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1. INTRODUCTION

This paper is concerned with the existence of solutions to the boundary value

problem (BVP) for impulsive differential inclusions of the form

(1.1)
c
HD

ry(t) ∈ F (t, y(t)), for a.e. t ∈ J = [1, T ], t ̸= tk, k = 1, ...,m, 0 < r ≤ 1,

(1.2) ∆y|t=tk = Ik(y(t
−
k )), k = 1, ...,m,

(1.3) ay(1) + by(T ) = c,

where T > 1, 1 = t0 < t1 < · · · < tm < tm+1 = T , HcDr is the Caputo–Hadamard

fractional derivative of order 0 < r ≤ 1, P(R) is the family of all nonempty subsets

of R, F : [1, T ]× R → P(R) is a multivalued map, a, b and c are real constants with

a+b ̸= 0, Ik : R → R, k = 1, . . . ,m, are continuous functions, ∆y|t=tk = y(t+k )−y(t
−
k )

and ∆y′|t=tk = y′(t+k )− y′(t−k ) where y(t
+
k ) = lim

ε→0+
y(tk + ε) and y(t−k ) = lim

ε→0−
y(tk + ε)

are the right and left hand limits of y at t = tk, k = 1, . . . ,m.

Differential equations of fractional order provide models for many phenomena

in various fields of science and engineering including viscoelasticity, electrochemistry,

control processes, porous media, electromagnetism, and others. As a consequence,
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there has been a significant development in the theory of fractional calculus and frac-

tional ordinary and partial differential equations in recent years; see, for example, the

monographs of Abbas et al. [1], Hilfer [27], Kilbas et al. [30], and Podlubny [35], as

well as the papers of Agarwal et al. [3], Benchohra et al. [9], and Momani et al. [34].

Applied problems require the definitions of fractional derivatives to allow the uti-

lization of physically interpretable initial data (e.g., y(0), y′(0), etc.), and Caputo’s

fractional derivative is quite useful in such instances. For details concerning geo-

metric and physical interpretation of fractional derivatives of Riemann-Liouville and

Caputo type, see [35]. However, the literature on Hadamard-type fractional differen-

tial equations has not undergone as extensive a development; see [4, 38]. Hadamard’s

fractional derivative [22] differs from other fractional derivatives in that the kernel of

the integral in the definition of the Hadamard derivative contains a logarithmic func-

tion of exponential order. Detailed descriptions of the Hadamard fractional derivative

and integral can be found, for example, in [13, 14, 15]. Hadamard fractional calculus

has recently been gaining attention in the study of fractional analysis. The papers

[4, 13, 14, 15, 29, 32, 38] contain some major developments in the fundamental the-

ory of Hadamard fractional calculus. A Caputo-type modification of the Hadamard

fractional derivative, which is called the Caputo-Hadamard fractional derivative, was

given in [28], and some of its basic properties were proved in [2, 18].

Igor Podlubny’s website, http://people.tuke.sk/igor.podlubny/, contains more

information on fractional calculus and its applications, and so is very useful for those

who are interested in this research area. Impulsive differential equations have become

important in recent years as mathematical models of phenomena in both the physical

and social sciences. There has been a significant development in impulsive theory,

especially in the area of impulsive differential equations with fixed moments; see, for

instance, the monographs by Bainov and Simeonov [6], Benchohra et al. [10], Graef

et al. [19] Lakshmikantham et al. [33], and Samoilenko and Perestyuk [37], and

the references therein. In [11], Benchohra and Slimani initiated the study of Caputo

fractional differential equations with impulses. In 2018, Belhannache et al. [7] studied

initial value problems for Caputo-Hadamard fractional differential inclusions (of order

0 < r ≤ 1) with impulses.

We have organized this paper as follows. In Section 2, we introduce some prelim-

inary results needed in the following sections. In Section 3, we present an existence

result for the problem (1.1)–(1.3) in the case where the right hand side is convex

valued by using the nonlinear alternative of Leray-Schauder type. Section 4 contains

two existence results for nonconvex valued right hand sides. The first result is based

on a fixed point theorem due to Covitz and Nadler [17], and the second one uses the

nonlinear alternative of Leray-Schauder [21] for single-valued maps combined with a
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selection theorem due to Bressan and Colombo [12] for lower semicontinuous mul-

tivalued maps with decomposable values. In Section 5, we present a result on the

topological structure of the set of solutions of (1.1)–(1.3). An example is given in the

last section.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts that

are used in the remainder of this paper. Much of what follows is standard, but is

included here for the convenience of the reader.

On the interval [a, b], let C([a, b],R) be the Banach space of all continuous func-

tions from [a, b] into R with the norm

∥y∥∞ = sup{|y(t)| : a ≤ t ≤ b},

and let L1([a, b],R) be Banach space of functions y : [a, b] → R that are Lebesgue

integrable with the norm

∥y∥L1 =

∫ b

a

|y(t)|dt.

