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ABSTRACT. In this study, we derive a Galerkin finite element scheme for approximating the

evolutionary Stokes Equations under magnetic effects which are governing a flow dynamics in a

doubly driven cavity. The stable finite element numerical scheme is applied to trace the physics

associated with the complex flow dynamics under the different MHD forces. The flow pattern is

traced for different Hartmann and Reynolds Numbers and the obtained results are discussed in

detail.

AMS (MOS) Subject Classification. 76D07, 65K15, 65M60.

Key Words and Phrases. Stokes MHD, Inclination angle, Reynolds number, Hartmann number.

1. INTRODUCTION

An essential fluid mechanical system, the lid-driven cavity serves as a standard

for evaluating numerical approaches and for researching the fundamentals of incom-

pressible flows in confined volumes that are propelled by the tangential motion of

walls. It is well-known how important lid-driven cavity issues are for academic study.

Besides the fundamental interest, the study of the lid-driven cavity has much prac-

tical importance such as short-dwell coating [1], transport processes in lakes can be

studied by heating the side wall of cavity [2] and drug-reducing rib-lets [3-4]. In sin-

gle lid-driven rectangular domains with various aspect ratios, researchers have been

examining Newtonian [5-8] and non-Newtonian [9-11] fluid flow mechanics. In or-

der to find solutions for higher Reynolds numbers and mesh refinements, Ghia et al.

[12] examined the use of the multi-grid approach in the solution of the Navier-Stokes

equation.

The square cavity powered by a double lid plays an important part in regulating

the flow phenomenon. It is also useful in the mechanical and design fields. The

double lid-driven cavity problem has attracted a lot of interest from scientists and
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researchers in recent years because of its straightforward geometrical settings with

all fluid mechanical applications, including cooling of electronic devices, drying tools,

covering, softening processes, and so forth. Kuhlmann et al. [13] have extended the

study of the Newtonian fluid flow problem in two-sided lid-driven rectangular domains

for the first time in the literature. The authors have numerically and experimentally

demonstrated the appearance of non-unique solutions in a non-square domain with

two parallel walls moving at the same speeds but in the opposite direction from

one another. Albensoeder et al. [14] have described several phases of Newtonian fluid

flow solutions with symmetric and asymmetric main vortices in a rectangular domain.

Blohm and Kuhlmann [15] looked at cellular instability in more detail. Later, using a

variety of numerical techniques, Perumal and Dass [16-18], K:-T: Chen [19], Arun and

Satheesh [20], and Caduo et al. [21] studied these characteristics for the Newtonian

fluid flowing in two-sided lid-driven rectangular cavity issues. The time-dependent

property of the Newtonian fluid flow solutions in rectangular domains driven by a

two-sided lid has been studied by Hammami et al. [22].

Another active area of today’s engineering applications is called magnetohydro-

dynamics (MHD), which deals with the interaction of magnetic fields with electrically

conducting fluids. The literature has a strong foundation for MHD-based research,

and the chemical, biological, medical, Bubble levitation, MHD pipe flows, and other

applications are examples of MHD pipe flows [23-26]. S. Ganesh and S. Krishnambal

[27] studied the Stokes Flow of a Viscous Fluid in an Unsteady Magnetohydrody-

namic field Between Two Parallel Porous Plates. A mathematical analysis of laminar

flow between two parallel porous plates with a linked magnetic field was published by

Terrill and Shrestha [28]. Pirmohammadi and Ghassemi [29] investigated the impact

of a magnetic field on convective heat transport. They discovered that the convection

heat transfer decreases for a given inclination angle as the Hartmann number (Ha)

rises. Transient MHD mixed convection flow in a lid-driven cavity with a heated wavy

wall is discussed by [30].

