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ABSTRACT. The aim of this paper is to obtain common fixed point results for a pair of condensing

and weakly isotone self-mappings on ordered Banach spaces by the technique of enrichment. We

present a new generalization of Darbo fixed point theorem in the setting of Banach spaces. These

results unify and complement various known results in the existing literature on common fixed

point theory. Some examples are given to support the concepts and results presented in this paper.

Existence of the solution of two nonlinear differential equations is proved as an application of the

result presented herein.
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1. Introduction and Preliminaries

The notations N and R will denote the set of all natural numbers and the set of

all real numbers, respectively.

Suppose that X is a real Banach space equipped with the norm ∥·∥ . If A is a subset

of X, then convex hull of A and the closed convex hull of A are denoted by coA and

coA, respectively. Denote by Γ(X), the family of nonempty bounded subsets of X

and by Λ(X), the subfamily consisting of all relatively compact subsets of X. Let A

and B be two sets in X. Then

A+B = {a+ b : a ∈ A and b ∈ B} and

λA = {λa : a ∈ A}, where λ ∈ R .
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Let A be any nonempty subset of X. Define

diam(A) = sup
x,y∈A

∥x− y∥ .

A set A is bounded if diam(A) is finite.

Let A be any nonempty bounded subset of X and ϵ > 0.

A collection C = {A1, A2, A3, ..., An} is called a finite ϵ-covering of A if

A ⊆ ∪n
k=1Ak

and diam(Ak) < ϵ for each k ∈ {1, 2, 3, ..., n}.
A collection B = {B1, B2, B3, ..., Bn} of balls is called a finite ϵ-ball covering of A if

A ⊆ ∪n
k=1Bk

and radius of Bk is strictly less than ϵ for each k ∈ {1, 2, 3, ..., n}.
Kuratowski [30] introduced the notion of a measure of noncompactness (MNC). This

concept is being applied in the study of existence of solutions for ordinary and partial

differential equations, integral, and integro-differential equations.

Measure of noncompactness introduced and studied in [30] is given below.

Definition 1.1. [32] The Kuratowski measure of noncompactness of a nonempty and

bounded subset A of X, denoted by α(A), is defined as

inf
C

ϵ

where C is ϵ-covering of A.

In certain cases, finding α(A) with the help of above definition is not straightforward.

Therefore, another measure of noncompactness known as the ball measure of non-

compactness, which is more applicable in many cases was introduced and studied

by Goldenštein, Gohberg and Markus (see, [26, 27, 32] and references mentioned

therein).

Definition 1.2. [32] The ball measure of noncompactness of a nonempty and bounded

subset A of X, denoted by Ξ(A), is defined as

inf
B

ϵ

where B is ϵ-ball covering of A.

These measures share several useful properties [13]. In many classical texts, this

concept has been defined axiomatically to unify some of important common properties

of the measures α and Ξ.

In this direction, Banaś, and Goebel [13] gave the following definition (see also, [6])

which requires that kernal of the measure of noncompactness is nonempty.
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Definition 1.3. [13] A mapping µ : Γ(X) → [0,∞) is said to be measure of noncom-

pactness if for any A,B ∈ Γ(X), following conditions are satisfied:

1. The family Π = Kerµ = {A ∈ Γ(X) : µ(A) = 0} is nonempty and Kerµ ⊂
Λ(X).

2. A ⊂ B implies that µ(A) ≤ µ(B).

3. µ(A) = µ(A).

4. µ(coA) = µ(A).

5. µ(λA+ (1− λ)B) ≤ λµ(A) + (1− λ)µ(B), λ ∈ [0, 1].

6. If (An) is a sequence of nonincreasing closed sets in Γ(X) such that limn→∞ µ(An) =

0, then

(1.1) lim
n→∞

An = ∩∞
k=1Ak

is nonempty.

We now give some well known definitions needed in the sequel.

Definition 1.4. [9] Let C be a nonempty subset of a Banach space X, µ a measure

of noncompactness on X and T : C → C.

(i) Given k ∈ [0, 1), the mapping T is called µ-k-set-contraction if

(1.2) µ(T (A)) ≤ kµ(A), ∀A ∈ Γ(C).

(ii) The mapping T is called µ-condensing if

(1.3) µ(T (A)) < µ(A),

for any nonempty bounded subset A of C with µ(A) > 0.

