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ABSTRACT. In this paper, we demonstrate several properties, such as Fredholm, non-compactness

of the complex-valued fractal operator associated with the complex-valued fractal functions, which

is constructed using a germ function, base function, and scaling functions defined on the Sierpiński

gasket. We show the existence of a non-trivial closed subspace of a complex-valued fractal operator.

We prove that a complex-valued fractal function has finite energy under certain conditions on the

parameters involved. Further, the existence of Schauder basis consisting of a complex-valued fractal

function is shown.
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1. INTRODUCTION

One out of various tools for fitting and analysing scientific data is a fractal interpolation. A

fractal set is formed by the union of several smaller copies of itself. Barnsley [4] invented the technique

that produces the self-referential function, namely the fractal interpolation functions (FIFs), which

is defined by iterated function system (IFS). Furthermore, Navascués [26] has defined FIFs on

a compact interval of R. Fractal interpolation was developed as an interpolation approach for

collecting data with intrinsic fractal structure. Unlike classical interpolation, which is based on

elementary functions such as polynomials, the fractal interpolation is based on the theory of iterated

function system and it produces an interpolants suitable for fitting physical or experimental data.

By extending Barnsley’s notion of FIFs to the domain of Sierpiński Gasket (SG in short), Celik et

al. [8] have made significant progress in the field of FIFs. On a post critically finite (p.c.f.) self-

similar set, Ruan [31] has developed FIFs and linear FIFs. Further, Ri and Ruan [30] have studied

some basic properties of uniform FIFs on SG. Readers are referred to see [23] for understanding the

fractal functions, fractal surfaces, and wavelets. In [16], Jha and Verma have studied the dimensions

of FIFs defined on a compact interval of R. Further, they have provided an accurate estimate
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of the box dimension of fractal functions. In [41], Verma and Sahu have estimated the upper

and lower box dimensions of the graph of a function defined on SG. Further, they have also

computed an upper bound for Hausdorff dimension and box dimension of the graph of a function,

which has a finite energy. In [40], dimension preserving approximation for continuous functions

defined on compact interval of R has been investigated by Verma and Massopust. Kigami [19] has

explored fractal analysis on a post critically finite (p. c. f.) self-similar sets. In [10], Chandra

and Abbas have studied the integral transforms and fractional order integral transforms of the

bivariate FIFs. In [11], Chandra and Abbas have investigated the properties such as continuity,

bounded variation and boundedness of the mixed Weyl-Marchaud fractional derivative of a function.

In [28], Prasad constructed the space of Coalescence Hidden-variable FIFs. Jha et al. [17] have

studied non-stationary zipper α-fractal functions and associated fractal operator. To understand

the fractal dimension, we refer the reader to [12, 13, 20, 21, 22]. The authors of [24] have studied the

non-stationary α-fractal surfaces. The authors of [33] have discussed the quantization for uniform

distributions on stretched SG. In [25, 42], Verma and his group have studied the dimensional

results for vector-valued FIFs. In [14], Chandra and Abbas have obtained dimension results for

fractal functions. With the help of oscillation spaces, they also established certain bounds for the

fractal dimension of fractal functions. Recently, Chandra et al. [9] have studied the properties of

Bernstein super FIFs.

In [35], Sahu and Priyadarshi have determined the bounds for the box dimension of the graph

of a harmonic function on SG. Further, they have also obtained the upper and lower bounds for

the box dimension of graph of a function having a finite energy on SG. Further, they have studied

the solutions of Laplacian and p-Laplacian in [34, 36]. The authors of [32] have generalized existing

results about the fractal dimensions of many other IFSs.

Author of [29] has demonstrated that the graphs of FIFs formed on SG using nonconstant

harmonic functions of the fractal analysis are attractors of iterated function system. Agrawal and

Som have determined the fractal dimension of α-fractal function on SG in [1]. Furthermore, Agrawal

and Som [2] have studied the Lp approximation using fractal functions on SG, whereas very recently

Prasad and Verma [27] have constructed FIFs on the product of two SGs and in [15], Jha and Verma

have developed the concept of a non-stationary fractal operator as well as several approximations

and convergence properties. Furthermore, they have also examined the approximation properties of

non-stationary fractal polynomials towards a continuous function.

