
Dynamic Systems and Applications 33 (2024) 75-95

GLOBAL SMOOTHNESS AND APPROXIMATION BY ACTIVATED
SMOOTH SINGULAR OPERATORS

GEORGE A. ANASTASSIOU

Department of Mathematical Sciences, University of Memphis, Memphis, TN

38152, U.S.A.; ganastss@memphis.edu

ABSTRACT. In this work we continue with the study of smooth activated singular integral oper-

ators over the real line regarding their simultaneous global smoothness preservation property with

respect to the Lp norm, 1 ≤ p ≤ ∞, by involving higher order moduli of smoothness. Also we treat

their activated simultaneous approximation to the unit operator with rates involving the modulus

of smoothness. The derived Jackson type inequalities are almost sharp containing elegant constants,

and they reflect the high order of differentiability of the engaged function. We involve five different

activation functions.
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1. Introduction

The global smoothmess preservation property of singular integrals has been stud-

ied initally in [6] and later in [14]. The rate of convergence of singular integrals has

been studied initially in [19], [17], [18] and later in [7], [12] and [13].

Here we continue with the study of smooth activated singular integral operators

over R acting on highly smooth functions. We study first their activated simultaneos

global smoothness preservation property with respect to ∥·∥p, 1 ≤ p ≤ ∞, by using

higher order moduli of smoothness. Then we study their simultaneous pointwise and

uniform approximation to the unit operator with rates by using also the higher order

moduli of smoothness. The established estimates are almost optimal and contain

elegant constants. The modulus of smoothness in the estimates is with respect to the

higher order derivative of the engaged function. The discussed operators are not in

general positive.

Our main motivation is the classic monograph [15].
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Also of great interest and motivating the author are the articles [1]-[5]. In recent

intense mathematical activity by the use of neural networks in solving numerically

differential equations our current work is expected to play a pivotal role, as in the

classic case played the earlier versions of singular integrals.

For the history of the topic we mention about our monograph [15] of 2012, which

was the first complete source to deal exclusively with the classic theory of the approx-

imation of singular integrals to the identity-unit operator. The authors there stud-

ied quantitatively the basic approximation properties of the general Picard, Gauss-

Weierstrass and Poisson-Cauchy singular integral operators over the real line, which

are not positive linear operators. In particular they researched the rate of conver-

gence of these operators to the unit operator, as well as the related simultaneous

approximation. This is given via inequalities and with the use of high order modulus

of smoothness of the high order derivative of the engaged function. Some of these

inequalites are proven to be sharp. Also, they studied the global smoothness preserva-

tion property of these operators. Furthermore they proved the asymptotic expansions

of Voronovskaya type for the error of approximation. They continued with the study

of related properties of the general fractional Gauss-Weierstrass and Poisson-Cauchy

singular integral operators. These properties were established with respect to Lp

norm, 1 ≤ p ≤ ∞. The case of Lipschitz type functions approximation was given

separately and in detail. Furthermore they presented the corresponding general ap-

proximation theory of general singular integral operators with lots of applications to,

the under focused till then, trigonometric singular integral.

2. Background on General Global Smoothness Preservation and

Approximation

The next in this section are all coming from [15], Chapter 18, pp. 339-348.

Here we talk about the global smoothness preservation properties and differentia-

bility, also approximations, of smooth general singular integral operators Θr,ξ (f ;x),

defined as follows.

Let ξ > 0 and µξ be Borel probability measures on R. For r ∈ N and n ∈ Z+, we

put

(1) αj :=


(−1)r−j

(
r

j

)
j−n, j = 1, ..., r.

1−
r∑

j=1

(−1)r−j

(
r

j

)
j−n, j = 0,
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that is
r∑

j=0

αj = 1. Let f : R → R be Borel measurable, we define for x ∈ R,

(2) Θr,ξ (f ;x) :=

∫ ∞

−∞

(
r∑

j=0

αjf (x+ jt)

)
dµξ (t) .

We suppose Θr,ξ (f ;x) ∈ R, ∀ x ∈ R.

Let f ∈ C (R), for m ∈ N the mth modulus of smoothness for 1 ≤ p ≤ ∞, is

given by

(3) ωm (f, h)p := sup
0≤t≤h

∥∆m
t f (x)∥p,x ,

where

(4) ∆m
t f (x) :=

m∑
j=0

(−1)m−j

(
m

j

)
f (x+ jt) ,

see also [16, p, 44].

Denote

(5) ωm (f, h)∞ = ωm (f, h) .

We mention the main global smoothness preservation result:

Theorem 2.1. Let h > 0, f ∈ C (R).

i) Assume Θr,ξ (f ;x) ∈ R, ξ > 0, ∀ x ∈ R and ωm (f, h) <∞. Then

(6) ωm (Θr,ξf, h) ≤

(
r∑

j=0

|αj|

)
ωm (f, h) .

ii) Assume f ∈ (C (R) ∩ L1 (R)), then

(7) ωm (Θr,ξf, h)1 ≤

(
r∑

j=0

|αj|

)
ωm (f, h)1 .

iii) Assume f ∈ (C (R) ∩ Lp (R)), p > 1. Then

(8) ωm (Θr,ξf, h)p ≤

(
r∑

j=0

|αj|

)
ωm (f, h)p .