(iii) The mapping T is called k-contraction if the inequality

(1.4) ||Tx− Ty|| ≤ k||x− y||,

holds for every x, y ∈ C.

Now, we state the following important fixed point results in the setting of Banach

space.

Theorem 1.5. (Banach [15]) Let C be nonempty closed subset of Banach space X.

If T : C → C is k-contraction mapping, then T has a unique fixed point in C.

Theorem 1.6. (Schauder [10]) Let C be nonempty closed bounded and convex subset

of Banach space X. If T : C → C is continuous and compact map, then T has at

least one fixed point in C.



FIXED POINTS OF ENRICHED CONDENSING OPERATORS 317

The concept of measure of noncompactness has played a basic role in nonlinear

functional analysis, especially in metric and topological fixed point theory (see e.g.

[3, 5, 6, 7, 8, 14] and references therein).

In 1955, Darbo [24] employed the concept of measure of noncompactness to prove a

fixed point theorem which generalizes classical Schauder’s fixed point theorem [22]

and a special variant of Banach contraction principle [31].

The Darbo theorem is stated as follows.

Theorem 1.7. (Darbo [24]) Let C be a nonempty closed bounded and convex subset

of a Banach space X. If T : C → C is continuous and µ-k-set-contraction mapping,

then T has at least one fixed point in C.

Note that µ : Γ(X) → [0,∞) defied by µ(A) = diamA is a classical example

of measure of noncompactness in Banach space X ([13]) called diameter measure.

Employing this measure of noncompactness, we can easily see that the Darbo fixed

point theorem is a generalization of the Banach fixed point theorem.

In this paper, we use the following definition of measure of noncompactness due

to Dhage [25].

Definition 1.8. [25] A mapping Θ : Γ(X) → [0,∞) is said to be a measure of

noncompactness, if for any A,B ∈ Γ(X), following conditions are satisfied:

1. KerΘ = Λ(X), and

2. Θ(coA) = Θ(coA) = Θ(A).

3. A ⊂ B ⇒ Θ(A) ≤ Θ(B),

4. Θ({A ∪B}) = max{Θ(A),Θ(B)}, and
5. Θ(λA) = |λ|Θ(A).

Remark 1.9. Note that, the Kuratowski’s measure α and the ball measure Ξ de-

fined previously are the measure of noncompactness where Π coincides with Λ(X).

The simplest example of measure of noncompactness with Π ̸= Λ(X) is the diamter

measure. Clearly, the kernal of a diameter measure is the family of all one-point sets.

For more properties of the measure of noncompactness, we refer to [9, 12, 13, 21,

30, 32].

Consistent with [9] and [24], the following definitions and results will be needed

in the sequel.

A cone C is nonempty closed convex subset of X with (i) λC ⊆ C (λ ≥ 0), and

(ii) C ∩ (−C) = {0}. Then the relation x ≤ y if and only if y − x ∈ C defines the

partial ordering in X.

Let X be a real ordered Banach space ordered by a cone C.
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Definition 1.10. [9] Let M be a nonempty subset of an ordered Banach space (X,

≤). A mapping T : M → M is said to be isotone increasing if x, y ∈ M with x ≤ y

implies Tx ≤ Ty.

Definition 1.11. [9] Let M be a nonempty subset of an ordered Banach space (X,

≤). Two mappings S, T : M → M are said to be:

(a) weakly isotone increasing if Sx ≤ TSx and Tx ≤ STx hold for all x ∈ M.

(b) weakly isotone decreasing if Tx ≥ STx and Sx ≥ TSx hold for all x ∈ M.

The mappings S and T are said to be weakly isotone if they are either weakly isotone

increasing or weakly isotone decreasing.

The problem of existence of common fixed points of a pair of nonlinear mappings

has become an active area of research. By using the MNC, Dhage [25] proved some

common fixed point results for a pair of condensing mappings in ordered Banach

spaces and obtained some interesting applications in establishing the existence of

solution of the system of differential and integral equations.

The fixed point theorem in [25] reads as follows:

Theorem 1.12. [25] Let E be a nonempty closed bounded and convex subset of ordered

Banach space X and S, T : E → E two continuous and condensing mappings. If S

and T are weakly isotone, then they have a common fixed point.

