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1. INTRODUCTION

This paper is concerned with the existence of solutions to the boundary value
problem (BVP) for impulsive differential inclusions of the form
(1.1)

YD y(t) € F(t,y(t)), forae. te J=[1,T], t #t, k=1,..m, 0<r <1,

(12) Ay|t:tk = Ik(y(tl;»? k= 17 ooy T,

(1.3) ay(1) +by(T) = ¢,

where T > 1, 1 =t < t; < --+ < ty, < tpy1 = T, H¢D" is the Caputo-Hadamard
fractional derivative of order 0 < r < 1, P(R) is the family of all nonempty subsets
of R, F: [1,T] x R — P(R) is a multivalued map, a, b and ¢ are real constants with
at+b#0,I; :R— R, k=1,...,m, are continuous functions, Ay|,—, = y(t{)—y(t;)
and Ay |, = ¢ (1) — v/ (t;) where y(t}) = Elir&y(tk +¢) and y(t;) = slirg{y(tk +€)
are the right and left hand limits of y at t = ¢, k=1,...,m.

Differential equations of fractional order provide models for many phenomena
in various fields of science and engineering including viscoelasticity, electrochemistry,
control processes, porous media, electromagnetism, and others. As a consequence,
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there has been a significant development in the theory of fractional calculus and frac-
tional ordinary and partial differential equations in recent years; see, for example, the
monographs of Abbas et al. [1], Hilfer [27], Kilbas et al. [30], and Podlubny [35], as
well as the papers of Agarwal et al. [3], Benchohra et al. [9], and Momani et al. [34].
Applied problems require the definitions of fractional derivatives to allow the uti-
lization of physically interpretable initial data (e.g., y(0), ¥'(0), etc.), and Caputo’s
fractional derivative is quite useful in such instances. For details concerning geo-
metric and physical interpretation of fractional derivatives of Riemann-Liouville and
Caputo type, see [35]. However, the literature on Hadamard-type fractional differen-
tial equations has not undergone as extensive a development; see [4, 38]. Hadamard’s
fractional derivative [22] differs from other fractional derivatives in that the kernel of
the integral in the definition of the Hadamard derivative contains a logarithmic func-
tion of exponential order. Detailed descriptions of the Hadamard fractional derivative
and integral can be found, for example, in [13, 14, 15]. Hadamard fractional calculus
has recently been gaining attention in the study of fractional analysis. The papers
[4, 13, 14, 15, 29, 32, 38] contain some major developments in the fundamental the-
ory of Hadamard fractional calculus. A Caputo-type modification of the Hadamard
fractional derivative, which is called the Caputo-Hadamard fractional derivative, was

given in [28], and some of its basic properties were proved in [2, 18].

Igor Podlubny’s website, http://people.tuke.sk/igor.podlubny/, contains more
information on fractional calculus and its applications, and so is very useful for those
who are interested in this research area. Impulsive differential equations have become
important in recent years as mathematical models of phenomena in both the physical
and social sciences. There has been a significant development in impulsive theory,
especially in the area of impulsive differential equations with fixed moments; see, for
instance, the monographs by Bainov and Simeonov [6], Benchohra et al. [10], Graef
et al. [19] Lakshmikantham et al. [33], and Samoilenko and Perestyuk [37], and
the references therein. In [11], Benchohra and Slimani initiated the study of Caputo
fractional differential equations with impulses. In 2018, Belhannache et al. [7] studied
initial value problems for Caputo-Hadamard fractional differential inclusions (of order
0 < r < 1) with impulses.

We have organized this paper as follows. In Section 2, we introduce some prelim-
inary results needed in the following sections. In Section 3, we present an existence
result for the problem (1.1)-(1.3) in the case where the right hand side is convex
valued by using the nonlinear alternative of Leray-Schauder type. Section 4 contains
two existence results for nonconvex valued right hand sides. The first result is based
on a fixed point theorem due to Covitz and Nadler [17], and the second one uses the

nonlinear alternative of Leray-Schauder [21] for single-valued maps combined with a
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selection theorem due to Bressan and Colombo [12] for lower semicontinuous mul-
tivalued maps with decomposable values. In Section 5, we present a result on the
topological structure of the set of solutions of (1.1)—(1.3). An example is given in the

last section.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts that
are used in the remainder of this paper. Much of what follows is standard, but is

included here for the convenience of the reader.

On the interval [a, b], let C([a, b], R) be the Banach space of all continuous func-

tions from [a, b] into R with the norm

[Ylloo = sup{|y(t)] : a <t < b},

and let L'([a, b],R) be Banach space of functions y : [a,b] — R that are Lebesgue

integrable with the norm

b
Il = / (D).