The present paper is organized as follows: In Section 2, we give technical introduction to create

attractor for defined IFS. In Section 3, we discuss the construction of SG and recall the theorem to

construct the α-fractal fractal function and the graph of α-fractal fractal function defined on SG.

In Section 4, via graphical representation of the graph of an α-fractal function on SG, we observe

that the α-fractal function is continuously dependent on parameters. Furthermore, we derive that

a complex-valued fractal function has finite energy under certain conditions on the parameters

involved. In the last section, we establish several properties such as Fredholm, non-compactness of

the complex-valued fractal operator associated with the complex-valued fractal functions which is

constructed from a germ function, base function and scaling functions defined on SG. Furthermore,

we show the existence of a non-trivial closed subspace of a complex-valued fractal operator, then we

establish the existence of Schauder bases consisting of complex-valued fractal functions defined on

SG.
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2. TECHNICAL INTRODUCTION

To obtain an attractor, we consider the following iterated function system (IFS)

{X;Wj , j = 1, 2, . . . , k},

where (X, d) is a complete metric space and Wj : X → X are contractive mappings with contraction

ratio αj respectively. Using the maps of this IFS, we define another mapping W from S(X) into

S(X) as follows:

W (F ) =

k⋃
j=1

Wj(F ),

where S(X) is the class of all non-empty compact subsets of X. The Hutchinson-Barnsley map W

acting on S(X) endowed with Hausdorff metric hd is a contraction mapping. The contraction ratio

α of W is taken to be max{αj : 1 ≤ αj ≤ k}, where αj be the contraction ratio of each Wj .Then,

by the Banach contraction principle, we get a unique nonempty compact subset H∗, which satisfies

H∗ = ∪k
j=1Wj(H∗), the set H∗ is called an attractor of the IFS. For further details, we refer [5].

3. FRACTAL INTERPOLATION FUNCTION ON SG

SG on 0th level SG on 1st level

SG on 2nd level

SG on 4th level SG on 5th level

Figure 1. SG on various levels
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The collection of vertices of the equilateral triangle is defined by

V0 = {p1, p2, p3}.

For i ∈ {1, 2, 3}, let us define the contraction maps χi : R2 → R2 as follows:

χi(t) =
1

2
(t+ pi),where pi ∈ V0.

The aforementioned three contraction mappings form an IFS, which is an attractor for SG, that is,

SG = χ1(SG) ∪ χ2(SG) ∪ χ3(SG).

LetN ∈ N∪{0}, the set IN be a cartesian product of the set I up toN times, where I = {1, 2, 3}
and it is the notation of all words having a length of N . If i ∈ IN , then

i = i1i2, . . . , iN = (i1, i2, . . . , iN ),where ij ∈ I.

To obtain SG up to the Nth level, we use N composition of contraction maps. Let χi be the iteration

and defined as follows:

χi = χi1 ◦ χi2 ◦ · · · ◦ χiN , where i ∈ IN .

For N ∈ N, consider the set VN defined by

VN = {p1, p2, p3, χi(p2), χi(p3), χi(p1) : i ∈ IN}.

The set VN is Nth level of vertices and consists of all the images of V0 with respect to iteration

χi. For N ∈ N, we further define V∗ = ∪∞
N=1VN . Let f : SG → R be a continuous function on

SG. The following IFS arises as an attractor for the graph of a continuous function defined on SG

denoted by fα, which satisfies fα|VN
= f |VN

. Let us assume Y = SG × R and define the maps

Wi : Y → Y by

Wi(t, x) =
(
χi(t), Ei(t, x)

)
, i ∈ IN ,

where Ei(t, x) : SG × R → R is a contraction map in the second variable, where i ∈ IN with

Ei(pj , f(pj)) = f(χi(pj)). More precisely, we define

Ei(t, x) = αi(t)x+ f(χi(t))− αi(t)b(t),

where the function b : SG → R is a continuous base function, which satisfies b|V0 = f |V0 , and for

any i ∈ {1, 2, 3}N , αi : SG → R is a continuous function satisfying ∥αi∥∞ < 1. We now have an IFS

{Y ;Wi, i ∈ {1, 2, 3}N}. Further, we take ∥α∥∞ = max{∥αi∥∞ : i ∈ IN}.