Next we discuss about the derivatives of Θr,ξ (f ;x) and their impact to simulta-

neous global smoothness preservation and convergence of these operators.

Theorem 2.2. Let f ∈ Cn−1 (R), such that f (n) exists, n, r ∈ N. Furthemore suppose

that for each x ∈ R the function f (i) (x+ jt) ∈ L1 (R, µξ) as a function of t, for all

i = 0, 1, ..., n−1; j = 1, ..., r. Suppose that there exist gi,j ≥ 0, i = 1, ..., n; j = 1, ..., r,

with gi,j ∈ L1 (R, µξ) such that for each x ∈ R we have

(9)
∣∣f (i) (x+ jt)

∣∣ ≤ gi,j (t) ,
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for µξ-almost all t ∈ R, all i = 1, ..., n; j = 1, 2, ..., r. Then f (i) (x+ jt) defines a

µξ-integrable function with respect to t for each x ∈ R, all i = 1, ..., n; j = 1, ..., r,

and

(10) (Θr,ξ (f ;x))
(i) = Θr,ξ

(
f (i);x

)
,

for all x ∈ R, all i = 1, ..., n.

We have

Theorem 2.3. Let h > 0 and the assumptions of Theorem 2.2 valid.

i) Suppose that ωm

(
f (i), h

)
<∞, all i = 0, 1, ..., n, then

(11) ωm

(
(Θr,ξf)

(i) , h
)
≤

(
r∑

j=0

|αj|

)
ωm

(
f (i), h

)
,

for all i = 0, 1, ..., n.

ii) Assume f (i) ∈ (C (R) ∩ L1 (R)), i = 0, 1, ..., n, then

(12) ωm

(
(Θr,ξf)

(i) , h
)
1
≤

(
r∑

j=0

|αj|

)
ωm

(
f (i), h

)
1
,

for all i = 0, 1, ..., n.

iii) Assume f (i) ∈ (C (R) ∩ Lp (R)), p > 1, i = 0, 1, ..., n, then

(13) ωm

(
(Θr,ξf)

(i) , h
)
p
≤

(
r∑

j=0

|αj|

)
ωm

(
f (i), h

)
p
,

i = 0, 1, ..., n.

Next we mention some simultaneous approximation results of operators Θr,ξ.

Theorem 2.4. Let f ∈ Cn+ρ (R), n, ρ ∈ Z+ and ωr

(
f (n+i), h

)
< ∞, ∀ h > 0 for

i = 0, 1, ..., ρ. Suppose
∫∞
−∞ |t|n

(
1 + |t|

ξ

)r
dµξ (t) <∞. Set δk :=

r∑
j=1

αjj
k, and existing

ck,ξ :=
∫∞
−∞ tkdµξ (t), k = 1, ..., n ∈ N. We consider the assumptions of Theorem 2.2

valid for n = ρ there. Then∥∥∥∥∥(Θr,ξ (f ;x))
(i) − f (i) (x)−

n∑
k=1

f (i+k) (x)

k!
δkck,ξ

∥∥∥∥∥
∞,x

≤

(14)
ωr

(
f (n+i), ξ

)
n!

∫ ∞

−∞
|t|n
(
1 +

|t|
ξ

)r

dµξ (t) .

When n = 0 the sum in the left of (14) collapses.

We mention
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Theorem 2.5. Let f ∈ Cn+ρ (R), with f (n+i) ∈ Lp (R), n ∈ N, i = 0, 1, ..., ρ ∈ Z+.

Let p, q > 1 : 1
p
+ 1

q
= 1. Assume

∫∞
−∞

((
1 + |t|

ξ

)rp+1

− 1

)
|t|np−1 dµξ (t) < ∞, and

ck,ξ ∈ R, k = 1, ..., n. We consider the assumptions of Theorem 2.2 as valid for n = ρ

there. Then ∥∥∥∥∥(Θr,ξ (f ;x))
(i) − f (i) (x)−

n∑
k=1

f (k+i) (x)

k!
δkck,ξ

∥∥∥∥∥
p,x

≤

1

((n− 1)!) (q (n− 1) + 1)
1
q (rp+ 1)

1
p

(15)

[∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1

− 1

)
|t|np−1 dµξ (t)

] 1
p

ξ
1
pωr

(
f (n+i), ξ

)
p
.

We also mention

Proposition 2.6. Let f (i) ∈ (C (R) ∩ Lp (R)), i = 0, 1, ..., ρ ∈ Z+; p, q > 1 : 1
p
+ 1

q
= 1.

Assume that
∫∞
−∞

(
1 + |t|

ξ

)rp
dµξ (t) < ∞. We consider the assumptions of Theorem

2.2 valid for n = ρ there. Then∥∥∥(Θr,ξ (f))
(i) − f (i)

∥∥∥
p
≤

(16) ωr

(
f (i), ξ

)
p

(∫ ∞

−∞

(
1 +

|t|
ξ

)rp

dµξ (t)

) 1
p

,

for all i = 0, 1, ..., ρ.

We need

Theorem 2.7. Let f ∈ Cn+ρ (R), with f (n+i) ∈ L1 (R), n ∈ N, i = 0, 1, ..., ρ ∈ Z+.