Here, AC([a, b], R) is the space of functions y : [a, b] → R that are absolutely con-

tinuous. For any Banach space (X, ∥ · ∥), let Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and
Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}. A multivalued map G : X →
P(X) is said to be convex (closed) valued if G(X) is convex (closed) for all x ∈ X,

and we say that G is bounded on bounded sets if G(B) = ∪
x∈B

G(x) is bounded in X

for all B ∈ Pb(X) (i.e., sup
x∈B

{sup{|y| : y ∈ G(x)}} <∞).

A map G is upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0)

is a nonempty closed subset of X, and for each open set N in X containing G(x0),

there exists an open neighborhood N0 of x0 such that G(N0) ⊆ N . Also, G is said to

be completely continuous if G(B) is relatively compact for every B ∈ Pb(X).

If the multivalued map G is completely continuous with nonempty compact val-

ues, then G is u.s.c. if and only if G has a closed graph (i.e., xn → x∗, yn → y∗, yn ∈
G(xn) imply y∗ ∈ G(x∗)). We say that G has a fixed point if there is x ∈ X such

that x ∈ G(x). The set of all fixed points set of the multivalued operator G will be

denoted by FixG.

A multivalued map G : J → Pcl(R) is said to be measurable if for every y ∈ R,
the function

t→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable. We say that a subset A of [0, T ]×R is l⊗β measurable if A belongs to

the σ-algebra generated by all sets of the form J×D, where J is Lebesgue measurable
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in [0, T ] and D is Borel measurable in R. A subset A of L1([0, T ],R) is decomposable

if for all u, v ∈ A and a measurable set J ⊂ [0, T ], we have uχJ +vχ[a,b]−J ∈ A, where

χ stands for the characteristic function.

Definition 2.1. A function F : [a, b]× R → P(R) is Caratheódory if:

(1) t→ F (t, u) is measurable for each u ∈ R;
(2) u→ F (t, u) is upper semicontinuous for almost all t ∈ [a, b].

For each y ∈ C([a, b],R), the set of selections of F is given by

SF,y = {v ∈ L1([a, b],R) : v(t) ∈ F (t, y(t)) a.e. t ∈ [a, b]}.

Let (X, d) be a metric space induced from the normed space (X, | · |). Consider

Hd : P(X)× P(X) → R+ ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = inf
a∈A

d(a, b) and d(a,B) = inf
b∈B

d(a, b). Then (Pb,cl(X), Hd) is a metric

space and (Pcl(X), Hd) is a generalized metric space (see [31]).

Definition 2.2. A multivalued operator N : X → Pcl(X) is called:

(1) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X;

(2) a contraction if and only if it is γ-Lipschitz with γ < 1.

The following lemma will be used in the sequel.

Lemma 2.3. (Covitz-Nadler [17]) Let (X, d) be a complete metric space. If N : X →
Pcl(X) is a contraction, then FixN ̸= ∅.

Definition 2.4. ([30]) The Hadamard fractional integral of order α > 0 for a function

h : [a, b] → R, where a ≥ 0, is defined by

Iαa h(t) =
1

Γ(α)

∫ t

a

(
log

t

s

)α−1
h(s)

s
ds,

provided the integral exists.

Definition 2.5. ([28]) Let ACn
δ [a, b] = {g : [a, b] → C and δn−1g ∈ AC[a, b]}, where

δ = t
d

dt
, 0 < a < b <∞ and let α ∈ C with Re(α) ≥ 0. For a function g ∈ ACn

δ [a, b],

the Caputo-Hadamard derivative of fractional order α is defined as follows:

(i): If α /∈ N, and n− 1 < α < n such that n = [Re(α)] + 1, then

(CHDα
a g)(t) =

1

Γ(n− α)

(
t
d

dt

)n ∫ t

a

(
log

t

s

)n−α−1

δng(s)
ds

s
;
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(ii): If α = n ∈ N, then (CHDα
a g)(t) = δng(t).

Here, [Re(α)] denotes the integer part of the real number Re(α) and log(·) = loge(·).

Lemma 2.6. Let y ∈ ACn
δ [a, b] or C

n
δ [a, b] and α ∈ C. Then

(2.1) Iαa (
CHDα

a y)(t) = y(t)−
n−1∑
k=0

δky(a)

k!

(
log

t

a

)k

.

3. THE CONVEX CASE

In this section, we assume that F is a compact and convex valued multivalued

map. Consider the set of functions

PC(J,R) = {y : J → R | y ∈C((tk, tk+1],R), k = 0, . . . ,m, and there exist

y(t+k ) and y(t
−
k ), k = 1, . . . ,m, with y(t−k ) = y(tk)}.

This forms a Banach space with the norm

∥y∥PC = sup
t∈J

|y(t)|.

Set J ′ = J \ {t1, . . . , tm}.

Definition 3.1. A function y ∈ PC(J,R) is a solution of (1.1)–(1.3) if there ex-

ists a function ρ ∈ L1([a, T ],R) such that ρ(t) ∈ F (t, y) a.e. t ∈ J ,and ρ satisfies
CHDαy(t) = ρ(t) on J ′ and conditions (1.2)–(1.3).