On the other hands, the technique of enriching contractive mappings has its root

in the concept of asymptotic regularity in connection with the study of fixed points of

nonexpansive mappings [23]. The same property was used in 1955 by Krasnoselskij

[29] to prove the following fact:

If K is a compact convex subset of a uniformly convex Banach space and T : K → K

is a nonexpansive, then for any x0 ∈ K, the sequence

(1.5) xn+1 =
1

2
(xn + Txn), n ≥ 0,

converges to fixed point of T. Note that, an averaged mapping (a term coined in [11])

is mapping of the form Tλ = (1 − λ)I + λT, where λ ∈ [0, 1] and I is the identity

operator.

Krasnoselskij used the fact that nonexpansive mapping T which in general, is not an

asymptotically regular, the averaged mapping T 1
2
involved in (1.5) is asymptotically

regular.

Therefore, an averaged operator Tλ enriched the class of nonexpansive mappings with

respect to the asymptotic regularity. This infect suggests the way to enrich the classes

of contractive mappings in metrical fixed point theory by imposing the contractive

condition on Tλ instead of T.

In this way, the following classes of mappings were introduced and studied: enriched
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contractions and enriched ϕ-contractions [17], modified Kannan enriched contraction

pair [1], enriched cyclic contraction [2], enriched Kannan contractions [18], enriched

Chatterjea mappings [19], enriched nonexpansive mappings in Hilbert spaces [16],

enriched multivalued contractions [4], enriched Ćirić-Reich-Rus contractions [20], etc.

For examples, Abbas et al. [4] proved fixed point theorem by imposing the condition

that Tλ-orbital subset is a complete subset, (see, Theorem 3 of [4]). Similarly, in

[28], Górnicki and Bisht, considered the enriched Ćirić-Reich-Rus contractions and

proved fixed point theorem by imposing the condition Tλ is asmymptotically regular

mapping, (see, Theorem 3.1 of [28]).

A mapping T : X → X is called an enriched contraction or (b, θ)-enriched con-

traction [17] if there exist two constants, b ∈ [0,∞) and θ ∈ [0, b + 1) such that for

all x, y ∈ X,

(1.6) ∥b(x− y) + Tx− Ty∥ ≤ θ ∥x− y∥ .

As shown in [17], several well-known contractive conditions existing in the literature

on fixed point theory imply the (b, θ)-enriched contraction.

In particular, if b = 0 and θ = c then T called a c-contraction. It was proved that any

enriched contraction mapping defined on a Banach space has a unique fixed point,

which can be approximated by means of the Krasnoselskij iterative scheme.

Similar result for enriched nonexpansive mapping is obtained in [16].

A mapping T : X → X is called an enriched nonexpansive or b-enriched nonexpansive

if there exists b ∈ [0,∞) such that for all x, y ∈ X,

(1.7) ∥b(x− y) + Tx− Ty∥ < (b+ 1) ∥x− y∥ .

We now give an example of the pair of mappings which are not weakly isotone, but

the corresponding averaged operators are weakly isotone, for some λ ∈ [0, 1].

The example of this pair is as follows.

Example 1.13. Let X = R be endowed with the usual norm. Define mappings

S, T : X → X by

Sx = −x, and

Tx = 2x2 − x.

Note that T and S are not weakly isotone decreasing on X. Indeed, x = −1/2 gives

that 1/2 = Sx and STx = −1.

On the other hands, for λ = 1
2
, S 1

2
(x) = 0, for all x ∈ R and T 1

2
(x) = x2, for all x ∈ R.

It is easy to check that the pair T 1
2
and S 1

2
are weakly isotone decreasing on X.

Motivated and inspired by the work of Berinde and Păcurar [16], Abbas et al.

[4] and Górnicki and Bisht [28], we aim to enrich the class of mappings satisfying
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Theorem 1.12 with respect to the weakly isotone property. Moreover, we extends and

generalizes Darbo’s fixed point theorem by using the concept of enriched contraction

(1.6).

2. Two new class of operator on a normed space

We introduce the notions of enriched condensing contraction and enriched con-

densing operators as follows.

Definition 2.1. Let C be nonempty subset of normed space (X, ∥·∥) and Ω be any

an arbitrary measure of noncompactness in X. A mapping T : C → C is called:

(i) Enriched condensing contraction operator if there exists b ∈ [0,∞) and θ ∈
[0, b + 1) such that for any nonempty bounded subset A of C with Ω(A) > 0,

T (A) and bA+ T (A) are bounded, and the following holds:

(2.1) Ω(bA+ T (A)) ≤ θΩ(A).