Theorem 3.1. [1] Let f : SG → R be a continuous function on SG. The IFS {Y ;Wi, i ∈ IN}
defined as above, has a unique attractor graph(fα). The set graph(fα) is the graph of a continuous

function fα : SG → R, which satisfies fα|VN
= f |VN

. Furthermore, fα satisfies the following

functional equation

(3.1) fα(t) = f(t) + αi(χ
−1
i (t))(fα − b)

(
χ−1
i (t)

)
∀ t ∈ χi(SG), i ∈ IN .

For fα(t) = Ei

(
χ−1
i (t), fα(χ−1

i (t))
)
∀t ∈ χi(SG), i ∈ IN . This is further represented as

fα(χi(t)) = Ei(t, f
α(t)) for all t ∈ SG and i ∈ IN . It can be verified that the graph of fα is

an attractor of the IFS and hence,

⋃
i∈IN

Wi(graph(f
α)) = graph(fα).
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We denote the space of all the complex-valued continuous functions defined on SG by C(SG,C).
For any complex-valued continuous function g : SG → C, that is, g ∈ C(SG,C), we define a complex-

valued fractal operator Fα
C : C(SG,C) → C(SG,C) by Fα

C (g) = gαC , where gαC is the fractal version

of a complex-valued function g ∈ C(SG,C). Further, we define complex-valued bounded linear

operator L : C(SG,C) → C(SG,C) by (Lg)|V0
= g|V0

and operator Id : C(SG,C) → C(SG,C) is

complex-valued identity operator.

The following figures [1, 2] represent the variations in the graph of fα, one can observe that the

graph of fα is continuously dependent on parameters, that is, germ function f(x, y), base function

b(x, y) and scaling factor α.

1st iteration 2nd iteration

3rd iteration 4th iteration

Figure 2. f(x, y) = 2x2 + y2 − ex, b(x, y) = 2x2 + y2 − ex − x2(x −
1)2(4y2 − 3) and α = 0.9.

Theorem 3.2. Consider a complex-valued fractal operator Fα
C : C(SG,C) → C(SG,C), the pertur-

bation error satisfies:

∥Fα
C (g)− g∥∞ ≤ ∥α∥∞∥Fα

C (g)− Lg∥∞.

Consequently,

∥Fα
C (g)− g∥∞ ≤ ∥α∥∞

1− ∥α∥∞
∥g − Lg∥∞.

Hence, a complex-valued fractal operator Fα
C is bounded. Furthermore, if ∥α∥∞ = 0 or L = Id, then

Fα
C = Id.
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1st iteration 2nd iteration

3rd iteration 4th iteration

Figure 3. f(x, y) = 3ex − 11, b(x, y) = 3ex − 11− x3(x− 1)2(4y2 − 3)

and α = 0.1.

Lemma 3.3 ([7], Lemma 1). Let M : X → X be a linear operator, where (X, ∥.∥) be a Banach

space. If the constants c1, c2 ∈ [0, 1) are so choosen such that

∥Mx− x∥ ≤ c1∥x∥+ c2∥Mx∥, for all x ∈ X.

Then M is topological isomorphism.

Theorem 3.4. Consider a bounded linear operator with ∥α∥∞ < ∥L∥−1. Then the complex-valued

fractal operator Fα
C : C(SG,C) → C(SG,C) is topological isomorphism.

Proof. Using Theorem 3.2, we get

∥Fα
C (f)− f∥∞ ≤ ∥α∥∞∥Fα

C (f)− Lf∥∞(3.2)

≤ ∥α∥∞
[
∥Fα

C (f)∥∞ + ∥L∥∥f∥∞
]
.(3.3)

Note that ∥α∥∞ < 1 and ∥α∥∞ < ∥L∥−1, then using the Lemma 3.3, one can prove that a

complex-valued fractal operator Fα
C is a topological isomorphism.



FRACTAL OPERATOR ASSOCIATED WITH FRACTAL FUNCTIONS ON SG 375

4. ENERGY OF COMPLEX-VALUED FRACTAL FUNCTIONS

There are many approaches available to define the Laplacian. Energy is used to define Laplacian

on SG. Energy also computes the solutions of PDEs, see, for instance, [39] and so the notion of

energy has attracted the attention of many researchers in the fractal community.