Here, AC([a,b], R) is the space of functions y : [a,b] — R that are absolutely con-
tinuous. For any Banach space (X, || - ||), let Py(X) = {Y € P(X) : Y is closed},
Py(X) ={Y € P(X) : Y is bounded}, P.,(X) = {Y € P(X) : Y is compact}, and
P.o(X) ={Y € P(X) : Y is compact and convex}. A multivalued map G : X —
P(X) is said to be convex (closed) valued if G(X) is convex (closed) for all z € X,
and we say that G is bounded on bounded sets if G(B) = ngJBG(x) is bounded in X

for all B € By(X) (i.e., sup{sup{|y| : y € G(2)}} < o).
zeB

A map G is upper semi-continuous (u.s.c.) on X if for each xy € X, the set G(x)
is a nonempty closed subset of X, and for each open set N in X containing G(xy),
there exists an open neighborhood Ny of xy such that G(Ny) C N. Also, G is said to
be completely continuous if G(B) is relatively compact for every B € B,(X).

If the multivalued map G is completely continuous with nonempty compact val-
ues, then G is u.s.c. if and only if G has a closed graph (i.e., T, = T4, Y — Ys, Yn €
G(z,) imply y. € G(z.)). We say that G has a fixed point if there is x € X such
that x € G(x). The set of all fixed points set of the multivalued operator G will be
denoted by Fiz G.

A multivalued map G : J — P,4(R) is said to be measurable if for every y € R,

the function
t—d(y,G(t)) =inf{ly — 2| : 2 € G(t)}
is measurable. We say that a subset A of [0, 7] X R is {® 8 measurable if A belongs to

the o-algebra generated by all sets of the form J x D, where J is Lebesgue measurable
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in [0,7] and D is Borel measurable in R. A subset A of L'([0,T],R) is decomposable
if for all u, v € A and a measurable set J C [0, T], we have uxj+vX[a4-s € A, where

x stands for the characteristic function.

Definition 2.1. A function F': [a,b] x R — P(R) is Caratheddory if:
(1) t = F(t,u) is measurable for each u € R;

(2) u — F(t,u) is upper semicontinuous for almost all ¢ € [a, b].

For each y € C([a, b],R), the set of selections of F' is given by
Spy = {v € L'([a,b],R) : v(t) € F(t,y(t)) a.e. t € [a,b]}.
Let (X, d) be a metric space induced from the normed space (X, |-|). Consider
Hy:P(X) xP(X)— R, U{oo} given by
Hy(A, B) = max{supd(a, B),supd(A4,b)},

acA beB
where d(A,b) = irelgd(a, b) and d(a, B) = gg}gd(a,b). Then (P, 4(X), Hy) is a metric
space and (Py(X), Hy) is a generalized metric space (see [31]).
Definition 2.2. A multivalued operator N : X — P, (X) is called:
(1) ~-Lipschitz if and only if there exists v > 0 such that
Hy(N(z),N(y)) < ~d(z,y), foreach x,y € X;

(2) a contraction if and only if it is v-Lipschitz with v < 1.

The following lemma will be used in the sequel.

Lemma 2.3. (Covitz-Nadler [17]) Let (X,d) be a complete metric space. If N : X —
P.,(X) is a contraction, then Fix N # ().

Definition 2.4. ([30]) The Hadamard fractional integral of order o > 0 for a function
h:la,b] = R, where a > 0, is defined by

I*h(t) = ﬁ / t (log g)al @ds,

provided the integral exists.

Definition 2.5. ([28]) Let AC¢[a,b] = {g : [a,b] — C and 6" 'g € AC|a,b]}, where
d
§= ta, 0<a<b<ooandlet a € C with Re(a) > 0. For a function g € AC}a, b,

the Caputo-Hadamard derivative of fractional order « is defined as follows:

(i): If « ¢ N, and n — 1 < @ < n such that n = [Re(«)] + 1, then

00 = s (18) [ (o) o
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(ii): If « =n € N, then (“#D2g)(t) = d"g(t).
Here, [Re(a)] denotes the integer part of the real number Re(a) and log(-) = log, ().

Lemma 2.6. Let y € AC}[a,b] or C}la,b] and o € C. Then

n—1 k
Sky(a) t
a(CH mo -
(2.1) 1%(CH Doy > <loga) .

3. THE CONVEX CASE

In this section, we assume that F' is a compact and convex valued multivalued

map. Consider the set of functions
PC(J,R)={y:J = R |y eC((tk, tg11],R), £ = 0,...,m,and there exist
y(tr) and y(t,), k=1,...,m, with y(t,) = y(tx)}.
This forms a Banach space with the norm
[yl pe = suply ()]
tet
Set J = J\ {t1,...,tm}.