Assume that
∫∞
−∞

((
1 + |t|

ξ

)r+1

− 1

)
|t|n−1 dµξ (t) < ∞, and ck,ξ ∈ R, k = 1, ..., n.

We consider the assumptions of Theorem 2.2 valid for n = ρ there. Then∥∥∥∥∥(Θr,ξ (f ;x))
(i) − f (i) (x)−

n∑
k=1

f (k+i) (x)

k!
δkck,ξ

∥∥∥∥∥
1,x

≤ 1

(n− 1)! (r + 1)

(17)

[∫ ∞

−∞

((
1 +

|t|
ξ

)r+1

− 1

)
|t|n−1 dµξ (t)

]
ξωr

(
f (n+i), ξ

)
1
,

for all i = 0, 1, ..., ρ.

We also need
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Proposition 2.8. Let f (i) ∈ (C (R) ∩ L1 (R)), i = 0, 1, ..., ρ ∈ Z+. Assume∫∞
−∞

(
1 + |t|

ξ

)r
dµξ (t) < ∞. We consider the assumptions of Theorem 2.2 valid for

n = ρ there. Then ∥∥∥(Θr,ξ (f))
(i) − f (i)

∥∥∥
1
≤

(18) ωr

(
f (i), ξ

)
1

[∫ ∞

−∞

(
1 +

|t|
ξ

)r

dµξ (t)

]
,

for all i = 0, 1, ..., ρ.

3. Background on Activation functions

Here all come from [10].

3.1. About Richards’s curve. Here we follow [9], Chapter 1.

A Richards’s curve is

(19) φ (x) =
1

1 + e−µx
; x ∈ R, µ > 0,

which is strictly increasing on R, and it is a sigmoid function, in particular this is a

generalized logistic function. And it is an activation function in neural networks, see

[9], chapter 1.

It is

(20) lim
x→+∞

φ (x) = 1 and lim
x→−∞

φ (x) = 0.

We consider the function

(21) G (x) =
1

2
(φ (x+ 1)− φ (x− 1)) , x ∈ R,

which is G(x) > 0, all x ∈ R.

It is

(22) φ (0) =
1

2
, φ (x) = 1− φ (−x) ,

and

(23) G (x) = G (−x) ,∀ x ∈ R.

We also have

(24) G (0) =
eµ − 1

2 (eµ + 1)
.

We also get

(25) lim
x→+∞

G (x) = lim
x→−∞

G (x) = 0,

and G is a bell symmetric function with maximum

(26) G (0) =
eµ − 1

2(eµ + 1)
.
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Theorem 3.1. It holds

(27)
∞∑

i=−∞

G (x− i) = 1, ∀ x ∈ R.

Theorem 3.2. It holds

(28)

∫ ∞

−∞
G (x) dx = 1.

So G is a density function.

We make

Remark 3.3. So we have

(29) G (x) =
1

2
(φ (x+ 1)− φ (x− 1)) , ∀ x ∈ R.

i) Let x ≥ 1. That is 0 ≤ x − 1 < x + 1. Applying the mean value theorem we

get:

(30) G (x) =
1

2
2φ′ (η) = φ′ (η) =

µe−µη

(1 + e−µη)2
, µ > 0,

where 0 ≤ x− 1 < η < x+ 1.

Notice that

(31) G (x) < µe−µη < µe−µ(x−1), ∀ x ≥ 1.

ii) Let now x ≤ −1. That is x− 1 < x + 1 ≤ 0. Applying again the mean value

theorem we get:

(32) G (x) =
1

2
2φ′ (η) = φ′ (η) =

µe−µη

(1 + e−µη)2
,

where x− 1 < η < x+ 1 ≤ 0.

Hence, we derive that

(33) G (x) < µe−µη < µe−µ(x−1), ∀ x ≤ −1.

Consequently, we proved that

(34) G (x) < µe−µ(x−1), ∀ x ∈ (−∞,−1] ∪ [1,+∞) = R− (−1, 1) .

Let 0 < ξ ≤ 1, it holds

(35) G

(
x

ξ

)
< µe−µ(x

ξ
−1), ∀ x ≥ ξ, or ∀ x ≤ −ξ.

Clearly, by Theorem 3.2 we have that

(36)
1

ξ

∫ ∞

−∞
G

(
x

ξ

)
dx = 1.

So that 1
ξ
G
(

x
ξ

)
is a density function, and let dµξ (x) :=

1
ξ
G
(

x
ξ

)
dx, that is µξ is a

Borel probability measure.
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We give the following important result.

Theorem 3.4. Let 0 < ξ ≤ 1, and

(37) c∗k,ξ :=
1

ξ

∫ ∞

−∞
xkG

(
x

ξ

)
dx, k = 1, ..., n ∈ N.

Then c∗k,ξ are finite and c∗k,ξ → 0, as ξ → 0.

Infact it holds

(38)
∣∣c∗k,ξ∣∣ ≤ [1 + 2µ−keµk!

]
ξk <∞,

for k = 1, ..., n.

Next we give.

Theorem 3.5. It holds

(39)

∫ ∞

−∞
|t|n
(
1 +

|t|
ξ

)r

dµξ (t) <∞; r, n ∈ N,

for

(40) dµξ (x) =
1

ξ
G

(
x

ξ

)
dx, 0 < ξ ≤ 1.

Also this integral converges to zero, as ξ → 0.