We first form a complete graph Υ0 on the set V0. Then, we form the complete graph on each

level of SG. For k ∈ N ∪ {0}. Let Υk be the complete graph on the kth level of vertices of SG.

Using Vk, we define the edge relation on kth level of SG. For any a, b ∈ Vk, the edge relation a ∼k b

exists if and only if a ∈ χi(a
′), b ∈ χi(b

′) with a′ ∼k−1 b′ and i ∈ I. Equivalently, a ∼k b if and only

if one can choose i ∈ Ik such that a, b ∈ χk(V0).

Definition 4.1. For k ∈ N ∪ {0}, the graph energy Ek on Υk is given by

Ek(g) =

(
5

3

)k ∑
a∼kb

(g(a)− g(b))2.

The sequence of graph energy, that is,
(
Ek

)∞
k=0

admits Ek−1(g) = minEk(g
∗), where the

minimum is taken over all g∗ admits g∗|Vk−1
= g for every g : V∗ → R and for every k ∈ N. Note

that the sequence
(
Ek(g)

)∞
k=0

is increasing for every g on V∗. We refer the following limit as the

energy of g on V∗

E(g) := lim
k→∞

Ek(g),

if E(g) < ∞, then g has a finite energy.

Recall that if a function g has a finite energy, that is, E(g) < ∞, then g is uniformly continuous.

We now determine the required conditions on the given parameters which ensure that the

complex-valued fractal version gαC has finite energy whenever the germ function g : SG → C has

finite energy. A complex-valued function g : SG → C can be written as g = gre + igim=(gre, gim),

where gre and gim are real-valued functions defined by gre : SG → R and gim : SG → R, respectively.
The energy of a complex-valued is defined by

E(g,C) = max{E(gre), E(gim)}.

For α ∈ C(SG,C), where α = αre + αim = (αre, αim), the energy E(αC) is defined by

E(α,C) = max{E(αre), E(αim)}.

Similarly, for a complex-valued base function b ∈ C(SG,C), where b = bre + αim = (bre, bim), we

define the energy E(b,C) as follows:

E(b,C) = max{E(bre), E(bim)}.

Remark 4.2. The energy of a complex-valued function g : SG → C can be defined. Now, define

the graph energy E∗
k(g,C) on Υk as follows:

E∗
k(g,C) =

(
5

3

)k ∑
a∼kb

∥(g(a)− g(b))∥22.

Using the above, we define the energy of a complex-valued function g, that is, E∗(g,C) as follows:

E∗(g,C) = lim
k→∞

E∗
k(g,C).

Using ∥z∥∞ ≤ ∥z∥2 ≤
√
2∥z∥∞, we can deduce that

E∗(g,C) < ∞ if and only if E(g,C) < ∞.
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We now define dom(E,C) = {g ∈ C(SG,C) : E(g,C) < ∞}.

Theorem 4.3. Consider a germ complex-valued function g ∈ dom(E,C) and let the parameter

b ∈ dom(E,C) admit b|V0 = g|V0 . For N ∈ N, if α ∈ dom(E,C) with ∥α∥∞ < 1

2
√
5N

, then the

corresponding complex-valued α-fractal function gαC ∈ dom(E,C). Furthermore, it gives

E(gαC) ≤
4 E(g,C) + 8 5N∥α∥2∞E(b,C) + 4 5N (∥gαC∥2∞ + 2∥b∥2∞)E(α,C)

1− 4 5N∥α∥2∞
.

Proof. We use the functional equation to obtain the desired result.

|gαre(u)− gαre(v)|2 =|gre(u)− gre(v) + αi(χ
−1
i (u))gαre(χ

−1
i (u))− αi(χ

−1
i (v))gαre(χ

−1
i (v))