To prove the existence of a solution to (1.1)–(1.3), we need the following lemma

relating solutions of a fractional BVP to solutions of a corresponding integral equation.

Lemma 3.2. Let 0 < r ≤ 1 and let ρ : J → R be continuous. A function y is a

solution of the fractional integral equation

(3.1) y(t) =



(
−1

a+ b

)[
b

m∑
i=1

Ii(y(t
−
i )) +

b

Γ(r)

m∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

ρ(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

ρ(s)
ds

s
− c

]

+
k∑

i=1

Ii(y(t
−
i )) +

1

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

ρ(s)
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

ρ(s)
ds

s
, if t ∈ [tk, tk+1],

where k = 1, ...,m, if and only if y is a solution of the fractional BVP

CHDr
tk
y(t) = ρ(t), for each t ∈ Jk,(3.2)

∆y|t=tk = Ik(y(t
−
k )), k = 1, ...,m,(3.3)

ay(1) + by(T ) = c.(3.4)
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Proof. Assume that y satisfies the impulsive boundary value problem (3.2)–(3.4). If

t ∈ [1, t1], then
CHDr

t y(t) = ρ(t), t ∈ [1, t1],

and by virtue of Lemma 2.6, we see that

y(t) = c0 +
1

Γ(r)

∫ t

1

(
log

t

s

)r−1

ρ(s)
ds

s
.

If t ∈ (t1, t2], then again by Lemma 2.6,

y(t) = y(t+1 ) +
1

Γ(r)

∫ t

t1

(
log

t

s

)r−1

ρ(s)
ds

s

= ∆y|t=t1 + y(t−1 ) +
1

Γ(r)

∫ t

t1

(
log

t

s

)r−1

ρ(s)
ds

s

= I1(y(t
−
1 )) +

[
c0 +

1

Γ(r)

∫ t1

1

(
log

t1
s

)r−1

ρ(s)
ds

s

]

+
1

Γ(r)

∫ t

t1

(
log

t

s

)r−1

ρ(s)
ds

s

= c0 + I1(y(t
−
1 )) +

1

Γ(r)

∫ t1

1

(
log

t1
s

)r−1

ρ(s)
ds

s

+
1

Γ(r)

∫ t

t1

(
log

t

s

)r−1

ρ(s)
ds

s
.

If t ∈ (t2, t3],

y(t) = y(t+2 ) +
1

Γ(r)

∫ t

t2

(
log

t

s

)r−1

ρ(s)
ds

s

= ∆y|t=t2 + y(t−2 ) +
1

Γ(r)

∫ t

t2

(
log

t

s

)r−1

ρ(s)
ds

s

= I2(y(t
−
2 )) +

[
c0 + I1(y(t

−
1 )) +

1

Γ(r)

∫ t1

1

(
log

t1
s

)r−1

ρ(s)
ds

s

+
1

Γ(r)

∫ t2

t1

(
log

t2
s

)r−1

ρ(s)
ds

s

]
+

1

Γ(r)

∫ t

t2

(
log

t

s

)r−1

ρ(s)
ds

s

= c0 + [I1(y(t
−
1 )) + I2(y(t

−
2 ))] +

[
1

Γ(r)

∫ t1

1

(
log

t1
s

)r−1

ρ(s)
ds

s

+
1

Γ(r)

∫ t2

t1

(
log

t2
s

)r−1

ρ(s)
ds

s

]
+

1

Γ(r)

∫ t

t2

(
log

t

s

)r−1

ρ(s)
ds

s
.

And in general, if t ∈ (tk, tk+1], where k = 1, ...,m,

y(t) = c0 +
k∑

i=1

Ii(y(t
−
i )) +

1

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

ρ(s)
ds

s
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+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

ρ(s)
ds

s
.

The impulsive conditions and boundary conditions, (3.3) and (3.4), imply that

ay(1) + by(T ) = c0(a+ b) + b

k∑
i=1

Ii(y(t
−
i )) +

b

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

ρ(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

ρ(s)
ds

s
= c,

so

c0 =

(
−1

a+ b

)[
b

m∑
i=1

Ii(y(t
−
i )) +

b

Γ(r)

m∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

ρ(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

ρ(s)
ds

s
− c

]
.

Hence, we obtain the solution

y(t) =

(
−1

a+ b

)[
b

m∑
i=1

Ii(y(t
−
i )) +

b

Γ(r)

m∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

ρ(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

ρ(s)
ds

s
− c

]

+
k∑

i=1

Ii(y(t
−
i )) +

1

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

ρ(s)
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

ρ(s)
ds

s
.

Conversely, assume that y satisfies (3.1). By a direct computation, it follows

that the solution given by (5) satisfies (3.2)–(3.4). This completes the proof of the

lemma.

Theorem 3.3. Assume the following conditions hold:

(H1): F : J × R → Pcp,c(R) is a Carathéodory multi-valued map.