Infact it holds
1

ξ

∫ ∞

−∞
|x|n

(
1 +

|x|
ξ

)r

G

(
x

ξ

)
dx ≤

(41) 2r−1
[(
1 + 2µ−neµn!

)
+
(
1 + 2µ−(n+r)eµ (n+ r)!

)]
ξn <∞.

3.2. About the q-Deformed and λ-Parametrized Hyperbolic tangent func-

tion gq,λ. We consider the activation function gq,λ and study its related properties,

all the basics come from [9], ch. 17.

Let the activation function

(42) gq,λ (x) =
eλx − qe−λx

eλx + qe−λx
, λ, q > 0, x ∈ R.

It is

gq,λ (0) =
1− q

1 + q
,

and

(43) gq,λ (−x) = −g 1
q
,λ (x) , ∀ x ∈ R,

with

gq,λ (+∞) = 1, gq,λ (−∞) = −1.

We consider the function

(44) Mq,λ (x) :=
1

4
(gq,λ (x+ 1)− gq,λ (x− 1)) > 0,



GLOBAL SMOOTHNESS AND APPROXIMATION 83

∀ x ∈ R, q, λ > 0. We have Mq,λ (±∞) = 0, so that the x-axis is a horizontal

asymptote.

It holds

(45) Mq,λ (−x) =M 1
q
,λ (x) , ∀ x ∈ R, q, λ > 0,

and

M 1
q
,λ (−x) =Mq,λ (x) , ∀ x ∈ R.

The Mq,λ maximum is

(46) Mq,λ

(
ln q

2λ

)
=

tanh (λ)

2
, λ > 0.

Theorem 3.6. We have that

(47)
∞∑

i=−∞

Mq,λ (x− i) = 1, ∀ x ∈ R, ∀ λ, q > 0.

Theorem 3.7. It holds

(48)

∫ ∞

−∞
Mq,λ (x) dx = 1, λ, q > 0.

So that Mq,λ is a density function on R; λ, q > 0.

Remark 3.8. i) Let x ≥ 1. That is 0 ≤ x − 1 < x + 1. By mean value theorem we

obtain

(49) Mq,λ (x) =
1

4
[gq,λ (x+ 1)− gq,λ (x− 1)] =

1

4
· 2 · 4qλe2λξ

(e2λξ + q)2
=

2qλe2λξ

(e2λξ + q)2
,

for some 0 ≤ x− 1 < ξ < x+ 1; λ, q > 0.

But e2λξ < e2λξ + q, and

(50) Mq,λ (x) <
2qλ

(
e2λξ + q

)
(e2λξ + q)2

=
2qλ

(e2λξ + q)
<

2qλ

(e2λ(x−1) + q)
<

2qλ

e2λ(x−1)
,

x ≥ 1.

That is

(51) Mq,λ (x) < 2qλe−2λ(x−1), ∀ x ≥ 1.

Set µ := 2λ, then

(52) Mq,λ (x) < qµe−µ(x−1), ∀ x ≥ 1.

ii) Let now x ≤ −1. That is x− 1 < x+ 1 ≤ 0. Again we have

(53) Mq,λ (x) <
2qλ

(e2λξ + q)
,

x− 1 < ξ < x+ 1 ≤ 0; λ, q > 0.

We have

e2λ(x−1) < e2λξ < e2λ(x+1),



84 GEORGE A. ANASTASSIOU

and

(54) e2λ(x−1) + q < e2λξ + q < e2λ(x+1) + q.

Hence

(55)
1

e2λξ + q
<

1

e2λ(x−1) + q
.

Therefore it holds

(56) Mq,λ (x) <
2qλ

e2λ(x−1) + q
<

2qλ

e2λ(x−1)
, x ≤ −1.

That is

(57) Mq,λ (x) < 2qλe−2λ(x−1), ∀ x ≤ −1.

Set µ := 2λ, then

(58) Mq,λ (x) < qµe−µ(x−1), ∀ x ≤ −1.

We have proved that

(59) Mq,λ (x) < qµe−µ(x−1),

∀ x ∈ (−∞,−1] ∪ [1,+∞) = R− (−1, 1) .

Let 0 < ξ ≤ 1, it holds

(60) Mq,λ

(
x

ξ

)
< qµe−µ(x

ξ
−1), ∀ x ≥ ξ, or ∀ x ≤ −ξ.

By Theorem 3.7 we have

(61)
1

ξ

∫ ∞

−∞
Mq,λ

(
x

ξ

)
dx = 1.

So that 1
ξ
Mq,λ

(
x
ξ

)
is a density function and let

(62) dµξ (x) :=
1

ξ
Mq,λ

(
x

ξ

)
dx,

that is µξ is a Borel probability measure.

We give

Theorem 3.9. Let

(63) ck,ξ :=
1

ξ

∫ ∞

−∞
xkMq,λ

(
x

ξ

)
dx, k = 1, ..., n ∈ N.

Then ck,ξ are finite and ck,ξ → 0, as ξ → 0.

In fact it holds

(64) |ck,ξ| ≤
[
1 +

(
q +

1

q

)
µ−keµk!

]
ξk <∞, k = 1, ..., n.