(ii) Enriched condensing operator if for any nonempty bounded subset A of C with

Ω(A) > 0, T (A) and bA+T (A) are bounded, and the following inequality holds:

(2.2) Ω(bA+ T (A)) < (b+ 1)Ω(A).

To indicate the measure of noncompactness Ω and constant involved in (2.1) and

(2.2), we also call T a (Ω, b, θ)-set enriched contraction and (Ω, b)-enriched condensing,

respectively.

Example 2.2. Any Ω-k-set-contraction (1.2) mapping T is (0, k)-set enriched con-

traction, that is, T satisfies (2.1) with b = 0 and θ = k ∈ [0, 1).

Every Ω-condensing (1.3) mapping T is (Ω, 0)-enriched condensing.

We now give an example of an enriched condensing contraction operator, which

is not a Ω-k-set-contraction.

Example 2.3. Let C = [0, 1] be endowed with usual norm. Define Ω(A) = diamA,

for any closed subset of C. Let T : C → C be defined by Tx = 1− x. Note that T is

not a k-set-contraction but T is an (1, 1)-set enriched contraction. Indeed, if T would

be a k-set-contraction then, by (1.2), there would exist k ∈ [0, 1) such that

Ω(T (A)) = sup{∥u− v∥ : u, v ∈ T (A)}

= sup{∥(1− x)− (1− y)∥ : x, y ∈ A}

= sup{∥x− y∥ : x, y ∈ A}

≤ kΩ(A) = k sup{∥x− y∥ : x, y ∈ A},
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a contradiction to the fact that k ∈ [0, 1).

On the other hand, for b = θ = 1 the enriched condensing contraction operator (2.1)

satisfies the following condition:

Ω(A+ T (A)) = Ω

((
1

1/2
− 1

)
A+ TA

)
≤ Ω(A)

which can be written in an equivalent form as follows:

(2.3) Ω

(
T 1

2
(A)

)
≤ 1

2
Ω(A),

where A is any closed subset of C and T 1
2
(x) = 1

2
, for all x ∈ [0, 1]. The above

inequality (2.3) is valid because

Ω

(
T 1

2
(A)

)
= sup{∥x− y∥ , x, y ∈ T 1

2
(A)} = 0 ≤ 1

2
Ω(A).

Common fixed point in ordered Banach space

Throughout this section, (X, ∥·∥) denotes an ordered Banach space equipped

with order relation ≤ induced by the cone C in X and E denote a nonempty closed

bounded and convex subset of X. Furthermore, we use Θ as the measure of noncom-

pactness in X in this section, as described in definition 1.8.

Now, we state one of the main results in this article, which extends and generalizes

Theorem 1.12 by using the technique of enriching the existing class of operators.

Theorem 2.4. Let S, T : E → E be two continuous operators. Assume that

1. S is (Ω, b1)-enriched condensing

2. T is (Ω, b2)-enriched condensing

3. Sλ1 , Tλ2 are weakly isotone.

Then S and T have common fixed point, where λi =
1

bi+1
, i = 1, 2.

Proof. Given that S and T are (Ω, b1) and (Ω, b2)-enriched condensing operators,

respectively. Take λi =
1

bi+1
, i = 1, 2. In this case, (2.2) becomes

Θ

((
1

λ2

− 1

)
A+ T (A)

)
< (b2 + 1)Θ(A),

and hence

Θ

(
(1− λ2)A+ λ2T (A)

λ2

)
< (b2 + 1)Θ(A).

Equivalently, we get that

(2.4) Θ(Tλ2(A)) < Θ(A).

Similarly, we have

(2.5) Θ(Sλ1(A)) < Θ(A).
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Let x be an arbitrary but fixed element in X. Consider the sequence {xn} in E

defined by

(2.6) x0 = x, x2n+1 = Sλ1x2n, x2n+2 = Tλ2x2n+1, n = 0, 1, 2, ..

Suppose that the mappings Sλ1 , Tλ2 are weakly isotone increasing on E. Then it

follows from (2.6) that

(2.7) x1 ≤ x2 ≤ x3 ≤ . . . ≤ xn ≤ . . .