In a single lid-driven cavity and backward-facing step channel, the MHD Stokes

flow equations are solved in the presence of a uniform magnetic field with various

directions studied by Merve Gürbüz and M. Tezer-Sezgin [31]. In the present work,

we show all the numerical experiments for Doubly driven cavity flow, which has totally

different physics from the case of single lid-driven cavity flow. The MHD Stokes flow

in a Doubly driven cavity has not been studied in any published works.

In the present study, we have investigated the Newtonian Stokes Magnetohydro-

dynamic (Stokes MHD) fluid flow pattern in a doubly driven square cavity, where the

top and bottom walls of the square domain rotate in a clockwise direction with unit

magnitude and the other two walls have the no-slip condition (which means u = (1, 0)

and u = (−1, 0) on top and bottom walls respectively and u = (0, 0) on rest two walls
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of the square domain). Here, we are varying Hartmann number Ha from 0 to 50

for fixing Re = 1. MHD (Magnetohydrodynamic) term depends on the inclination

angle θ. Therefore, we have work for some different values of the inclination angle θ

varies from 0 to π
2
. This article reports various patterns of vortex formulation for a

Newtonian fluid. In order to solve the fully discrete transient Stokes MHD fluid flow

problem, we have used the Galerkin finite element approach with the Backward-Euler

finite difference method in this instance, where the numerical scheme’s accuracy, ef-

ficiency, and durability have all been carefully examined. Here, we have validated

the performance of the method with the existing scheme in the literature. After the

successful code-validation, we conducted the experiments in the domains for the dif-

ferent values of Hartmann number Ha ranges from 0 to 50 and the inclination angle

θ ranges between 0 to π
2
. Since the magnetic force depends on Hartmann’s number

and inclination angle. So, the main focus of this article is to see how the magnetic

term affects the flow.

The organization of this article is as follows: Section 2 describes the mathemat-

ical problem and applies the Galerkin finite element method to governing equations

followed by weak formulation. The numerical finding is displayed in the section 3,

followed by validation tests. Conclusion on the numerical results in section 4.

2. PRELIMINARIES

2.1. Governing Equations. Let Ω be an open, bounded, polygonal domain in R2

with piece-wise smooth boundary ∂Ω, for time interval J := (0, T ], The governing

equations for an incompressible Stokes Magnetohydrodynamic fluid flow in Ω×J are

given by: find the velocity u = (u1, u2) : Ω× J → R2 and the pressure p : Ω× J → R
of the fluid such that

(2.1)
∂u1(x, t)

∂t
− 1

Re
∆u1(x, t)+

∂p (x, t)

∂x1

+
Ha2

Re
(u1(x, t) sin2 θ−u2(x, t) sin θ cos θ) = f1 in Ω×J,

(2.2)
∂u2(x, t)

∂t
− 1

Re
∆u2(x, t)+

∂p (x, t)

∂x2

+
Ha2

Re
(u2(x, t) cos2 θ−u1(x, t) sin θ cos θ) = f2 in Ω×J,

(2.3) ∇ · u = 0 in Ω× J,

(2.4) u = 0 on ∂Ω× J,

(2.5) u = u0 at t = 0,

where Re and Ha are Reynolds number and Hartmann number respectively.
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2.2. Weak Formulation. Let V = H1
0 (Ω) := {v1 ∈ H1(Ω) : v1 = 0 on ∂Ω},

Q = L2(Ω)/R := {q ∈ L2(Ω) :
∫

Ω
q = 0} and X = V × V × Q, now multiplying

equation (1), (2) and (3) by test functions v1 ∈ V , v2 ∈ V and q ∈ Q respectively

and integrating over Ω, we get variational formulation as:

(2.6)

(
∂u1

∂t
, v1)− 1

Re
(∆u1, v1)+(

∂p

∂x1

, v1)+
Ha2

Re
[sin2 θ(u1, v1)−sin θ cos θ(u2, v1)] = (f1, v1) ∀v1 ∈ V,

(2.7)

(
∂u2

∂t
, v2)− 1

Re
(∆u2, v2)+(

∂p

∂x2

, v2)+
Ha2

Re
[cos2 θ(u2, v2)−sin θ cos θ(u1, v2)] = (f2, v2) ∀v2 ∈ V,

(2.8) (∇ · u, q) = 0 ∀ q ∈ Q.