It also follows
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Theorem 3.10. It holds (λ, q > 0; r, n ∈ N; 0 < ξ ≤ 1)

1

ξ

∫ ∞

−∞
|t|n
(
1 +

|t|
ξ

)r

Mq,λ

(
t

ξ

)
dt ≤

(65) 2r−1

[[
1 +

(
q +

1

q

)
µ−neµn!

]
+

[
1 +

(
q +

1

q

)
µ−(n+r)eµ (n+ r)!

]]
ξn <∞,

and it converges to zero, as ξ → 0.

3.3. About the Gudermannian generated activation function. Here we follow

[8], Ch. 2.

Let the related normalized generator sigmoid function:

(66) f (x) :=
8

π

∫ x

0

1

et + e−t
dt, x ∈ R,

and the neural network activation function:

(67) ψ (x) :=
1

4
(f (x+ 1)− f (x− 1)) > 0, x ∈ R.

We mention

Theorem 3.11. It holds

(68)

∫ ∞

−∞
ψ (x) dx = 1.

So that ψ (x) is a density function.

By [8], p. 49, we found that

(69) ψ (x) <
2

π cosh (x− 1)
, ∀ x ≥ 1.

But

(70)
1

cosh (x− 1)
=

2

ex−1 + e−(x−1)
<

2

ex−1
= 2e−(x−1),

∀ x ∈ R.

Therefore it is

(71) ψ (x) <
4

π
e−(x−1) =

4

π
ee−x, ∀ x ≥ 1.

So here it is

dµξ (x) =
1

ξ
ψ

(
x

ξ

)
dx, 0 < ξ ≤ 1,

the related Borel probability measure.

We give the following results.
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Theorem 3.12. Let 0 < ξ ≤ 1, and

(72) γk,ξ :=
1

ξ

∫ ∞

−∞
xkψ

(
x

ξ

)
dx, k = 1, ..., n ∈ N.

Then γk,ξ are finite and γk,ξ → 0, as ξ → 0.

Theorem 3.13. It holds

(73)
1

ξ

∫ ∞

−∞
|t|n
(
1 +

|t|
ξ

)r

ψ

(
t

ξ

)
dt <∞;

r, n ∈ N; 0 < ξ ≤ 1.

Also this integral converges to zero, as ξ → 0.

3.4. About the q-deformed and λ-parametrized logistic type activation

function. Here all come from [9], Ch. 15.

The activation function now is

(74) φq,λ (x) :=
1

1 + qe−λx
, x ∈ R,

where q, λ > 0.

The density function here will be

(75) Gq,λ (x) :=
1

2
(φq,λ (x+ 1)− φq,λ (x− 1)) > 0, x ∈ R.

We mention

Theorem 3.14. It holds

(76)

∫ ∞

−∞
Gq,λ (x) dx = 1.

By [9], p. 373, we have

Gq,λ (x) < qλe−λ(x−1), ∀ x ≥ 1.

So here it is

(77) dµξ (x) =
1

ξ
Gq,λ

(
x

ξ

)
dx, 0 < ξ ≤ 1,

the related Borel probability measure.

We give the following results.

Theorem 3.15. Let

(78) δk,ξ :=
1

ξ

∫ ∞

−∞
xkGq,λ

(
x

ξ

)
dx, k = 1, ..., n ∈ N.

Then δk,ξ are finite and δk,ξ → 0, as ξ → 0.
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Theorem 3.16. It holds

(79) IGq,λ,ξ :=
1

ξ

∫ ∞

−∞
|t|n
(
1 +

|t|
ξ

)r

Gq,λ

(
t

ξ

)
dt <∞;

where λ, q > 0; r, n ∈ N; 0 < ξ ≤ 1.

Also IGq,λ,ξ → 0, as ξ → 0.

3.5. About the q-Deformed and β-Parametrized Half Hyperbolic Tangent

function φq,β. Here all come from [9], Ch. 19.

The activation function now is

(80) φq,β (x) :=
1− qe−βt

1 + qe−βt
, ∀ t ∈ R,

where q, β > 0.

The corresponding density function will be

(81) Φq,β (x) :=
1

4
(φq,β (x+ 1)− φq,β (x− 1)) > 0, ∀ x ∈ R.

It holds

Theorem 3.17.

(82)

∫ ∞

−∞
Φq,β (x) dx = 1.

By [9], p. 481, we have that

(83) Φq,β (x) < βqe−β(x−1), ∀ x ≥ 1.

Thus here it is

(84) dµξ (x) =
1

ξ
Φq,β

(
x

ξ

)
dx, 0 < ξ ≤ 1,

the related Borel probability measure.

We state the following results.

Theorem 3.18. Let

(85) εk,ξ :=
1

ξ

∫ ∞

−∞
xkΦq,β

(
x

ξ

)
dx, k = 1, ..., n ∈ N.

Then εk,ξ are finite and εk,ξ → 0, as ξ → 0.

Theorem 3.19. It holds

(86) IΦq,β ,ξ :=
1

ξ

∫ ∞

−∞
|t|n
(
1 +

|t|
ξ

)r

Φq,β

(
t

ξ

)
dt <∞;

where q, β > 0; r, n ∈ N; 0 < ξ ≤ 1.

Also IΦq,β ,ξ → 0, as ξ → 0.
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4. More on Activation Probability measures

Here all come from [11].

We mention the following results.