(H2): There exist p ∈ C(J,R+) and a continuous and nondecreasing function

ψ : [0,∞) → (0,∞) such that

∥F (t, u)∥P = sup{|v|, v ∈ F (t, u)} ≤ p(t)ψ(|u|) for t ∈ J and u ∈ R.

(H3): There exists a continuous and nondecreasing function ψ∗ : [0,∞) → (0,∞)

such that

∥Ik(u)∥ ≤ ψ∗(|u|) for each u ∈ R.
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(H4): There exists M > 0 such that

(3.5)
M(∣∣∣∣ b

a+ b

∣∣∣∣+ 1

)[
(m+ 1)

Γ(r + 1)
(log T )rp∗ψ(M) +mψ∗(M)

]
+

∣∣∣∣ c

a+ b

∣∣∣∣ > 1,

where p∗ = sup
t∈J

{p(t)}.

(H5): There exists l ∈ L1(J,R+) such that

Hd(F (t, u), F (t, ū)) ≤ l(t)|u− ū| for all u, ū ∈ R.

Then the BVP (1.1)–(1.3) has at least one solution on J .

Proof. We transform the problem (1.1)–(1.3) into a fixed point problem by defining

the multivalued operator N : PC(J,R) → P(PC(J,R)) by

N(y) = {h ∈ PC(J,R) : y(t)

where

y(t) =



(
−1

a+ b

)[
b

m∑
i=1

Ii(y(t
−
i ))

+
b

Γ(r)

m∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

v(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

v(s)
ds

s
− c

]

+
k∑

i=1

Ii(y(t
−
i )) +

1

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

v(s)
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

v(s)
ds

s
, if t ∈ [tk, tk+1], v ∈ SF,y.

In view of Lemma 3.2, we see that the fixed points of N are solutions to (1.1)–

(1.3). We shall show that N satisfies the assumptions of the nonlinear Leray-Schauder

alternative. The proof will be given in several steps.

Step 1: N(y) is convex for each y ∈ PC(J,E). Let h1, h2 belong to N(y); then

there exist v1, v2 ∈ SF,y such that, for each t ∈ J and i = 1, 2,

hi(t) =

(
−1

a+ b

)[
b

m∑
i=1

Ii(y(t
−
i )) +

b

Γ(r)

m∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

vi(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

vi(s)
ds

s
− c

]
+

k∑
i=1

Ii(y(t
−
i ))

+
1

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

v(s)
ds

s
+

1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

vi(s)
ds

s
.



FRACTIONAL INCLUSIONS 107

Let 0 ≤ λ ≤ 1. Then, for t ∈ J , we have

(λh1 + (1− λ)h2)(t) =

(
−1

a+ b

)[
b

m∑
k=1

Ik(y(t
−
k )) +

b

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

(λv1(s)

+ (1− λ)v2(s))
ds

s
+

b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

(λv1(s) + (1− λ)v2(s))
ds

s
− c

]

+
m∑
k=1

Ik(y(t
−
k )) +

1

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

(λv1(s) + (1− λ)v2(s))
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

(λv1(s) + (1− λ)v2(s)
ds

s
.

Since SF,y is convex (because F has convex values), we have

λh1 + (1− λ)h2 ∈ N(y).

Step 2: N maps bounded sets into bounded sets in PC(J,R). Let Bµ∗ = {y ∈
PC(J,R) : ∥y∥∞ ≤ µ∗} be a bounded set in PC(J,R) and y ∈ Bµ∗ . Then for each

h ∈ N(y), there exists v ∈ SF,y such that

h(t) =

(
−1

a+ b

)[
b

m∑
k=1

Ik(y(t
−
k )) +

b

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

v(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

v(s)
ds

s
− c

]

+
m∑
k=1

Ik(y(t
−
k )) +

1

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

v(s)
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

v(s)
ds

s
.

By (H2)–(H3), we have for each t ∈ J ,

|h(t)| ≤
∣∣∣∣ b

a+ b

∣∣∣∣
[

m∑
i=1

|Ik(y(t−i ))|+
1

Γ(r)

m∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

|v(s)|ds
s

+
1

Γ(r)

∫ T

tm

(
log

T

s

)r−1

|v(s)|ds
s

]
+

∣∣∣∣ c

a+ b

∣∣∣∣
+

1

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

|v(s)|ds
s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

|f(s, y(s))|ds
s

+
k∑

i=1

|Ii(y(t−i )|

≤
∣∣∣∣ b

a+ b

∣∣∣∣ [mψ∗(∥y∥∞) +
(m+ 1)

Γ(r + 1)
(log T )rp∗ψ(∥y∥∞)

]
+

∣∣∣∣ c

a+ b

∣∣∣∣
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+
(m+ 1)

Γ(r + 1)
(log T )rp∗ψ(∥y∥∞) +mψ∗(∥y∥∞)

≤
(∣∣∣∣ b

a+ b

∣∣∣∣+ 1

)[
(m+ 1)

Γ(r + 1)
(log T )rp∗ψ(µ∗) +mψ∗(µ∗)

]
+

∣∣∣∣ c

a+ b

∣∣∣∣ .
Thus,

∥h∥∞ ≤
(∣∣∣∣ b

a+ b

∣∣∣∣+ 1

)[
(m+ 1)

Γ(r + 1)
(log T )rp∗ψ(µ∗) +mψ∗(µ∗)

]
+

∣∣∣∣ c

a+ b

∣∣∣∣ := ℓ,

so N(Bµ∗) is bounded.