Let A = {x1, x2, . . . , xn, . . . }. Then,

A = {x1} ∪ {x3, x5, . . . , x2n+1, . . . } ∪ {x2, x4, . . . , x2n, . . . }

= {x1} ∪ Sλ1(A1) ∪ Tλ2(A2),

where A1 = {x2, x4, . . . , x2n, . . . } ⊂ A and A2 = {x3, x5, . . . , x2n+1, . . . } ⊂ A. Clearly

A ⊂ E and hence A is bounded.

We now prove that A is precompact. Assume on the contrary that A is not precom-

pact, then by the definition of Θ and (2.5) and (2.4), we get

Θ(A) = Θ
(
{x1} ∪ Sλ1(A1) ∪ Tλ2(A2)

)
= max{Sλ1(A1), Tλ2(A2)}

< Θ(A),

a contradiction, and hence A is precompact and Ā is compact. In view of (2.7), the

sequence {xn} is monotone increasing in Ā. Therefore, there is a unique limit x∗ in Ā

such that limn→∞ xn = x∗. Again every subsequence of the sequence {xn} converges

to the same limit point x∗ ∈ E. Thus we have

lim
n→∞

x2n+1 = x∗ and lim
n→∞

x2n+2 = x∗.

By the continuity of Sλ1 and Tλ2 , we obtain

x∗ = lim
n→∞

x2n+1 = lim
n→∞

Sλ1x2n = Sλ1( lim
n→∞

x2n) = Sλ1x
∗ = Sx∗,

and

x∗ = lim
n→∞

x2n+2 = lim
n→∞

Tλ2x2n+1 = Tλ2( lim
n→∞

x2n+1) = Tλ1x
∗ = Tx∗.

Similarly, if we assume that Sλ1 and Tλ2 are weakly isotone decreasing on E, then it

can be proved that the sequence {xn} is monotone decreasing and converges to the

unique limit point y∗ ∈ E, which is a common fixed point of S and T .

If we put b1 = b2 = 0 in Theorem 2.4, we obtain the Theorem 1.12.

Corollary 2.5. [25] Let S, T : E → E be two continuous and Ω-condensing operators.

Further if S and T are weakly isotone, then they have a common fixed point.

Theorem 2.6. Let S, T : E → E be two continuous operators. Assume that
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1. S is (Ω, b1)-enriched condensing

2. T is (Ω, b2)-enriched condensing

3. Sλ1 , Tλ2 are isotone increasing

4. Sλ1 and Tλ2 are commutative, that is,

Sλ1(Tλ2(x)) = Tλ2(Sλ1(x)) ∀ x ∈ E,

5. x ≤ Sλ1(x) and x ≤ Tλ2(x) for some x ∈ E.

Then S and T have common fixed point, where λi =
1

bi+1
, i = 1, 2.

Proof. Following arguments similar to those given in the proof of Theorem 2.4, define

a sequence {xn} in E by (2.6). Then in view of the hypothesis (3)-(4), it follows that

x0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ . . .

The rest of the proof follows using similar arguments given in the proof of Theorem

2.4.

If we put b1 = b2 = 0 in Theorem 2.6, we obtain Theorem 2.2 of [25].

Corollary 2.7. [25] Let S, T : E → E be two continuous and Ω-condensing operators.

If

1. S and T are isotone mappings

2. S(T (x)) = T (S(x)) for all x ∈ E

3. x ≤ Sx and x ≤ Tx for some x ∈ E.

Then S and T have common fixed point.

By applying Theorem 2.4 to a pair of mappings on Banach spaces, we obtain

some results which guarantees the existence of the unique common fixed point of two

operators. It is worth mentioning that these results do not require the compactness

type conditions, however the mappings under consideration satisfy certain contraction

type conditions.

For this, we start with the following proposition.

Lemma 2.8. Every (b, θ)-enriched contraction T : E → E is a (Ω, b, θ)-set con-

traction with respect to the Kuratowski measure of noncompactness and hence (Ω, b)-

enriched nonexpansive condensing.

Proof. Let us denote λ = 1
b+1

. Obviously λ ∈ (0, 1] and the enriched contractive

conditions (1.6) becomes

(2.8) ∥Tλx− Tλy∥ ≤ d ∥x− y∥ ∀ x, y ∈ E,

where d = θλ. As θ ∈ [0, b + 1), d ∈ [0, 1) and hence by (2.8) Tλ is (0, d)-enriched

contraction.
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On the other hand, (Θ, b, θ)-set contraction condition (1.2) is equivalent to the fol-

lowing inequality for λ = 1
b+1

.