Theorem 4.1. Let p > 1, r ∈ N, 0 < ξ ≤ 1, n ∈ N, l := max (r, n), ⌈·⌉ ceiling of the

number, and h := 2 (l ⌈p⌉+ 1). It holds

1

ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1

− 1

)
|t|np−1G

(
t

ξ

)
dt ≤

(87) 2h
{
1 +

[
1 + 2µ−heµh!

]}
< +∞.

Proposition 4.2. Let r ∈ N. It holds
1

ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)r

G

(
t

ξ

)
dt ≤

(88) 2r−1
[
1 +

[
1 + 2µ−reµr!

]]
< +∞.

Theorem 4.3. Let r, n ∈ N, 0 < ξ ≤ 1. It holds

1

ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)r+1

− 1

)
|t|n−1G

(
t

ξ

)
dt ≤

(89) 2r+n
[
1 +

[
1 + 2µ−(r+n)eµ (r + n)!

]]
< +∞.

Proposition 4.4. Let r ∈ N, p > 1, λ := r ⌈p⌉ ∈ N. Then

(90)
1

ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp

G

(
t

ξ

)
dt ≤

2λ−1
[
1 +

[
1 + 2µ−λeµλ!

]]
< +∞.

Similar results are needed and follow.

Theorem 4.5. All as in Theorem 4.1. Then

(91)
1

ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1

− 1

)
|t|np−1Mq,λ

(
t

ξ

)
dt ≤

2h
{
1 +

[
1 +

(
q +

1

q

)
µ−heµh!

]}
< +∞,

where q, λ > 0.

Theorem 4.6. Let r, n ∈ N, 0 < ξ ≤ 1. Then

(92)
1

ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)r+1

− 1

)
|t|n−1Mq,λ

(
t

ξ

)
dt ≤

2r+n

[
1 +

[
1 +

(
q +

1

q

)
µ−(r+n)eµ (r + n)!

]]
< +∞.
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Proposition 4.7. Let r ∈ N. It holds

(93)
1

ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)r

Mq,λ

(
t

ξ

)
dt ≤

2r−1

[
1 +

[
1 +

(
q +

1

q

)
µ−reµr!

]]
< +∞.

Proposition 4.8. Let r ∈ N, p > 1, λ := r ⌈p⌉. Then

(94)
1

ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp

Mq,λ

(
t

ξ

)
dt ≤

2λ−1

[
1 +

[
1 +

(
q +

1

q

)
µ−λeµλ!

]]
< +∞.

We continue with more related results.

Theorem 4.9. Let p > 1, r ∈ N, 0 < ξ ≤ 1, n ∈ N. Then, there exists λ1 > 0 such

that:

(95)
1

ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1

− 1

)
|t|np−1 ψ

(
t

ξ

)
dt ≤ λ1 ∈ R.

More needed results are listed.

Theorem 4.10. Let r, n ∈ N, 0 < ξ ≤ 1. Then, there exists λ2 > 0 such that:

(96)
1

ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)r+1

− 1

)
|t|n−1 ψ

(
t

ξ

)
dt ≤ λ2 ∈ R.

Proposition 4.11. Let r ∈ N. Then

(97)
1

ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)r

ψ

(
t

ξ

)
dt ≤ λ3 ∈ R.

Proposition 4.12. Let r ∈ N, p > 1. Then

(98)
1

ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp

ψ

(
t

ξ

)
dt ≤ λ4 ∈ R.

More needed results:

Theorem 4.13. Let p > 1, r ∈ N, 0 < ξ ≤ 1, n ∈ N, q, λ > 0. Then, there exists

ρ1 > 0:

(99)
1

ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1

− 1

)
|t|np−1Gq,λ

(
t

ξ

)
dt ≤ ρ1 ∈ R.

Theorem 4.14. Let r, n ∈ N, 0 < ξ ≤ 1. Then, there exists ρ2 > 0:

(100)
1

ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)r+1

− 1

)
|t|n−1Gq,λ

(
t

ξ

)
dt ≤ ρ2 ∈ R.
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Proposition 4.15. Let r ∈ N. Then

(101)
1

ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)r

Gq,λ

(
t

ξ

)
dt ≤ ρ3 ∈ R.

Proposition 4.16. Let r ∈ N, p > 1. Then

(102)
1

ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp

Gq,λ

(
t

ξ

)
dt ≤ ρ4 ∈ R.

Furthermore we have the following:

Theorem 4.17. Let p > 1, r ∈ N, 0 < ξ ≤ 1, n ∈ N; q, β > 0. Then, there exists

ψ1 > 0:

(103)
1

ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1

− 1

)
|t|np−1Φq,β

(
t

ξ

)
dt ≤ ψ1.

Theorem 4.18. Let r, n ∈ N, 0 < ξ ≤ 1. Then, there exists ψ2 > 0:

(104)
1

ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)r+1

− 1

)
|t|n−1Φq,β

(
t

ξ

)
dt ≤ ψ2.

Proposition 4.19. Let r ∈ N. Then

(105)
1

ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)r

Φq,β

(
t

ξ

)
dt ≤ ψ3 ∈ R.

Proposition 4.20. Let r ∈ N, p > 1. Then

(106)
1

ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp

Φq,β

(
t

ξ

)
dt ≤ ψ4 ∈ R.