Step 3: N maps bounded sets into equicontinuous sets in PC(J,R). Let λ1,

λ2 ∈ J , λ1 < λ2, and let Bµ∗ be a bounded set in PC(J,R) as in Step 2. Let y ∈ Bµ∗

and h ∈ N(y). Then,

|h(λ2)− h(λ1)|

=
1

Γ(r)

∫ λ1

1

[(
log

λ2
s

)r−1

−
(
log

λ1
s

)r−1
]
|v(s)|ds

s

+
∑

1<tk<λ2−λ1

|Ik(y(t−k ))|+
1

Γ(r)

∫ λ2

λ1

(
log

λ2
s

)r−1

|v(s)|ds
s

≤ p∗ψ(µ∗)

Γ(r + 1)
[2 log(λ2 − λ1)]

r + (log λ2)
r − (log λ1)

r] + (λ2 − λ1)ψ
∗(µ∗).

As λ1 → λ2, the right hand side of the above inequality tends to zero.

As a consequence of Steps 1 to 3, together with the Arzelà-Ascoli theorem, we

conclude that N : PC(J,R) → P(PC(J,R)) is completely continuous.

Step 4: N has a closed graph. Let yn → y∗, hn ∈ N(yn) and hn → h∗; we need

to show that h∗ ∈ N(y∗). Now hn ∈ N(yn) means that there exists vn ∈ SF,yn such

that, for each t ∈ J ,

hn(t) =

(
−1

a+ b

)[
b

m∑
k=1

Ik(yn(t
−
k )) +

b

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

vn(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

vn(s)
ds

s
− c

]
+

m∑
k=1

Ik(yn(t
−
k ))

+
1

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

vn(s)
ds

s
+

1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

vn(s)
ds

s
.

We must show that there exists v∗ ∈ SF,y∗ such that, for each t ∈ J ,

h∗(t) =

(
−1

a+ b

)[
b

m∑
k=1

Ik(y
∗(t−k )) +

b

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

v∗(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

v∗(s)
ds

s
− c

]
+

m∑
k=1

Ik(y
∗(t−k ))
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+
1

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

v∗(s)
ds

s
+

1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

v∗(s)
ds

s
.

Since F (t, ·) is upper semi-continuous, for every ϵ > 0, there exists a natural

number n0(ϵ) such that, for every n ≥ n0, we have

vn(t) ∈ F (t, yn(t)) ⊂ F (t, y∗(t)) + ϵB(0, 1) a.e. t ∈ J.

Since F (·, ·) has compact values, there exists a subsequence vnm(·) such that

vnm(·) → v∗(·) as m→ ∞,

and

v∗(t) ∈ F (t, y∗(t)), a.e. t ∈ J.

For every w ∈ F (t, y∗(t)), we have

|vnm(t)− v∗(t)| ≤ |vnm(t)− w|+ |w − v∗(t)|.

Then,

|vnm(t)− v∗(t)| ≤ d(vnm(t), F (t, y∗(t)).

We can obtain an analogous relation by interchanging the roles of vnm and v∗. It

then follows that

|vnm(t)− v∗(t)| ≤ Hd(F (t, yn(t)), F (t, y∗(t))) ≤ l(t)∥yn − y∗∥∞.

Therefore,

|hnm(t)− h∗(t)| ≤
∣∣∣∣ b

a+ b

∣∣∣∣
[

m∑
i=1

|Ik(ynm(t
−
k ))− Ik(y∗(t

−
k ))|

+
1

Γ(r)

m∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

|vnm(s)− v∗(s)|
ds

s

+
1

Γ(r)

∫ T

tm

(
log

T

s

)r−1

|vnm(s)− v∗(s)|
ds

s

]

+
1

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

|vnm(s)− v∗(s)|
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

|vnm(s)− v∗(s)|
ds

s

+
k∑

i=1

|Ik(ynm(t
−
k ))− Iky∗(t

−
k ))|

≤
∣∣∣∣ b

a+ b

∣∣∣∣
[

m∑
i=1

|Ik(ynm(t
−
k ))− Ik(y∗(t

−
k ))|

+
1

Γ(r)

m∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

|l(s)|∥ynm − y∗∥
ds

s
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+
1

Γ(r)

∫ T

tm

(
log

T

s

)r−1

|l(s)|∥ynm − y∗∥
ds

s

]

+
1

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

|l(s)|∥ynm − y∗∥
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

|l(s)|∥ynm − y∗∥
ds

s
]

+
k∑

i=1

|Ik(ynm(t
−
k ))− Ik(y∗(t

−
k ))|.