Now using integration by parts and summing the equations (2.6), (2.7) and (2.8), we

get

(2.9)

(
M
∂U

∂t
,W

)
+B(U;W) = L(W) ∀W ∈ X,

where M = diag(1, 1, 0), U = (u1, u2, p), W = (v1, v2, q),

(M
∂U

∂t
,W) = (

∂u1

∂t
, v1) + (

∂u2

∂t
, v2) ,

B(U;W) =
1

Re
(∇u,∇v)−(p,

∂v1

∂x1

)−(p,
∂v2

∂x2

)+
Ha2

Re
sin2 θ(u1, v1)+

Ha2

Re
cos2 θ(u2, v2)

−Ha
2

Re
sin θ cos θ(u2, v1)− Ha2

Re
sin θ cos θ(u1, v2) + (∇.u, q),

L(W) = (f1, v1) + (f2, v2),

(∇u,∇v) = (∇u1,∇v1) + (∇u2,∇v2),

where u = (u1, u2) and v = (v1, v2).

2.3. Fully Discrete Formulation. First, we use finite element space discretization

to create the semi-discrete variational formulation. Let Th = {K} be the triangulation

of Ω ⊂ R2 such that Th satisfies: there exist a positive constant C, independent of h

such that
γK
hK
≥ C ∀K ∈ Th.

where hK := the diameter of K = longest side of triangle K and

γK := the diameter of the circle inscribed in K

h := maxK∈Th hK
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Due to this condition, the triangle K ∈ Th cannot be thinned arbitrarily, or

equivalently, Triangles K cannot have arbitrarily small angles. Since V = H1
0 (Ω),

let Vh ⊂ V such that Vh = {v ∈ V : v|K ∈ P2(K)}, where Pr(K) is the space of

polynomials of degree ≤ r in K. Similarly, Qh ⊂ Q such that Qh = {q ∈ Q : q|K ∈
P1(K)} and Xh = Vh× Vh×Qh ⊂ X. Here the subspaces Vh and Qh are constructed

by piecewise polynomials. A finite set of basis functions generates these subspaces.

Therefore, Vh and Qh are also finite-dimensional subspaces of V and Q as well Xh is

a subspace of X. The standard Galerkin finite element formulation is given as: find

Uh = (uh, ph) ∈ Uh such that ∀t ∈ J

(2.10) (M
∂Uh

∂t
,Wh) +B(Uh;Wh) = L(Wh) ∀Vh ∈ Xh,

where Uh = (u1h, u2h, ph) and Wh = (v1h, v2h, qh).

Now for the fully discrete formulation, we discretized the time variable byBackward

Euler scheme. So, time interval [0, T ] be partitioned into M sub-intervals, for some

positive integer M . Let dt be the time step size defined as dt = T
M

, an intermediate

nth time step, tn = ndt for 0 ≤ n ≤ M . Let vn = v(x, tn), So fully discrete form

looks-like

(2.11) (M
Un+1
h −Un

h

dt
,Wh) +B(Un+1

h ;Wh) = L(Wh) ∀Wh ∈ Xh,

where

(M
Un+1
h −Un

h

dt
,Wh) = (

un+1
1h − un1h
dt

, v1h) + (
un+1

2h − un2h
dt

, v2h),

B(Un+1
h ;Wh) =

1

Re
(∇un+1

h ,∇vh)−(pn+1
h ,∇.vh)+

Ha2

Re
sin2 θ(un+1

1h , v1h)+
Ha2

Re
cos2 θ(un+1

2h , v2h)

−Ha
2

Re
sin θ cos θ(un+1

2h , v1h)−
Ha2

Re
sin θ cos θ(un+1

1h , v2h) + (∇ · un+1
h , qh),

L(Wh) = (f1, v1h) + (f2, v2h).

