gV R) is unchanged by the damping strength (d). However, the response

amplitude a0(ω) at the resonance decreases with increase in d.

Since the system (Eq.2.3) can exhibit variety of bifurcations of periodic orbit leading

to chaotic motion and bifurcations of chaotic attractor, we examined the occurrence

of them using bifurcation diagram and phase portrait. For certain cases of the para-

metric choices considered in our study, chaotic motion is found for sufficiently large

values of the control parameter g, particularly far after resonance. For this purpose,

we numerically solve this equation (2.3) using the fourth order Runge-Kutta algo-

rithm with fixed step sizes ∆t = 0.001. The values of the following parameters were



304 M. ANISHA NASHRIN, V. CHINNATHAMBI, S. RAJASEKAR

0.4 0.8 1.2
-2

0

2

-1 0 1
-10

0

10 (c)g=150

y

x

-1.5 0.0 1.5
-6

0

6
(b)g=75

y

x

(a)g=20.0

y

x

Figure 4. Phase portraits of actual motion of the system (Eq.2.3)

showing the (a) period-1 orbit, (b) chaotic attractors and (c) period-2

orbit with the parameters of Fig.3(c).

fixed as follows: d = 0.3, β = γ = 1.0,Ω = 15, f = 0.05 and ω = ωp = ω0 = 1.0.

The initial conditions are x(0) = 1 and ẋ(0) = 1.0 and the time is t = 4000 with

the first 100 iterates dropped as transients. Figure 3 shows the bifurcation diagram

of Eq.(2.3) for three values of q = 0.1, 0.3 and 0.5. We restricted our analysis to the

range 0 < g < 200. For q = 0.1, the period-T is found (Fig.3a) in the above range

of g. When q = 0.3, chaotic motion, antimonotonicity and reverse periodic orbits are

found for g ∈ [74.629, 122.225]. This is shown in Fig.3(b). In Fig.3(c), corresponding

to the above parametric choices with q = 0.5, chaotic motion and other periodic orbits

are found. As q increases, the spacing of the chaotic region increases which is clearly

seen in Figs.3(b) and 3(c). An example of periodic and chaotic attractor is shown in

Figs.4(a-c).

4.2. VR with Double-well potential, (ω2
0
, γ > 0, β < 0): In this section we con-

sider the system (Eq.2.3) with the double-well potential of the form shown in Fig.1(m),

where ω2
0
> 0, γ > 0 and β < 0. First we consider the effect of frequency Ω of the

high-frequency excitation on VR. We fix the parameters as β = −1, γ = 1, f = 0.05

and ω = ωp = ω0 = 1.0. Figure 5(a) shows the plot of a0(ω) for three values of

Ω = (10, 15, 20) with q = 0.1 and d = 0.3 computed from Eq.(3.36) and superimposed

with their corresponding numerical curves computed from Eq.(4.1) for comparison.

One can obviously see that the theoretical and numerical results are in close agree-

ment. Double resonances occur for all the values of Ω. For instance, first and second

resonances occur for Ω = 10, 15, 20 at g = (101.068, 124.471), (220.999, 274.343) and

(375.952, 472.481) with nearly equal peaks of first and second resonances. However
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Figure 5. Theoretically and numerically calculated a0(ω) represented

by continuous curve and painted circles respectively for a few values

of (a) Ω with q = 0.1 and d = 0.3 (b) d with Ω = 10 and q = 0.1.

(c-e) Theoretically calculated a0(ω) for a few values of q with Ω = 10

and d = 0.3. The simulation parameters are ω = ωp = ω0 = 1.0, β =

−1.0, γ = 1.0 and f = 0.05.

the position of the peaks is shifted further away from the origin as the value of Ω

increases. To examine the effect of damping d on the system’s response, we show

the dependence of the response amplitude a0(ω) on the amplitude g of the high-

frequency signal for three values of damping parameter d = (0.3, 0.5, 0.8) in Fig.5(b)

for Ω = 10, q = 0.1 and other parameters are stated as in Fig.5(a). The continuous

lines represent theoretical values while the painted lines represent the corresponding

numerical values of a0(ω). The effect of the damping parameter d on the response

curve is obvious. In Fig.5(b), we notice close agreement between theoretical a0(ω) and

numerically computed a0(ω). The maximum value of a0(ω) is reduced by increasing

the value of d. Then we analyze analytically the effect of q on VR. Figures 5(c-e)

shows the plot of a0(ω) for three values of q = (0.1, 0.3, 0.5) with Ω = 10, d = 0.3 and

other parameters are unchanged. From this figure, we clearly observe that the num-

ber of resonances increases as the value of q increases. For example, two resonances

occur for q = 0.1 whereas four and seven resonances occur for q = 0.3 and q = 0.5.