+ αi(χ
−1
i (v))bre(χ

−1
i (v))− αi(χ

−1
i (u))bre(χ

−1
i (u))|2

≤4|gre(a)− gre(b)|2

+ 4 |αi(χ
−1
i (u))|2 |gαre(χ−1

i (u))− gαre(χ
−1
i (v))|2

+ 4 |gαre(χ−1
i (v))|2 |αi(χ

−1
i (u))− αi(χ

−1
i (v))|2

+ 8 |αi(χ
−1
i (v))|2 |bre(χ−1

i (u))− bre(χ
−1
i (v))|2

+ 8 |bre(χ−1
i (u))|2 |αi(χ

−1
i (u))− αi(χ

−1
i (v))|2

≤4 |gre(a)− gre(b)|2

+ 4 ∥α∥2∞ |gαre(χ−1
i (u))− gαre(χ

−1
i (v))|2

+ 4 ∥gα∥2∞ |αi(χ
−1
i (u))− αi(χ

−1
i (v))|2

+ 8 ∥α∥2∞ |bre(χ−1
i (u))− bre(χ

−1
i (v))|2

+ 8 ∥b∥2∞ |αi(χ
−1
i (u))− αi(χ

−1
i (v))|2

≤4 |gre(a)− gre(b)|2

+ 4 ∥α∥2∞ |gαre(χ−1
i (u))− gαre(χ

−1
i (v))|2

+ 4 (∥gαC∥2∞ + 2∥b∥2∞) |αi(χ
−1
i (u))− αi(χ

−1
i (v))|2

+ 8 ∥α∥2∞ |bre(χ−1
i (u))− bre(χ

−1
i (v)|2.

We compute the k-th level of energy

(4.1)

Ek(g
α
re) ≤4 Ek(gre) + 4 3N

(
5

3

)N

∥α∥2∞ Ek−N (gαre)

+ 8 3N
(
5

3

)N

∥α∥2∞ Ek−N (bre)

+ 4 3N
(
5

3

)N

(∥gαC∥2∞ + 2∥b∥2∞) Ek−N (αi).

Taking limit as k → ∞, the aforementioned inequality gives

(4.2)
E(gαre)− 4 5N∥α∥2∞E(gαre) ≤4 E(gre) + 8 5N∥α∥2∞E(bre)

+ 4 5N (∥gαC∥2∞ + 2∥b∥2∞)E(αi).

(4.3)
(1− 4 5N∥α∥2∞)E(gαre) ≤4 E(gre) + 8 5N∥α∥2∞E(bre)

+ 4 5N (∥gαC∥2∞ + 2∥b∥2∞)E(αi).

Similarly, we can obtain the similar inequalities for E(gim), E(bim) and E(gαim). If ∥α∥∞ <
1

2
√
5N

, then from the definitions of E(g,C), E(α,C) and E(b,C), we get
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(1− 4 5N∥α∥2∞)E(gαC) ≤4 E(g,C) + 8 5N∥α∥2∞E(b,C)(4.4)

+ 4 5N (∥gαC∥2∞ + 2∥b∥2∞)E(α,C).(4.5)

Finally, we have

E(gαC) ≤
4 E(g,C) + 8 5N∥α∥2∞E(b,C) + 4 5N (∥gαC∥2∞ + 2∥b∥2∞)E(α,C)

1− 4 5N∥α∥2∞
.

This proves the result.

We know that energy of constant function is always 0. On SG, we find the energy of a

few continuous complex-valued function. Consider a continuous complex-valued functions. f(z) =

x + iy = (x, y), where f1(z) = x and f2(z) = y are continuous real-valued functions on SG. Note

that for k ∈ N ∪ {0}, the graph energy of Ek(f) on Υk is given by

Ek(f) =

(
5

3

)k ∑
a∼kb

(f(a)− f(b))2.

On 0th level vertices, that is, V0 =

{
(0, 0), (1, 0),

(
1
2 ,

√
3
2

)}
, we get

E0(f1) =
5

3

∑
a∼0b

(f1(a)− f1(b))
2, where a, b ∈ V0.

By simple calculation, we obtain

E0(f1) =
5

3

[
12 + 2

(
1

2

)2]
.

For the 1st level vertices V1 = {(0, 0),
(
1
2 , 0
)
, (1, 0),

(
1
4 ,

√
3
4

)
,
(
3
4 ,

√
3
4

)
,
(
1
2 ,

√
3
2

)
}, we now find the 1st

level of energy for f1 as

E1(f1) =

(
5

3

)2 ∑
a∼1b

(f1(a)− f1(b))
2, where a, b ∈ V1.