5. Main Results

Here we describe the activated approximation and simultaneous approximation

properties of the following activated singular integral operators which are special cases

of Θr,ξ (f, x), see (2). Their definitions are based on Sections 3, 4. Basically we apply

our listed results in Section 2.

Definition 5.1. Let f : R → R be a Borel measurable function and αj as in (1),

x ∈ R, 0 < ξ ≤ 1.

We call

1)

(107) Θ1,r,ξ (f, x) =
1

ξ

∫ ∞

−∞

(
r∑

j=1

αjf (x+ jt)

)
G

(
t

ξ

)
dt,

2)

(108) Θ2,r,ξ (f, x) =
1

ξ

∫ ∞

−∞

(
r∑

j=1

αjf (x+ jt)

)
Mq,λ

(
t

ξ

)
dt, q, λ > 0,
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3)

(109) Θ3,r,ξ (f, x) =
1

ξ

∫ ∞

−∞

(
r∑

j=1

αjf (x+ jt)

)
ψ

(
t

ξ

)
dt,

4)

(110) Θ4,r,ξ (f, x) =
1

ξ

∫ ∞

−∞

(
r∑

j=1

αjf (x+ jt)

)
Gq,λ

(
t

ξ

)
dt, q, λ > 0,

and

5)

(111) Θ5,r,ξ (f, x) =
1

ξ

∫ ∞

−∞

(
r∑

j=1

αjf (x+ jt)

)
Φq,β

(
t

ξ

)
dt, q, β > 0.

We start with activated global smoothness presentation results.

Theorem 5.2. Let h > 0, f ∈ C (R) ; j∗ = 1, 2, 3, 4, 5.

i) Assume Θj∗,r,ξ (f ;x) ∈ R, ξ > 0, ∀ x ∈ R and ωm (f, h) <∞. Then

(112) ωm (Θj∗,r,ξf, h) ≤

(
r∑

j=0

|αj|

)
ωm (f, h) .

ii) Assume f ∈ (C (R) ∩ L1 (R)), then

(113) ωm (Θj∗,r,ξf, h)1 ≤

(
r∑

j=0

|αj|

)
ωm (f, h)1 .

iii) Assume f ∈ (C (R) ∩ Lp (R)), p > 1. Then

(114) ωm (Θj∗,r,ξf, h)p ≤

(
r∑

j=0

|αj|

)
ωm (f, h)p .

Proof. By Theorem 2.1

Next comes about differentiation of Θj∗,r,ξ (f ;x), j
∗ = 1, 2, 3, 4, 5.

Theorem 5.3. Here all are as in Theorem 2.2, with dµξ to be
1
ξ
G
(

t
ξ

)
dt, 1

ξ
Mq,λ

(
t
ξ

)
dt,

1
ξ
ψ
(

t
ξ

)
dt, 1

ξ
Gq,λ

(
t
ξ

)
dt and 1

ξ
Φq,β

(
t
ξ

)
dt, respectively for j∗ = 1, 2, 3, 4, 5.

Then f (i) (x+ jt) defines a µξ-integrable function with respect to t for each x ∈ R,
all i = 1, ..., n; j = 1, ..., r, and

(115) (Θj∗,r,ξ (f ;x))
(i) = Θj∗,r,ξ

(
f (i);x

)
,

for all x ∈ R, all i = 1, ..., n; j∗ = 1, 2, 3, 4, 5.

Proof. By Theorem 2.2
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It follows activated simultaneous global smoothness preservation of Θj∗,r,ξ oper-

ators, j∗ = 1, 2, 3, 4, 5.

Theorem 5.4. Let h > 0 and the assumptions of Theorem 5.3 are valid; j∗ =

1, 2, 3, 4, 5.

i) Suppose that ωm

(
f (i), h

)
<∞, all i = 0, 1, ..., n, then

(116) ωm

(
(Θj∗,r,ξf)

(i) , h
)
≤

(
r∑

j=0

|αj|

)
ωm

(
f (i), h

)
,

for all i = 0, 1, ..., n.

ii) Assume f (i) ∈ (C (R) ∩ L1 (R)), i = 0, 1, ..., n, then

(117) ωm

(
(Θj∗,r,ξf)

(i) , h
)
1
≤

(
r∑

j=0

|αj|

)
ωm

(
f (i), h

)
1
,

for all i = 0, 1, ..., n.

iii) Assume f (i) ∈ (C (R) ∩ Lp (R)), p > 1, i = 0, 1, ..., n, then

(118) ωm

(
(Θj∗,r,ξf)

(i) , h
)
p
≤

(
r∑

j=0

|αj|

)
ωm

(
f (i), h

)
p
,

i = 0, 1, ..., n.

Proof. By Theorem 2.3

We need the following.

Definition 5.5. We call

(119)

dµ1ξ =
1
ξ
G
(

t
ξ

)
dt,

dµ2ξ =
1
ξ
Mq,λ

(
t
ξ

)
dt,

dµ3ξ =
1
ξ
ψ
(

t
ξ

)
dt,

dµ4ξ =
1
ξ
Gq,λ

(
t
ξ

)
dt, and

dµ5ξ =
1
ξ
Φq,β

(
t
ξ

)
dt.

Also we need.