4.3. VR with Double-hump Double-well potential- (ω2
0
, β > 0, γ < 0, 4ω2

0
γ <

β2 < 16

3
ω2

0
γ): V (x) is a double-hump double-well potential (Fig.1j) for ω2

0
, β >

0, γ < 0, 4ω2
0
γ < β2 < 16

3
ω2

0
γ. For this type of potential, we investigate the effects

of different parameters Ω, q and d on the response amplitude a0(ω). First we analyze

the effect of Ω on a0(ω). We fix the values of the parameters in the system (Eq.2.3)

as β = 1, γ = −1, f = 0.05, d = 0.3, q = 0.3 and ω = ωp = ω0 = 1.0. Analytical
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Figure 6. (a) Theoretically and numerically calculated a0(ω) rep-

resented by continuous curve and painted circles respectively for a

few values of Ω with q = 0.3 and d = 0.3 (b) Theoretical response

amplitude a0(ω) for a few values of q with Ω = 15 and d = 0.3

and (c) Theoretically and numerically calculated a0(ω) represented

by continuous curve and painted circles respectively for a few val-

ues of d with Ω = 15 and q = 0.3. The simulation parameters are

ω = ωp = ω0 = 1.0, β = 1.0, γ = −1.0 and f = 0.05.

and numerical response curves for three values of ω = 10, 15 and 20 are presented in

Fig.6(a). Single resonance is observed for all the values of Ω. It also appears that

the resonance width expands with increasing the values of Ω. For Ω = 10, 15 and

20, resonances occur at g = 85.021, 188.651 and 322.772 respectively. The motion is

unbounded when g > 106.01 for Ω = 10, g > 237.07 for Ω = 15 and g > 389.18 for

Ω = 20 which is clearly seen in Fig.6(a). Next we consider the effect of q on VR.

Figure 6(b) shows the theoretical response amplitude a0(ω) as a function of g for a few

values of q = (0.1, 0.3, 0.5). In Fig.6(b), we notice that a single resonance with nearly

equal response amplitude a0(ω) is observed for all values of q. Figure 6(c) illustrates

the effect of damping parameter d on resonance. Maximum of the resonance gV R is

unchanged by the damping strength. However a0(ω) at the resonance decreases with

increase in d which is clearly seen in Fig.6(c).

The actual motions of the system (Eq.2.3) with double-hump double-well potential

(Fig.1j) is studied through the bifurcation diagram for the parametric choices con-

sidered in Fig.6. Figure 7 shows the bifurcation diagrams of the system (Eq.2.3)

with double-hump double-well potential. We restricted our analysis to the range

0 < g < 200. From Fig.7, period-T solution is found in the range g ∈ [0, 115.99] for

q = 0.1 (Fig.7(a)), g ∈ [0, 76.26] for q = 0.3 (Fig.7(b)) and g ∈ [0, 67.84] for q = 0.5

(Fig.7(c))). Chaotic motion and other periodic orbits are observed when g > 115.99

for q = 0.1, g > 76.26 for q = 0.3 and g > 67.84 for q = 0.5 respectively. From Fig.7,

we see that the range of periodic orbits decreases as q increases.
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Figure 7. Bifurcation diagrams showing period-doubling phenome-

non, chaotic dynamics and reverse period-doubling phenomenon for

a few values of q = (0.1, 0.3, 0.5). The values of x are collected at

t = n × 2π/ω, n = 1, 2, ..., 200. The values of the parameters are

ω = ωp = ω0 = 1.0, β = 1.0, γ = −1.0,Ω = 15, d = 0.3 and f = 0.05.

4.4. VR with Double-hump Double-well potential- (ω2
0
, β > 0, γ < 0, β2 =

16

3
ω2

0
γ): In this section, we consider the system (Eq.2.3) with the double-hump

double-well potential of the form in Fig.1(k) where ω2
0
, β > 0, γ < 0, β2 = 16

3
ω2

0
γ. We

begin our examination of the resonance phenomenon in the system by first considering

the effect of Ω. We fix the parameters values of the system as β = 1.0, γ = −1.9, q =
0.3, d = 0.3 and ω = ωp = ω0 = 1.0. As expected for this case, VR is observed as

shown in Fig.8(a). In fact, the results of the analysis for the system with Ω = 10, 15

and 20 in Fig.8(a) are consistent with both theoretical and numerical results. The

continuous lines are the response curves of theoretically computed a0(ω) values while

the painted lines represent corresponding numerical values. For Ω = 10 and 15,

single resonance occurs at g = 201.101 and g = 448.772. For Ω = 20, a0(ω) decreases

continuously when g increases, that is, no resonance occurs. The motion is unbounded

when g > 214.860 for Ω = 10 and when g > 479.047 for Ω = 15. Figure 8(b) shows

the theoretical response amplitude a0(ω) as a function of g for a few values of q.