As m→ ∞,

∥hnm(t)− h∗(t)∥∞

≤
∣∣∣∣ b

a+ b

∣∣∣∣
[

m∑
i=1

|Ik(ynm(t−k ))− Ik(y∗(t
−
k ))|

+
1

Γ(r)
∥l∥L1∥ynm − y∗∥

m∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1
ds

s

+
1

Γ(r)
∥l∥L1∥ynm − y∗∥

∫ T

tm

(
log

T

s

)r−1
ds

s

]

+
1

Γ(r)
∥l∥L1∥ynm − y∗∥

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1
ds

s

+
1

Γ(r)
∥l∥L1∥ynm − y∗∥

∫ t

tk

(
log

t

s

)r−1
ds

s

+
k∑

i=1

|Ik(ynm(t−k ))− Ik(y∗(t
−
k ))| → 0,

which is what we needed to show.

Step 5: A priori bounds on solutions. Let y ∈ PC(J,R) be such that y ∈ λN(y)

with λ ∈ (0, 1]. Then, there exists v ∈ SF,y such that, for each t ∈ J ,

|y(t)| ≤
∣∣∣∣ b

a+ b

∣∣∣∣ [mψ∗(∥y∥∞) +
(m+ 1)

Γ(r + 1)
(log T )rp∗ψ(∥y∥∞)] +

∣∣∣∣ c

a+ b

∣∣∣∣
+

(m+ 1)

Γ(r + 1)
(log T )rp∗ψ(∥y∥∞) +mψ∗(∥y∥∞)

≤
(∣∣∣∣ b

a+ b

∣∣∣∣+ 1

)[
(m+ 1)

Γ(r + 1)
(log T )rp∗ψ(µ∗) +mψ∗(µ∗)

]
+

∣∣∣∣ c

a+ b

∣∣∣∣ ,
Thus,

||y||∞(∣∣∣∣ b

a+ b

∣∣∣∣+ 1

)
[
(m+ 1)

Γ(r + 1)
(log T )rp∗ψ(||y||∞) +mψ∗(||y||∞)] +

∣∣∣∣ c

a+ b

∣∣∣∣ ≤ 1.
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By condition (H5), we have that ∥y∥∞ ̸= M . Let U = {y ∈ PC(J,R) : ∥y∥∞ <

M}. The operator N : U → P(PC(J,R)) is upper semi-continuous and completely

continuous. From the choice of U , there is no y ∈ ∂U such that y ∈ λN(y) for some

λ ∈ (0, 1]. As a consequence of the nonlinear Leray-Schauder alternative, we conclude

that N has a fixed point y ∈ U that is a solution of the problem (1.1)–(1.3). This

completes the proof of the theorem.

4. THE NONCONVEX CASE

In this section we consider problem (1.1)–(1.3) with a nonconvex valued right

hand side. Our result is based on the fixed point theorem for contraction multivalued

maps given by Covitz and Nadler [17] (see Lemma 2.3 above).

Theorem 4.1. Assume that (H5) and the following conditions hold:

(H6): F : J × R → Pcp(R) has the property that F (·, u) : J → Pcp(R) is measur-

able, convex valued, and integrably bounded for each u ∈ R.
(H7): There exists a constant l∗ > 0 such that

|Ik(u)− Ik(u)| ≤ l∗|u− u| for u, u ∈ R and k = 1, 2, . . . ,m.

If

(4.1)

(∣∣∣∣ b

a+ b

∣∣∣∣+ 1

)[
ml∗ +

(m+ 1)∥l∥L1(log T )r

Γ(r + 1)

]
+ml∗ < 1,

then the BVP (1.1)–(1.3) has at least one solution on J .

Proof. We shall show that N satisfies the assumptions of Lemma 2.3; we do this in

two steps.

Step 1: N(y) ∈ Pcl(PC(J,R)) for each y ∈ PC(J,R). Let {yn}n≥1 ⊂ N(y) be

such that yn → y in PC(J,R). Then, y ∈ PC(J,R) and there exists vn ∈ SF,y such

that, for each t ∈ J ,

yn(t) =

(
−1

a+ b

)[
b

m∑
k=1

Ik(yn(t
−
k )) +

b

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

vn(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

vn(s)
ds

s
− c

]

+
m∑
k=1

Ik(yn(t
−
k )) +

1

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

vn(s)
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

vn(s)
ds

s
.

From (H5) and the fact that F has compact values, we may pass to a subsequence

if necessary to obtain that vn converges weakly to v in L1
w(J,R) (the space endowed



112 A. HAMMOU, S. HAMANI, AND J. R. GRAEF

with the weak topology). An application of Mazur’s theorem [19, Lemma 2.66] implies

that {vn} converges strongly to v, and hence v ∈ SF,y. Then for each t ∈ J ,

yn(t) → y(t) =

(
−1

a+ b

)[
b

m∑
k=1

Ik(y(t
−
k )) +

b

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

v(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

v(s)
ds

s
− c

]

+
m∑
k=1

Ik(y(t
−
k )) +

1

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

v(s)
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

v(s)
ds

s
.