Definition 5.6. We set

(120)

c1,k,ξ = c∗k,ξ,

c2,k,ξ = ck,ξ,

c3,k,ξ = γk,ξ,

c4,k,ξ = δk,ξ, and

c5,k,ξ = εk,ξ.

Next come simultaneous activated approximation results.
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Theorem 5.7. Let f ∈ Cn+ρ (R), n, ρ ∈ Z+ and ωr

(
f (n+i), h

)
< ∞, ∀ h > 0 for

i = 0, 1, ..., ρ; δk =
r∑

j=1

αjj
k. We consider the assumptions of Theorems 2.2, 5.3 valid

for n = ρ there. Then∥∥∥∥∥(Θj∗,r,ξ (f ;x))
(i) − f (i) (x)−

n∑
k=1

f (i+k) (x)

k!
δkcj∗,k,ξ

∥∥∥∥∥
∞,x

≤

(121)
ωr

(
f (n+i), ξ

)
n!

∫ ∞

−∞
|t|n
(
1 +

|t|
ξ

)r

dµj∗ξ (t) .

When n = 0 the sum in the left of (121) collapses; j∗ = 1, 2, 3, 4, 5.

Proof. By Theorem 2.4, Definitions 5.5, 5.6, and Theorems 3.4, 3.5; Theorems 3.9,

3.10; Theorems 3.12, 3.13; Theorems 3.15, 3.16; and Theorems 3.18, 3.19

We continue with the next Lp result.

Theorem 5.8. Let f ∈ Cn+ρ (R), with f (n+i) ∈ Lp (R), n ∈ N, i = 0, 1, ..., ρ ∈ Z+.

Let p, q > 1 : 1
p
+ 1

q
= 1. We consider the assumptions of Theorems 2.2, 5.3 valid for

n = ρ there. Then∥∥∥∥∥(Θj∗,r,ξ (f ;x))
(i) − f (i) (x)−

n∑
k=1

f (k+i) (x)

k!
δkcj∗,k,ξ

∥∥∥∥∥
p,x

≤

1

((n− 1)!) (q (n− 1) + 1)
1
q (rp+ 1)

1
p

(122)

[∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1

− 1

)
|t|np−1 dµj∗ξ (t)

] 1
p

ξ
1
pωr

(
f (n+i), ξ

)
p
,

for j∗ = 1, 2, 3, 4, 5.

Proof. By Theorem 2.5, Definitions 5.5, 5.6, and Theorems 3.4, 3.9, 3.12, 3.15, 3.18;

and Theorems 4.1, 4.5, 4.9, 4.13, 4.17.

A related results follows:

Proposition 5.9. Let f (i) ∈ (C (R) ∩ Lp (R)), i = 0, 1, ..., ρ ∈ Z+; p, q > 1 : 1
p
+ 1

q
= 1.

We consider the assumptions of Theorems 2.2, 5.3 valid for n = ρ there. Then∥∥∥(Θj∗,r,ξ (f))
(i) − f (i)

∥∥∥
p
≤

(123) ωr

(
f (i), ξ

)
p

(∫ ∞

−∞

(
1 +

|t|
ξ

)rp

dµj∗ξ (t)

) 1
p

,

for all i = 0, 1, ..., ρ; j∗ = 1, 2, 3, 4, 5.
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Proof. By Proposition 2.6, Definitions 5.5, 5.6, and Propositions 4.4, 4.8, 4.12. 4.16,

4.20.

Next we cover the case p = 1.

Theorem 5.10. Let f ∈ Cn+ρ (R), with f (n+i) ∈ L1 (R), n ∈ N, i = 0, 1, ..., ρ ∈ Z+.

We consider the assumptions of Theorems 2.2, 5.3 valid for n = ρ there. Then∥∥∥∥∥(Θj∗,r,ξ (f ;x))
(i) − f (i) (x)−

n∑
k=1

f (k+i) (x)

k!
δkcj∗,k,ξ

∥∥∥∥∥
1,x

≤ 1

(n− 1)! (r + 1)

(124)

[∫ ∞

−∞

((
1 +

|t|
ξ

)r+1

− 1

)
|t|n−1 dµj∗ξ (t)

]
ξωr

(
f (n+i), ξ

)
1
,

for all i = 0, 1, ..., ρ; j∗ = 1, 2, 3, 4, 5.

Proof. By Theorem 2.7, Definitions 5.5, 5.6, and Theorems 3.4, 4.3; Theorems 3.9,

4.6; Theorems 3.12, 4.10; Theorems 3.15, 4.14; and Theorems 3.18, 4.18.

We finish with a basic simultaneous activated approximation result.

Proposition 5.11. Let f (i) ∈ (C (R) ∩ L1 (R)), i = 0, 1, ..., ρ ∈ Z+. We consider the

assumptions of Theorems 2.2, 5.3 valid for n = ρ there. Then∥∥∥(Θj∗,r,ξ (f))
(i) − f (i)

∥∥∥
1
≤

(125) ωr

(
f (i), ξ

)
1

[∫ ∞

−∞

(
1 +

|t|
ξ

)r

dµj∗ξ (t)

]
,

for all i = 0, 1, ..., ρ; j∗ = 1, 2, 3, 4, 5.

Proof. By Proposition 2.8, Definitions 5.5, 5.6, and Propositions 4.2, 4.7, 4.11, 4.15,

4.19.
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