From equation (2.11) we have

(2.12)
1

dt
(MUn+1

h ,Wh) +B(Un+1
h ;Wh) = L(Wh) +

1

dt
(MUn

h,Wh) ∀Wh ∈ Xh,

(2.13) A(Un+1
h ,Wh) = F (Wh) ∀Wh ∈ Xh,
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where

A(Un+1
h ,Wh) =

1

dt
(MUn+1

h ,Wh) +B(Un+1
h ;Wh)

=
1

dt
(MUn+1

h ,Wh) +
1

Re
(∇un+1

h ,∇vh)− (pn+1
h ,∇.vh) +

Ha2

Re
sin2 θ(un+1

1h , v1h)

+
Ha2

Re
cos2 θ(un+1

2h , v2h)−
Ha2

Re
sin θ cos θ

[
(un+1

2h , v1h) + (un+1
1h , v2h)

]
+ (∇.un+1

h , qh),

F (Wh) = L(Wh) +
1

dt
(MUn

h,Wh).

A(., .) is bilinear form on Xh ×Xh and F (.) is linear form on Xh as Un
h is known.

Since, we are approximating the solution of equation (2.1)-(2.3) by using the

Galerkin FE scheme, So, by equation (2.3) we have(
∇.un+1

h , qh
)

= 0 ∀ qh ∈ Qh.

Now we can write

A(Un+1
h ,Wh) = a(un+1

h ,vh) + b(ph,vh),

where,

a(un+1
h ,vh) =

1

dt
(un+1

h ,vh) +
1

Re
(∇vh,∇vh) +

Ha2

Re
sin2 θ(v1h, v1h) +

Ha2

Re
cos2 θ(v2h, v2h)

− Ha2

Re
sin θ cos θ(un+1

2h , v1h),−
Ha2

Re
sin θ cos θ(un+1

1h , v2h)

b(ph,vh) = −(pn+1
h ,∇ · vh).

Since, Uh = (u1h, u2h, ph),Wh = (v1h, v2h, qh) ∈ Xh ⊂ X = H1
0 (Ω) × H1

0 (Ω) ×
L2(Ω)/R by using Cauchy-Schwarz inequality we can easily get a(., .), b(., .) and F (.)

to be continuous functionals. Here ‖.‖ is norm in L2(Ω) space and ‖.‖1 is norm in

H1(Ω) space.

a(vh,vh) =
1

dt
(vh,vh) +

1

Re
(∇vh,∇vh) +

Ha2

Re
sin2 θ(v1h, v1h) +

Ha2

Re
cos2 θ(v2h, v2h)

− Ha2

Re
sin θ cos θ(v2h, v1h)−

Ha2

Re
sin θ cos θ(v1h, v2h)

≥ 1

dt
‖vh‖2 +

1

Re
‖∇vh‖2 +

Ha2

Re
[sin2 θ‖v1h‖2 + cos2 θ‖v2h‖2 − 2 sin θ cos θ‖v1h‖‖v2h‖]

≥ 1

dt
‖vh‖2 +

1

Re
‖∇vh‖2 +

Ha2

Re
(‖v1h‖ sin θ − ‖v2h‖ cos θ)2

≥ 1

dt
‖vh‖2 +

1

Re
‖∇vh‖2

≥ min(
1

dt
,

1

Re
)(‖vh‖2 + ‖∇vh‖2)

= min(
1

dt
,

1

Re
)‖vh‖2

1.
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Therefore, a(., .) is a coercive bilinear form. For the particular chosen spaces Vh and

Qh The Babuška–Brezzi condition [32-33] is satisfied by [34] there exists a constant

β > 0 such that

sup
vh∈Vh×Vh,vh 6=0

(qh,∇.vh)
‖vh‖1

≥ β‖qh‖ ∀ qh ∈ Qh.