Definition 3.1. A function y € PC(J,R) is a solution of (1.1)—(1.3) if there ex-
ists a function p € L'([a,T],R) such that p(t) € F(t,y) a.e. t € J,and p satisfies
CHDoy(t) = p(t) on J' and conditions (1.2)—(1.3).

To prove the existence of a solution to (1.1)—(1.3), we need the following lemma

relating solutions of a fractional BVP to solutions of a corresponding integral equation.

Lemma 3.2. Let 0 < r < 1 and let p : J — R be continuous. A function y is a

solution of the fractional integral equation

() Sy bet) "

3.1)  yt) = +% /tmT (k)g Z)Hp@? - C]

+ZL-( F<1T i/t (log )Hp(é‘)%

1 t ¢ r—1 ds .
\ +F(T‘) /tk (10g g) ,O(S)?, th € [tk7tk+1],

where k =1, ...;m, if and only if y is a solution of the fractional BVP

(3.2) CHDZky(t) = p(t), foreach te Jy,
(3.3) Ay, = I(y(t;)), k=1,...m
(3.4 ay(1) + by(T) =
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Proof. Assume that y satisfies the impulsive boundary value problem (3.2)-(3.4). If
t € [1,t1], then
D) =p(t), teLt],

and by virtue of Lemma 2.6, we see that

) = a0+ g / t (1og t) o(5) 2.

If t € (t1,t2], then again by Lemma 2.6,

0 =olet) + oo [ (1os2) o)

- S
1 t t r=1 ds
[ (10t 4.
T / <°g ) P
If t € (ts, t3),

y(t) = y(ts) + ﬁ /t: (log 2)1 p(s)%

= Ayli=r, +y(ty) + ﬁ /t: (log E>T_1 p(S)ﬁ

S S

= L(y(ty)) + cO+h(y(t1))+ﬁ/ll <log%>r_ p(s)ﬁ

S

vty [ (o) i [ ()
CIRCORE
it [ (o) o gt [ (s d)

And in general, if ¢t € (ty, tg11], where k =1, ...,m,

k k ti AN s
y(t) = co+ Z]i(y(ti_)) + F(lr) Z/t (log %) p(8>%

= co+ [L(y(t))) + L(y(t)] +
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et () ot

The impulsive conditions and boundary conditions, (3.3) and (3.4), imply that

| (log ti>r_1 p(s)

S S

oy(1) + (1) = ole+b) + 03 L) + o Z/

-1
+b/T1 T”*l()ds_
r'(r) /.. 8% P =69

() 1
A

Hence, we obtain the solution

o) = (a_+1b) bi[i(y(ti))—k Ffr) 2/; (mg %)T_lp(s)%

=1

il (2] 2]

SO

+ ﬁ /tt (log 2)1 p(s)?

Conversely, assume that y satisfies (3.1). By a direct computation, it follows
that the solution given by (5) satisfies (3.2)—(3.4). This completes the proof of the

lemma. O

Theorem 3.3. Assume the following conditions hold:

(H1): F:J xR = P, (R) is a Carathéodory multi-valued map.
(H2): There ezxist p € C(J,R") and a continuous and nondecreasing function
¥ [0,00) — (0,00) such that

| E(t,u)||lp = sup{|v],v € F(t,u)} < pt)(lu|) fort e J and u € R.

(H3): There exists a continuous and nondecreasing function ¢* : [0,00) — (0, 00)
such that

Ik (w)|| < ¥*(Ju|) for each u € R.
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(H4): There exists M > 0 such that

M
D) [ D g g a) gt (3| +
(7)) [fs
where p* = St‘el?{p(t)}'

(H5): There exists | € L'(J,RT) such that

(3.5)

Hy(F(t,u), F(t,u)) <U(t)|lu—al for all u,u € R.
Then the BVP (1.1)-(1.3) has at least one solution on J.

Proof. We transform the problem (1.1)—(1.3) into a fixed point problem by defining
the multivalued operator N : PC(J,R) — P(PC(J,R)) by

N(y) ={h € PC(J,R) : y(t)

where

i=1

_1 ' £\ ds .
+r(r) /tk (logg) v(s);, if ¢ €[ty tri1], v € Sky.

\

In view of Lemma 3.2, we see that the fixed points of N are solutions to (1.1)—
(1.3). We shall show that NNV satisfies the assumptions of the nonlinear Leray-Schauder

alternative. The proof will be given in several steps.

Step 1: N(y) is convex for each y € PC(J, E). Let hy, hy belong to N(y); then
there exist vy, vo € Sp, such that, for each t € J and i = 1, 2,

L /T oo L r-l (>ds k
— og — vi(s)— —
I'(r) J,, &% s

3 L)
L ) g () et

1=1
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Let 0 < A < 1. Then, for t € J, we have

B> R + i [ (e t—) D)

te—1

Since Sg,, is convex (because F' has convex values), we have
Ay + (1= AN)he € N(y).