A simple computation yields

E1(f1) = 3

(
5

3

)2[(
1

2

)2

+ 2

(
1

4

)2]
.

For the 2nd level vertices V2, we now find the 2nd level of energy for f1, that is,

E2(f1) =

(
5

3

)3 ∑
a∼2b

(f1(a)− f1(b))
2, where a, b ∈ V2.

By simple calculation, we get

E2(f1) = 32
(
5

3

)3[(
1

4

)2

+ 2

(
1

8

)2]
.

Similarly, for nth level vertices, we get the nth level of energy En as

En(f1) = 3n
(
5

3

)n+1[(
1

2n

)2

+ 2

(
1

2n+1

)2]
.

Hence,

En(f1) =
5n+1

22n+1
.

We finally get the graph energy of f1(z) = x, that is,



378 VISHAL AGRAWAL AND TANMOY SOM

E(f1) = lim
k→∞

En(f1)(4.6)

= lim
k→∞

5n+1

22n+1
(4.7)

= ∞.(4.8)

Note that E(f) = max{E(f1), E(f2)}. Thus,

E(f) = ∞.

Example 4.4. We calculate the graph energy of g(z) = sin(x) + icos(y) = (sin(x), cos(y)) on SG,

where g1(z) = sin(x) and g2 = cos(y). We first find the graph energy of g1(z) = sin(x) on SG.

By the Mean Value Theorem, we have

|sin (x)− sin (y)| ≥ cos (1) |x− y| ∀ x, y ∈ (0, 1) .

Combining the above inequality with the nth level of graph energy of the above function f(z) = x, we

can find the bounds of the graph energy for each level of the function g1(z) = sin(x). In particular,

the bounds for the nth level of energy is given by

En(g1) ≥
5n+1

22n+1
cos(1)2.

Using

lim
n→∞

5n+1

22n+1
cos(1)2 = ∞.

We get

lim
n→∞

En(g1) = ∞.

Hence,

E(g1) = ∞.

Note that E(g) = max (E(g1), E(g2)). Hence, we get

E(g) = ∞.

In particular, from the above functions, we get E(g) = E(g).

5. SOME PROPERTIES OF COMPLEX-VALUED FRACTAL OPERATOR

Theorem 5.1. For ∥α∥∞ < ∥L∥−1, the complex-valued fractal operator Fα
C is not a compact oper-

ator.

Proof. For ∥α∥∞ < ∥L∥−1, one can deduce that Fα
C : C(SG,C) → C(SG,C) is one-one. Recall

that range space of complex-valued fractal operator Fα
C is infinite dimensional. Let us now define

the inverse complex-valued map (Fα
C )

−1 : Fα
C
(
C(SG,C)

)
→ C(SG,C). A complex-valued fractal

operator Fα
C is bounded below with respect to selected α, and this implies that (Fα

C )
−1 is bounded

linear operator.

Now suppose that complex-valued fractal operator Fα
C is a compact operator. Using the fact

that the composition of a compact operator and a bounded operator is again a compact operator, one

can establish that the complex-valued operator Fα
C (Fα

C )
−1 : Fα

C
(
C(SG,C)

)
→ C(SG,C) is a compact

operator, which is a contradiction to the infinite dimensionality of the space Fα
C
(
C(SG,C)

)
. Thus,

complex-valued fractal operator Fα
C is not a compact operator.
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Theorem 5.2. If ∥α∥∞ < (1+∥Id−L∥)−1)−1, then complex-valued fractal operator Fα
C is Freadholm

and its index is zero.

Proof. Under the hypothesis, range space of complex-valued fractal operator Fα
C is closed. Further-

more, complex-valued fractal operator Fα
C is invertible. Keep in mind if T : X → Y in invertible,

then T ∗ is invertible [6], this implies that complex-valued fractal operator (Fα
C )

∗ is invertible. Hence,

complex-valued fractal operator Fα
C is a Fredholm. Note that we define the index of a Fredholm

operator as follows:

index(Fα
C ) = dim

(
ker(Fα

C )
)
− dim

(
ker(Fα

C )
∗),

thus, the index is 0. This completes the proof.

In the next theorem, we prove the existence of a complex-valued non-trivial closed invariant

subspace of the bounded linear complex-valued fractal operator.