Now if A(Uh,Wh) = 0,∀Wh ∈ Xh then by taking particular value of Wh as Uh,

A(Wh,Wh) = 0

=⇒ 1

dt
‖uh‖2 +

1

Re
‖∇uh‖2 +

Ha2

Re
(‖u1h‖ sin θ − ‖u2h‖ cos θ)2 = 0

=⇒ uh = 0.

By using uh = 0 and ∇.vh ∈ Qh, we get ph = 0. Therefore, {Uh ∈ Xh : A(Uh,Wh) =

0,∀Wh ∈ Xh} = 0.

Now, using the theorem by Brezzi ([32],[35]) equation (2.13) has unique solution

Un+1
h .

3. MAIN RESULTS

This section offers some observations on the numerical results from the Stokes

MHD problem numerical solution in a square domain with moving top and bottom

walls, the square domain with top and bottom lids moving with velocities (1, 0) and

(−1, 0), respectively.

3.1. Grid Validation. To establish the optimal grid size, we first demonstrate the

grid validation test. In a square domain with top and bottom walls moving hori-

zontally to the right and left, respectively, with unit velocity and no-slip conditions

on the right and left walls being set, we have carried out numerical tests for the

incompressible Stokes MHD flow equations with Re = 10 and Ha = 10.

We selected mesh sizes MS1: 70×70, MS2: 80×80, MS3: 90×90, and MS4:

100× 100 for the grid validation test. For grid sizes, MS1, MS2, MS3, and MS4, the

horizontal and vertical velocity charts along x1 = 0.5 and x2 = 0.5 correspondingly

show minimal changes. Therefore, 100 × 100 grids were selected as the best size for

the entire study.

3.2. Code Validation. Now, we have executed the numerical code validation test

for the steady Stokes equation in a square domain. These experiments are carried

out on a bounded square domain Ω = (0, 1)× (0, 1)

(3.1) −∆u1 +
∂p

∂x
= f1 in Ω,
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(a) Horizontal velocity along x1 = 0.5 (b) Vertical velocity along x2 = 0.5

Figure 1. Grid validation horizontal and vertical velocity

(a) Horizontal velocity along x1 = 0.5 (b) Vertical velocity along x2 = 0.5

Figure 2. Code validation horizontal and vertical velocity

(3.2) −∆u2 +
∂p

∂y
= f2 in Ω,

(3.3) ∇ · u = 0 in Ω.

The exact solution for this experiments are: u = (u1, u2) = (xy2,−x2y) and p = 1−x
for compatible f1 = −1 − 2x and f2 = 2y. In figure 2, we notice that horizontal

velocity for x1 = 0.5 (figure 2a) and vertical velocity for x2 = 0.5 (figure 2b) has no

significant change in computed solution and exact solution.

Here now we are also going to give a comparison with existing literature: Merve

Gürbüz and M. Tezer-Sezgin [31]. In figure 3 we can see there is no significant change

in the formation of vortices in the streamlines plot for Hartmann numbers Ha = 1, 30,

and 80. Similarly, in figure 4, there is a comparison of horizontal and vertical velocity

plots for Hartmann number Ha = 1, 30 and 80 with M. Tezer-Sezgin et. al [31] at

x1 = 0.5 and x2 = 0.5 lines respectively. The velocities do not much vary in this

instance either. So, We can state that the current scheme validates every single case
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(a) Ha=1 (b) Ha=1

(c) Ha=30 (d) Ha=30

(e) Ha=80 (f) Ha=80

Figure 3. Comparison of Streamlines plots for θ = 0 and Ha = 1, 30

and 80 in lid-driven cavity with M. Tezer-Sezgin’s [31] scheme

of a single lid-driven cavity flow instance provided in the study of M. Tezer-Sezgin et.

al [31].
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(a) Horizontal velocity along x1 = 0.5 (b) Vertical velocity along x2 = 0.5

Figure 4. Horizontal and vertical velocity comparison at x1 = 0.5

and x2 = 0.5 respectively with M. Tezer-Sezgin et. al [31] scheme

In the present work, we experiment with all the numerical results for Doubly

driven cavity flow. Here we mainly focus on how the magnetic force and its direction

affect the doubly driven cavity flow. In this work, the effect of magnetic force’s

direction in the doubly driven cavity is shown clearly by streamlines plots and velocity

plots at mid-planes.