Hence, y ∈ N(y).

Step 2: There exists γ < 1 such that

Hd(N(y), N(y)) ≤ γ∥y − ȳ∥∞ for y, y ∈ PC(J,R).

Let y, y ∈ PC(J,R) and h1 ∈ N(y). Then, there exists v1 ∈ F (t, y(t)) such that, for

each t ∈ J ,

h1(t) =

(
−1

a+ b

)[
b

m∑
k=1

Ik(y(t
−
k )) +

b

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

v1(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

v1(s)
ds

s
− c

]

+
m∑
k=1

Ik(y(t
−
k )) +

1

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

v1(s)
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

v1(s)
ds

s
.

From (H5) it follows that

Hd(F (t, y(t)), F (t, y(t))) ≤ l(t)|y(t)− y(t)|.

Hence, there exists w ∈ F (t, y(t)) such that

|v1(t)− w| ≤ l(t)|y(t)− y(t)|, t ∈ J.

Consider U : J → P(R) given by

U(t) = {w ∈ R : |v1(t)− w| ≤ l(t)|y(t)− y(t)|}.

Since the multivalued operator V (t) = U(t) ∩ F (t, y(t)) is measurable, there exists

a measurable selection v2(t) for V (see [12]). Hence, v2(t) ∈ F (t, y(t)), and for each

t ∈ J ,

|v1(t)− v2(t)| ≤ l(t)|y(t)− y(t)|, t ∈ J.
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For t ∈ J , let

h2(t) =

(
−1

a+ b

)[
b

m∑
k=1

Ik(y(t
−
k )) +

b

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

v2(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

v2(s)
ds

s
− c

]

+
m∑
k=1

Ik(y(t
−
k )) +

1

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

v2(s)
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

v2(s)
ds

s
.

Then for each t ∈ J ,

|h1(t)− h2(t)| ≤
∣∣∣∣ b

a+ b

∣∣∣∣
[

m∑
i=1

|Ik(y(t−k ))− Ik(y(t
−
k ))|+

1

Γ(r)

+
m∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

|v1(s)− v2(s)|
ds

s

+
1

Γ(r)

∫ T

tm

(
log

T

s

)r−1

|v1(s)− v2(s)|
ds

s

]

+
1

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

|v1(s)− v2(s)|
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

|v1(s)− v2(s)|
ds

s
+

m∑
i=1

|Ik(y(t−k ))− Ik(y(t
−
k ))|

≤
∣∣∣∣ b

a+ b

∣∣∣∣ [ m∑
i=1

l∗|y(s)− y(s)|+ 1

Γ(r)

m∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

|l(s)||y(s)− y(s)|ds
s

+
1

Γ(r)

∫ T

tm

(
log

T

s

)r−1

|l(s)||y(s)− y(s)|ds
s

]

+
1

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

|l(s)||y(s)− y(s)|ds
s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

|l(s)||y(s)− y(s)|ds
s

+
m∑
i=1

l∗|y(s)− y(s)|

≤
∣∣∣∣ b

a+ b

∣∣∣∣
[
ml∗∥y − y∥∞ +

∥l∥L1∥y − y∥∞
Γ(r)

m∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1
ds

s

+
∥l∥L1∥y − y∥∞

Γ(r)

∫ T

tm

(
log

T

s

)r−1
ds

s

]

+
∥l∥L1∥y − y∥∞

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1
ds

s
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+
∥l∥L1∥y − y∥∞

Γ(r)

∫ t

tk

(
log

t

s

)r−1
ds

s
+ml∗∥y − y∥∞

≤
[(∣∣∣∣ b

a+ b

∣∣∣∣+ 1

)[
ml∗ +

(m+ 1)∥l∥L1(log T )r

Γ(r + 1)

]
+ml∗

]
∥y − y∥∞.

Therefore,

∥h1 − h2∥∞ ≤
[(∣∣∣∣ b

a+ b

∣∣∣∣+ 1

)[
ml∗ +

(m+ 1)l∗∥l∥L1(log T )r

Γ(r + 1)

]
+ml∗

]
∥y − y∥∞.

From an analogous relation obtained by interchanging the roles of y and ȳ, it follows

that

Hd(N(y), N(ȳ)) ≤
[(∣∣∣∣ b

a+ b

∣∣∣∣+ 1

)[
ml∗ +

(m+ 1)∥l∥L1(log T )r

Γ(r + 1)

]
+ml∗

]
∥y − y∥∞.

By (4.1), N is a contraction and so by Lemma 2.3, N has a fixed point y that is

solution to (1.1)–(1.3). This completes the proof of the theorem.

5. TOPOLOGICAL STRUCTURE OF THE SOLUTION SET

In this section we present a result on the topological structure of the set of

solutions to problem (1.1)–(1.3).