The invariant subspace problem is an important aspect of operator theory that must be taken

into consideration. For researchers it is an interesting problem to find the existence of non-trivial

invariant subspaces for many distinct operators. Consequently, finding the existence of non-trivial

invariant subspaces of an operator is extremely intriguing. Various researchers have constructed an

operator without a non-trivial closed invariant subspace; see, for instance, [38].

Theorem 5.3. There exists a complex-valued non-trivial closed invariant subspace for the bounded

linear complex-valued fractal operator Fα
C : C(SG,C) → (SG,C).

Proof. Select a non-zero complex-valued function h ∈ C(SG,C) satisfying h(t) = 0 for all t ∈ VN .

We denote the composition of Fα
C with itself k − times by (Fα

C )
k and (Fα

C )
0(h) = h. Let Vh be the

non-zero subspace

Vh = span{h,Fα
C (h), (Fα

C )
2(h), . . . }.

It can be easily shown that Vh is an invariant subspace of complex-valued fractal operator Fα
C , that

is, Fα
C (Vh) ⊆ Vh. Note that if f ∈ Vh, then f(t) = 0 ∀ t ∈ VN . Using the definition of Vh, one can

get a constants Ai ∈ C such that

f =

i=m∑
i=1

Ai(Fα
C )

ki(h),

where ki ∈ N ∪ {0}. Using the interpolatory property of the fractal operator, one gets

(Fα
C (h))(t) = h(t), for all t ∈ VN .

Consequently, for all t ∈ VN , one have f(t) = 0.

Consider V = Vh. It can be easily verified that Fα
C (V) ⊆ V, we now prove that V ≠ C(SG,C).

For g ∈ V, one can get a complex-valued sequence (gm)m∈N ⊂ Vh such that gm → g uniformly.

Since gm(t) = 0 for all m and t ∈ VN . Consequently, we have g(t) = 0 for all t ∈ VN . Thus, a

complex-valued continuous function g is non-vanishing at some points of VN can not be an element

in V. In particular, V ̸= C(SG,C), this completes the proof.

In the upcoming theorem, we show the existence of a complex-valued Schauder bases consisting

of fractal functions for the complex-valued space.

Finding the Schauder bases for different domains and spaces such as the interval, square or

rectangle is itself a huge challenge. For k ∈ N, we know the Schauder bases for the space of k times

continuously differentiable spaces on the compact interval I of R, that is CK(I).



380 VISHAL AGRAWAL AND TANMOY SOM

Schonefeld [37] constructed the Schauder bases for the space of one time continuously differen-

tiable on [0 1]× [0 1] in 1968, however, numerous spaces exist that don’t have a Schauder basis, see,

for instance, the space l∞ does not have a Schauder basis.

Theorem 5.4. For C(SG,C), there exist a complex-valued Schauder basis consisting of fractal func-

tions.

Proof. We consider a Schauder basis (zn) of the complex-valued space C(SG,C), where zn = xn+iyn.

Select α satisfying ∥α∥∞ < ∥L∥−1, then using Theorem 3.4, one can see that a complex-valued fractal

operator Fα
C is topological isomorphism. If h ∈ C(SG,C) then (Fα

C )
−1(h) ∈ C(SG,C), then we can

write

(Fα
C )

−1(h) =

∞∑
n=1

an

(
(Fα

C )
−1(h)

)
zn.

Using the continuity of the fractal operator, one can obtain

h = Fα
C (Fα

C )
−1(h) =

∞∑
n=1

an

(
(Fα

C )
−1(h)

)
zαn ,

where zαn = Fα
C (zn). We can also write h as h =

∑∞
n=1 dnz

α
n . Using the continuity of (Fα

C )
−1, we

obtain the following inequality

(Fα
C )

−1(h) =

∞∑
n=1

dnzn,

this gives dn = an
(
(Fα

C )
−1(h)

)
for every n. Hence, we obtain the Schauder basis (zαn ) for C(SG,C).

This completes the proof.
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Mediterr. J. Math., 18 (3): 1-26, 2021.

35. A. Sahu and A. Priyadarshi, On the Box-Counting Dimension of Graphs of Harmonic Functions
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