3.3. Experiments. Here, we have performed numerical experiments to examine the

Stokes MHD fluid flow in the presence of moving top and bottom walls of the square

domain in a clockwise direction (which implies the boundary conditions at these

walls are u = (1, 0) and (−1, 0) respectively to the top and bottom walls and the

vertically parallel walls are kept constant. As a result, no-slip criteria were given for

the remaining two walls). These results are performed for Ha varies by 0,10,25 and

50, inclination angle θ varies by 0,π
6
,π

4
,π

3
and π

2
and for fixed Re = 1. Here, we can

observe how increasing the magnetic force has an impact on the flow and how the

inclination angle θ for magnetic force affects the flow. Figure 5,6,7,8 and 9 displays

streamline plots for various values ofHa (as 10, 25 and 50) for cases θ = 0, π
6
, π

4
, π

3
andπ

2

respectively.

Figure 5 presents the streamline plots which show the Stokes MHD fluid flow

after reaching the steady state for increasing values of Ha from 10 to 50 and for fix

Re = 1 and inclination angle θ = 0 in square domain with top and bottom walls

moving in the clockwise direction. In figures 5a, 5b and 5c, we observe that all the

three streamline plots are symmetric to the line x2 = 0.5 and there are two primary

vortices formed in each case one is above to the line x2 = 0.5 and another is below

to the line x2 = 0.5. One of the primary causes for the appearance of these vortices

at these specific positions in the direction of moving lids. In figure 5a and 5b (cases
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(a) Ha=10 (b) Ha=25 (c) Ha=50

Figure 5. Streamlines for Stokes MHD for θ = 0

(a) Ha=10 (b) Ha=25 (c) Ha=50

Figure 6. Streamlines for Stokes MHD for θ = π
6

(a) Ha=10 (b) Ha=25 (c) Ha=50

Figure 7. Streamlines for Stokes MHD for θ = π
4

of Ha = 10 and 25) secondary vortex has not appeared but in figure 5c secondary

vortices are formed in the middle of the domain.

Figure 6 presents the streamlines plots for Ha = 0, 25 and 50 and inclination

angle θ = π
6

in a square cavity with top and bottom walls are moving in the clockwise

direction. Figure 6 shows how the values of Ha and the inclination angle θ = π
6

affect the formation of vortices. In figures 6a, 6b and 6c, we notice that there are

two primary vortices formed in each case one is above the line x2 = 0.5 and another

is below to the line x2 = 0.5 but here streamline plots are asymmetric to the line

x2 = 0.5. The major causes behind these vortices are the direction of moving lids

and the inclination angle.

Figure 7 shows the streamlines plots for Stokes MHD in case of Ha = 10, 25and50

and inclination angle θ = π
4

in square domain with top and bottom lids are moving
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(a) Ha=10 (b) Ha=25 (c) Ha=50

Figure 8. Streamlines for Stokes MHD for θ = π
3

(a) Ha=10 (b) Ha=25 (c) Ha=50

Figure 9. Streamlines for Stokes MHD for θ = π
2

in the clockwise direction. In figures 7a,7b and 7c, We see that two major vortices

are generated in each case, one above the line x2 = 0.5 and the other below it,

asymmetrically. In figures of 7 streamlines show the effect ofHa values, the inclination

angle θ = π
4
, and the direction of moving lids.

Figure 8 displays the streamlines plots for Stokes MHD in case ofHa = 10, 25and50

and inclination angle θ = π
3

in a square domain with top and bottom lids are rotating

in the clock-wise direction. In figures 8a,8b and 8c, we observed that there are two

primary vortices in each case. In the figures of 8, we can see how increasing values of

Ha affects the flow by streamlines. The inclination angle θ = π
3

and the direction of

moving lids also affect the flow along with Ha.