Theorem 5.1. In addition to conditions (H1), (H4), and (H5), assume that:

(H8): There exists f1 ∈ C(J,R) such that

∥F (t, u)∥P ≤ f1(t), for all t ∈ J and u ∈ R;

(H9): There exists ζ ∈ R∗
+ such that

|Ik(u)| ≤ ζ for u ∈ R.

Then the set of solutions of problem (1.1)–(1.3) is nonempty and compact in PC(J,R).

Proof. Let

S = {y ∈ PC(J,R) | y is a solution of (1.1)–(1.3)}.

First notice that conditions (H8) and (H9) imply that (H2) and (H3) hold. Then

from Theorem 3.3, S ̸= ∅. Now let {yn}n∈N ⊂ S. Then there exists vn ∈ SF,yn such

that, for each t ∈ J ,

yn(t) =

(
−1

a+ b

)[
b

m∑
k=1

Ik(yn(t
−
k )) +

b

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

vn(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

vn(s)
ds

s
− c

]

+
m∑
k=1

Ik(y(t
−
k )) +

1

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

vn(s)
ds

s
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+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

vn(s)
ds

s
.

From (H1), (H8), and (H9), it follows that there exists M1 > 0 such that ∥yn∥ ≤
M1 for all n ≥ 1. It is also the case that {yn}n≥1 is equicontinuous in PC(J,R),
and so there exists a subsequence, relabeled {yn}, such that {yn} converges to y in

PC(J,R).

Applying (H1), for each ε > 0, there exists n0(ε) ∈ N such that vn(t) ∈ F (t, yn(t))

⊂ F (t, y(t)) + εB(0, 1), for each n ≥ n0 and for a.e. t ∈ J . But since F (·, ·) has

compact values, there exists a subsequence {vnm(·)} such that vnm → v(·) as m→ ∞
and v(t) ∈ F (t, y(t)) for a.e. t ∈ J . We also have |vnm(t)| ≤ f1(t) a.e. t ∈ J . By the

Lebesgue dominated convergence theorem, we obtain v ∈ L1(J,R), and so v ∈ SF,y.

Therefore,

y(t) =

(
−1

a+ b

)[
b

m∑
k=1

Ik(y(t
−
k )) +

b

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

v(s)
ds

s

+
b

Γ(r)

∫ T

tm

(
log

T

s

)r−1

v(s)
ds

s
− c

]

+
m∑
k=1

Ik(y(t
−
k )) +

1

Γ(r)

m∑
k=1

∫ tk

tk−1

(
log

tk
s

)r−1

v(s)
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

v(s)
ds

s
.

and so S is compact.

6. AN EXAMPLE

Here we apply Theorem 3.3 to the fractional differential inclusion

(6.1)
c
HD

r
1
2
y(t) ∈ F (t, y(t)), for a.e. t ∈ J = [1, e], t ̸= 3

2
, t ̸= tk, k = 1, ...,m, 0 < r ≤ 1,

with

(6.2) ∆y|t= 3
2
=

1

3 + |y(3
2

−
)|
,

(6.3) y(1) + y(e) = 0,

where c
HD

r is the Caputo-Hadamard fractional derivative, and F : [1, e]×R → P(R)
is a multivalued map satisfying

F (t, y) = {v ∈ R : f1(t, y) ≤ v ≤ f2(t, y)},
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and where f1, f2 : [1, e]×R 7→ R are such that, for each t ∈ [1, e], f1(t, ·) is lower semi-

continuous (i.e., the set {y ∈ R : f1(t, y) > µ1} is open for each µ1 ∈ R), and such that,

for each t ∈ [1, e], f2(t, ·) is upper semi-continuous (i.e., the set {y ∈ R : f2(t, y) < µ2}
is open for each µ2 ∈ R). Assume that there exist p ∈ C([J,R+) and a continuous

nondecreasing function ψ : [0,∞) 7→ (0,∞) such that

max{|f1(t, y)|, |f2(t, y)|} ≤ p(t)ψ(|y|) for t ∈ J and y ∈ R,

and where a = b = 1, c = 0, T = e, and

Ik(y) =
1

3 + |y|
, k = 1, ...,m.

It is clear that F is compact and convex valued, and is upper semi-continuous, so

(H1)–(H3) hold.

Take ψ∗ : [0,∞) 7→ (0,∞) to be ψ∗(t) = 1
3
t. Then we have m = 2, and if we

assume there exists a number M > 0 such that

M

3

2

(
3

Γ(r + 1)
p∗ψ(M) +

2

3
M

) > 1,

where p∗ = sup
t∈J

{p(t)}, then (H4) and (H5) hold, and so all the conditions of Theorem

3.3 are satisfied. Therefore, problem (6.1)–(6.3) has at least one solution y on [1, e].

We also see that (H8) holds, and (H9) holds with ζ = 1/3. Thus, by Theorem

5.1, the set of solutions to (6.1)–(6.3) is nonempty and compact.
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