(2.9) Θ(Tλ(A)) ≤ dΘ(A).

By (2.9), it follows that Tλ is (Ω, b, θ)-set contraction.

It follows from [25] that every (0, d)-enriched contraction is a (Ω, 0, d)-set contraction

with respect to the Kuratowski measure of noncompactness. Due to equivalences of

(2.8) and (2.9) with (1.6) and (1.2), respectively, we note that every (Ω, b, θ)-enriched

contraction is a (Ω, b, θ)-set contraction with respect to the Kuratowski measure of

noncompactness. Similarly, it can be shown that T is (Ω, b)-enriched nonexpansive

condensing operator.

Theorem 2.9. If S, T : E → E satisfy the following conditions;

1. T is (b1, θ)-enriched contraction,

2. S is continuous and (Ω, b2)-enriched condensing,

3. Tλ1 , Sλ2 are weakly isotone.

Then S and T have unique common fixed point which is the unique fixed point of

T, where λi =
1

bi+1
, i = 1, 2.

Proof. It follows from Lemma 2.8 that T is a (Ω, b1)-enriched condensing with respect

to the Kuratowski measure of noncompactness Θ. Since T is (b1, θ)-enriched contrac-

tion, it is continuous on E.

Thus all the conditions of Theorem 2.4 are fulfilled and hence S and T have a common

fixed point. It follows from [17] that T cannot have more than one fixed points. This

completes the proof.

Corollary 2.10. Let S, T : E → E be two mappings satisfying

1. T is (b1, θ1)-enriched contraction,

2. S is continuous and (Ω, b2, θ2)-set contraction,

3. Tλ1 , Sλ2 are weakly isotone.

Then S and T have unique common fixed point which is the unique fixed point of

T, where λi =
1

bi+1
, i = 1, 2.

Proof. The proof follows using the arguments similar to those given in the proof of

Theorem 2.9.

3. A new generalization of Darbo’s theorem in Banach space

Now we state one of the main result in this article which extends and general-

izes Darbo’s fixed point theorem by using the concept of enriched contraction (1.6).

Throughout this section, X denotes a real Banach space equipped with the norm ∥·∥ .
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Theorem 3.1. Let C be a nonempty closed bounded and convex subset of a Banach

space X and T : C → C a continuous and (µ, b, θ)-set enriched contraction. Then T

has at least one fixed point.

Proof. Let us denote λ = 1
b+1

. Clearly 0 < λ < 1. Note that for any x, y ∈ C, (2.1)

becomes:

(3.1) µ(Tλ(A)) ≤ kµ(T (A)),

where k = λθ. Clearly, k ∈ [0, 1).

We define a sequence Cn inductively by letting C0 = C and Cn = co(TλCn−1), n ≥ 1.

Note that

TλC0 = TλC ⊆ C = C0,

C1 = co(TλC0) ⊆ C = C0.

Continuing this process, we obtain that

C0 ⊇ C1 ⊇ C2 ⊇ . . . .

If there exists an integer N ≥ 0 such that µ(CN) = 0, then CN is relatively compact.

Also, we have

TλCN ⊆ co(TλCN) = CN+1 ⊆ CN .

By Theorem 1.6 , T has a fixed point.

Assume that µ(Cn) ̸= 0 for n ≥ 0. By (3.1), we have

(3.2) µ(CN+1) = µ(co(TλCN)) = µ(TλCN) ≤ kµ(TλCN) < µ(TλCN),

which implies that µ(CN) is a positive decreasing sequence of real numbers. Thus,

there is an s ≥ 0 so that µ(CN) → s as n → ∞. We now show that s = 0. Assume

on contrary that s ̸= 0. From (3.2), we have

µ(CN+1)

µ(CN)
≤ k < 1,

which yields, k = 1 as n → ∞ and hence s = 0. Since Cn+1 ⊆ Cn and TλCn ⊆ Cn for

all n ≥ 1. Then from (1.1), each Cn is a nonempty closed convex set, invariant under

Tλ and belongs to Kerµ. The result now follows from Theorem 1.6 .