Figure 9 presents streamline plots for Stokes MHD in case of Ha = 10, 25 and 50

and inclination angle θ = π
2

in square domain with top and bottom walls rotated

in the clockwise direction. In figure 9a, we see that there are two primary vortices

symmetric to the line x2 = 0.5 whereas in figures 8b and 8c there is only one primary

vortex and all the streamlines plots in figure 9 are symmetric about x2 = 0.5. In the

figures of 9, we can see how Ha values and the direction of moving walls affect the

flow by streamlines.

Figures in 10 presents the horizontal velocity plots along x1 = 0.5 for different

inclination angles θ = 0, π
6
, π

4
, π

3
and π

2
and fix the values of Ha. Similarly, figures in

11 show the vertical velocity plots along x2 = 0.5 for the same cases mentioned for
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(a) Ha=10 (b) Ha=25 (c) Ha=50

Figure 10. Horizontal Velocity plots along x1 = 0.5 with varying θ

by 0,π
6
,π

4
,π

3
and π

2

(a) Ha=10 (b) Ha=25 (c) Ha=50

Figure 11. Vertical Velocity plots along x2 = 0.5 with varying θ by

0,π
6
,π

4
,π

3
and π

2

horizontal velocity. Figures 10 and 11 show the variations in horizontal and vertical

velocities from one boundary to the other among the pairs of parallel walls.

Figures 12 and 13 show horizontal and vertical velocities along the lines x1 = 0.5

and x2 = 0.5 respectively for different values of Ha = 0, 10, 25 and 50 and fix the

values of θ. These figures show the variations in horizontal and vertical velocities by

increasing the values of Ha for different inclination angles.

4. CONCLUSION

This article presents the results obtained for solving the transient Stokes MHD

(Magnetohydrodynamic) problem for fixing Reynolds number Re = 1 different values

of Hartmann number Ha ranging from 0 to 50 in square domain with their top and

bottom parallel boundary lids moving horizontally to clock-wise direction. Since the

MHD term in the governing equations depends on the inclination angle θ. Therefore,

the numerical solution of Stokes MHD equation is described for different inclination

angles θ = 0, π
6
, π

4
, π

3
and π

2
. Here, an in-depth discussion is provided on the key

observations pertaining to the development of vortices and their varied patterns. In

general, two major vortices formed for inclination angles θ = 0, π
6
, π

4
and π

3
in each
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(a) θ = 0 (b) θ = π
6 (c) θ = π

4

(d) θ = π
3 (e) θ = π

2

Figure 12. Horizontal Velocity plots along x1 = 0.5 with varying Ha

by 0,10,25 and 50

(a) θ = 0 (b) θ = π
6 (c) θ = π

4

(d) θ = π
3 (e) θ = π

2

Figure 13. Vertical Velocity plots along x2 = 0.5 with varying Ha by

0,10,25 and 50
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case of Hartmann number (Ha = 10, 25 and 50). In the case of inclination angle

θ = π
2
, two primary vortices only form in the case of Ha = 10 and only one vortex

appears in the other cases of Ha = 25 and 50. The secondary vortex appears only for

the case Ha = 50 and θ = 0 in the middle of the square domain. The shapes and

sizes of primary and secondary vortices are significantly influenced by the Hartmann

numbers as well as the inclination angle. Along the horizontal and vertical mid-planes,

the velocity solution plots are also displaying how they change from one boundary

to the next among the parallel wall pairs. By adjusting the Hartmann number and

inclination angle, we may observe the variation in horizontal and vertical velocities.

This study contributes significantly to the Newtonian fluid flow problem by covering

a wide range of significant aspects of the Stokes MHD fluid flow behavior in doubly

driven cavity flow in the square domain.
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