When g < 160.671, the value of a0(ω) decreases continuously as g increases, and no

resonance is observed. A single resonance is observed for all values of q with equal

peaks when g > 160.671, which is clearly seen in Fig.8(b). Figure 8(c) illustrates

the effect of damping on resonance is unchanged by the damping strength. However,

a0(ω) at the resonance decreases with increase in d.

4.5. VR with Double-hump Double-well potential, (ω2
0
, β > 0, γ < 0, β2 >

16

3
ω2

0
γ): Finally, we consider the system (Eq.2.3) with the double-hump double-

well potential of the form in Fig.1(l) where ω2
0
, β > 0, γ < 0, β2 > 16

3
ω2

0
γ. We fix

β = 1.5, γ = −0.19, f = 0.05 and ω = ωp = ω0 = 1.0. For this potential form, we now
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Figure 8. (a)Theoretically and numerically calculated a0(ω) repre-

sented by continuous curve and painted circles respectively for a few

values of Ω with q = 0.3 and d = 0.3 (b) Theoretical response

amplitude a0(ω) for a few values of q with Ω = 10 and d = 0.3

and (c) Theoretically and numerically calculated a0(ω) represented

by continuous curve and painted circles respectively for a few val-

ues of d with Ω = 10 and q = 0.3. The simulation parameters are

ω = ωp = ω0 = 0.3, β = 1.0, γ = −1.9 and f = 0.05.

proceed to verify the existence of VR in the presence of biharmonic signal by varying

the parameters Ω, q and d. Figure 9(a) shows the dependence of response amplitude

a0(ω) on g for three values of Ω = 10, 15, 20 with d = 0.3 and q = 0.5. Theoretically

and numerically calculated a0(ω) represented by continuous curve and painted circles

respectively. Numerically computed a0(ω) is in well agreement with the theoretical

approximation. For Ω = 10, the response amplitude a0(ω) is found to be maximum

at g = 253.651. For Ω = 15 and 20 as g increases, a0(ω) decreases and resonance

is not observed which is clearly seen in Fig.9(a). The influence of q and d is shown

in Figs.9(b) and 9(c). In Fig.9(b), we have plotted the analytical results of a0(ω)

against g for three values of q = 0.1, 0.3 and 0.5. Single resonance is observed for

all values of q and gV R is unchanged when q increases from small value. In Fig.9(b),

no resonance occurs in the interval 0 < g < 227.13. Figure 9(c) shows the plot of

a0(ω) versus g for three values of d = 0.3, 0.5 and 0.8. The effect of damping on

resonance is unchanged by the damping strength. However, the response amplitude

a0(ω) decreases with increase in d.

5. Conclusion

We have analyzed the phenomenon of vibrational resonance (VR) in a parametri-

cally driven quintic oscillator with five cases of double-well potentials. Besides the
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Figure 9. (a)Theoretically and numerically calculated a0(ω) repre-

sented by continuous curve and painted circles respectively for a few

values of Ω with q = 0.5 and d = 0.3 (b) Theoretical response amplitude

a0(ω) for a few values of q with Ω = 10 and d = 0.3 and (c) Theoretical

response amplitude a0(ω) for a few values of d with Ω = 10 and q = 0.5.

The simulation parameters are ω = ωp = ω0 = 1.0, β = 1.5, γ = −0.19
and f = 0.05.

parametric excitation, the oscillator is subjected to two other drives, one with a low-

frequency (ω) that is equal to the frequency of the parametric drive (ωp) and the other

of a much higher frequency (Ω). Our main focus here is to analyze VR through the

periodic variation of in the natural frequency (ω0) of the oscillator with a frequency

corresponding to the lower frequency (ω). Using the flow equation approach, we

have derived a functional relation between the nonlinear response amplitude (a0(ω))

and the strength of the high-frequency drive (g). From the analytical expression of

(a0(ω)), we determined the number of resonances and the values of the control pa-

rameters, say, g or q or Ω at which resonance occurs. In the five cases of double-well

potential, when g is varied we found either no resonance or multiple resonances de-

pending on the values of the other parameters of the system. As g is varied we obtain

the following results. (i) Double or multiple resonances occur for a range of values

of parameters q, d and Ω in double-well cases of the system. (ii) In the system with

double-hump double-well potential cases, no resonance or a single resonance occurs

for a range of values of the parameters of the system q, d and Ω. By examining the

bifurcation diagram in Poincaré section and the phase space structures, the under-

lying dynamics associated with the phenomenon of VR is elucidated. We conclude

that, for the system with double-well potential cases, there are two distinct dynamical

mechanisms that can provide resonances, depending on the parameters of the system:

(i) a monotonic increase in the size of a chaotic attractor and (ii) bifurcation from a

periodic attractor to a chaotic attractor of larger period.
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