As a corollary of our result, we can obtain Darbo fixed point theorem, in the

setting of a Banach space.

Corollary 3.2. (Darbo [24]) Let C be a nonempty close bounded and convex subset

of a Banach space X. If T : C → C is continuous and µ-k-set-contraction mapping,

then T has at least one fixed point in C.

By Theorem 3.1 we obtain Theorem 2.4 of [17].
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Corollary 3.3. [17] Let C be a nonempty closed bounded and convex subset of a

Banach space (X, ∥·∥) and T : C → C a (b, θ)-enriched contraction. Then T has a

unique fixed point.

Proof. Define µ(A) = diam(A) for any closed and convex subset of C. Take λ = 1
b+1

.

Clearly, 0 < λ < 1. Note that for any x, y ∈ C, (1.6) becomes:

(3.3) ∥Tλx− Tλy∥ ≤ θλ ∥x− y∥ .

By using (3.3), we have

Ω(Tλ(A)) = sup{∥Tλx− Tλy∥ : x, y ∈ A}

≤ θλ sup{∥x− y∥ : x, y ∈ A}

= θλΩ(A).

This implies that

Ω(Tλ(A)) ≤ θλΩ(A)

Equivalently, we have

Ω(bA+ T (A)) ≤ θΩ(A).

The result now follows from Theorem 3.1.

4. Application to differential equations

As an application of the result obtained in the above section, we prove the exis-

tence of common solutions of nonlinear differential equations under certain appropri-

ate conditions.

First, we recall the following concept.

Suppose that I = [t0, t0 + 1] is interval for some t0 ∈ R. Let X be the real Banach

space equipped with the norm ∥·∥X and an order relation ≤ induced by the cone K

in X. Denote by Θ, the Kurastowski measure of noncompactness in X.

Consider the system of nonlinear differential equations with the same initial condition

(4.1)

 x
′
= f(t, x), t ∈ I,

x(t0) = x0 ∈ X

and

(4.2)

 x
′
= g(t, x), t ∈ I,

x(t0) = x0 ∈ X,

where f, g : I ×X → X are continuous functions. Denote by Y = C(I,X), the set of

all continuous functions on the interval endowed with the norm

(4.3) ∥x∥Y = sup
t∈I

∥x(t)∥X .
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We define an order relation ≤ in Y by the cone K in C(I,X) given by

(4.4) K = {x ∈ C(I,X) : x(t) ∈ K for all t ∈ I}.

Clearly, C(I,X) with the norm ∥·∥Y and order relation ≤ is an ordered Banach space.

Let B ⊂ C(I,X), then

B(t) = {z(t) : z ∈ B} ⊂ X and B(I) = ∪t∈IB(t).

We need the following technical lemma.

Lemma 4.1. [13] For any bounded and equicontinuous set B in C(I,X), we have

1. Θ
( ∫ t

t0
B(s)ds

)
≤

∫ t

t0
Θ
(
B(s)

)
, t ∈ I, and

2. Θ(B) = maxt∈I Θ
(
B(t)

)
.

Let us assume that

(A1) The function f and g are bounded on I ×X with bound 1.

(A2) The function f and g are uniformly continuous on I ×X.

(A3) For t ∈ I,

(4.5) Θ
(
f(t, B)

)
< 4Θ(B)

and

(4.6) Θ
(
g(t, B)

)
< 4Θ(B),

for any bounded set B ⊂ X.

(A4) The function f(t, ·) and g(t, ·) are nondecreasing on X for each t ∈ I.

(A5) The function f(t, x) ≤ g(t, f(t, x)) and g(t, x) ≤ f(t, g(t, x)) for all (t, x) ∈ I×X.

(A6) f(t, x(t)) ≤ x0 +
∫ t

t0
f(τ, x(τ))dτ and g(t, x(t)) ≤ x0 +

∫ t

t0
g(τ, x(τ))dτ for all

(t, x) ∈ I × C(I,X) and for a fixed element x0 ∈ X given in (4.1) and (4.2).

Theorem 4.2. Assume that (A1)-(A6) hold, then the differential equations (4.1) and

(4.2) have a common solution.

Proof. Define a subset E of the ordered Banach space C(I,X) by

(4.7) E = {x ∈ C(I,X) : |x(t)− x(s)| ≤ |t− s| and x(t0) = x0}.

Clearly, E is closed bounded, convex and equi-continuous set in C(I,X). Note that

the differential equations (4.1) and (4.2) are equivalent to the integral equations

(4.8) x(t) = x0 +

∫ t

t0

f(s, x(s))ds, t ∈ I,

and

(4.9) x(t) = x0 +

∫ t

t0

g(s, x(s))ds, t ∈ I,
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respectively.

Define the operators S and T on E by

(4.10) Sx(t) = 2
(
x0 +

∫ t

t0

f(s, x(s))ds
)
− x(t), t ∈ I,

(4.11) Tx(t) = 2
(
x0 +

∫ t

t0

g(s, x(s))ds
)
− x(t), t ∈ I.

If b1 = b2 = 1, then λ1 = λ2 =
1
2
gives that

(4.12) S 1
2
x(t) = x0 +

∫ t

t0

f(s, x(s))ds, t ∈ I,

and

(4.13) T 1
2
x(t) = x0 +

∫ t

t0

g(s, x(s))ds, t ∈ I.

It is straightforward to check that S 1
2
and T 1

2
are weakly isotone increasing on E.

Note that for any x ∈ E,

S 1
2
x(t) = x0 +

∫ t

t0

f(s, x(s))ds

≤ x0 +

∫ t

t0

g
(
s, f(s, x(s))

)
ds

≤ x0 +

∫ t

t0

g

(
s, x0 +

∫ s

t0

f(τ, x(τ))dτ

)
ds

= x0 +

∫ t

t0

g
(
s, S 1

2
x(s)

)
ds

= T 1
2
S 1

2
x(t)

for all t ∈ I, that is, S 1
2
x ≤ T 1

2
S 1

2
x for all x ∈ E. Similarly, we have T 1

2
x ≤ S 1

2
T 1

2
x for

all x ∈ E.

Note that S and T are 1-enriched condensing operators on E with respect to the

measure of noncompactness Θ in Y defined by

Θ(B) = max
t∈I

Θ(B(t)),
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where B is a bounded set in Y.

Now for any bounded set B in E, from Lemma 4.1, we have

Θ

(
S 1

2

(
B(t)

))
≤

∫ t

t0

Θ
(
f(s, B(s))

)
ds+Θ

(
{x0}

)
(
Since Θ(A+B) ≤ Θ(A) + Θ(B)

)
≤

∫ t

t0

Θ
(
f(s, B(s))

)
ds

< 4

∫ t

t0

Θ(B(s))ds

≤ 4Θ(B).(4.14)

Taking maximum over t in (4.14), we obtain that

(4.15) Θ

(
S 1

2
B

)
< 4Θ(B) if Θ(B) > 0,

equivalently,

(4.16) Θ
(
B + S(B)

)
< 2Θ(B) if Θ(B) > 0.

This shows that S is (Θ, 1)-enriched condensing operator on E. Also, T is a (Θ, 1)-

enriched condensing operator on E. Obviously, S and T are continuous. Thus all the

condition of Theorem 2.4 are satisfied and hence the differential equations (4.1) and

(4.2) have a common solution in E. This complete the proof.

5. Conclusions

1. We introduced the classes of enriched condensing contraction operators and en-

riched condensing operators that include k-set contractions as well as condensing

operators as particular cases.

2. We present examples to show that the class of enriched condensing contraction

operators strictly includes the k-set contractions.

3. We obtain Theorem 2.4 which enrich the class of mappings satisfying Theorem

1.12 with respect to the weakly isotone property.

4. We obtain Theorem 3.1, which extends the Darbo’s fixed point theorem and

(Theorem 2.4, [17]).

5. As an application of our result (Theorem 2.4), the existence of common the

solution to the problem of differential equation (Theorem 4.2) is presented.
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[28] J. Górnicki and R.K. Bisht, Around averaged mappings, Journal of Fixed Point Theory and

Applications, 2021. https://doi.org/10.1007/s11784-021-00884-y.

[29] M.A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat.

Nauk, 10:123–127, 1955.

[30] C. Kuratowski, Sur les complete, Fund. Math, 15:301–309, 1930.

[31] V. Parvaneh, M. Khorshidi, M. De La Sen, H. Isik and M. Mursaleen, Measure of noncom-

pactness and a generalized Darbo’s fixed point theorem and its applications to a system of

integral equations, Adv. Differ. Equ., 243: 2020.
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