Step 2: N maps bounded sets into bounded sets in PC(J,R). Let B,, = {y €
PC(J,R) : ||yl < s} be a bounded set in PC(J,R) and y € B,,,. Then for each

h € N(y), there exists v € Sp, such that
b /tk < tk)” ds
log — v(s)—
(r) ; tes s s

m

DY Lily(ty)) +

(8] <

a+b‘

oyl + 7 oyl + |
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<
Thus,

thms(\%b\u) K (logT)Tp*w(u*)erw*(u*)]+‘ ‘ \:ze,

+1) a+b

(m+1)
C(r+1)

) s ]|

(log T)"p" 4 ([lylloc) + my"([[ylloc)

a+b"

so N(B,,) is bounded.

Step 3: N maps bounded sets into equicontinuous sets in PC(J,R). Let A,
A2 € J, Ay < Ag, and let B, be a bounded set in PC(J,R) as in Step 2. Let y € B,
and h € N(y). Then,

[h(A2) = h(A1)]

i ) o) e

© X g [ (o) el

1<tp<Aa—XA1

< ?Z:ﬂb:{t% [21og(Aa — A)]" + (log A2)" — (log A\1)"] + (A2 — A" (1as)-

As \; — Xy, the right hand side of the above inequality tends to zero.

As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we
conclude that N : PC(J,R) — P(PC(J,R)) is completely continuous.

Step 4: N has a closed graph. Let y, — y., h, € N(y,) and h,, — h,; we need
to show that h. € N(y.). Now h, € N(y,) means that there exists v, € Sg,, such

that, for each t € J,
- b b e\ ds
b E I (y,(t, — E 1 (s)—
P k(y ( k)) + F(T) k_l/ (Og ) v (8) S

() = <a_—|—16) -

b (T T\
F(T)/ (log > ——c +ka yn(ty))

1 Z/tk 1 (log ) lvn(s)%jtﬁ/t: (logé)rlvn(s)%.

We must show that there exists v, € Sp,, such that, for each t € J,
-1 -t ds

hi(t) = by I 1 «(8)—
0= (a7s) P z/t,“(og ) 0

b [T T\ !
L log — b
G / <g> o ‘

+

ﬁ\

m

m

+ka
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1 & /tk ( tk>T_1 ds 1 /t ( t)T_l ds
+ — log — Ve(8)— + —— log — V4 (8)—.
['(r) ; - s (5) s I(r) Jy, s ( s

Since F(t,-) is upper semi-continuous, for every ¢ > 0, there exists a natural

number ng(e) such that, for every n > ng, we have
vn(t) € F(t,yn(t)) C F(t,y.(t)) +€B(0,1) a.e. t € J.
Since F'(+,-) has compact values, there exists a subsequence vy, (-) such that
Un,, () = vi(+) as m — o0,
and
v.(t) € F(t,y.(t)), ae. t € J.
For every w € F(t,y.(t)), we have
[Vn,, () = v (B)] < Jom,, (8) — w] 4 [w — va(2)].
Then,
[vn,, () = v ()] < d(vn,, (1), F'(¢, yu(t))-

We can obtain an analogous relation by interchanging the roles of v,,, and v,. It
then follows that

[0n,, (1) = 0 (O)] < Ha(F (2, yn (1)), F(L,y.(1))) <UD [9n = Ylloo-

Therefore,
() — Balt)] < ib] > e(un (1)) = 106
b fj / (1og—)r_1 0 () — ()] 2
+ 5 / (1gf) o (5) — v*<s>|@]
%Z / (1ogt—@)r_1 0 (5) — v ()|
+F(1r) /t: (10g§>r_1 o, (5) — 1 (5)| 22

< | 53| | o b6 - 1ot

m

1 /ti ( ti)r_l ds
+ log — L) [1yng — vl —
) 2 . . [1(s)]]] | .




110 A. HAMMOU, S. HAMANI, AND J. R. GRAEF

1 T T\ ds
. log — I B
veir [ (os5) b, ynS]

k

1 b N\ ds
- log 2 I SR Vi
rrg [ (os%) Ol -0l

i=1

1 ! AN ds
— log — l =y —

k
+Z|Ik ynm L _]k<y*(tl;))’

=1

As m — oo,

1A, (8) = P () || oo
b
a+b

1 Tt t\" " ds
N l 1 nm — Yx 1 = -
+ lel [y Y| ;1 /til (og S) ;
ST ||/T og L) 4
N nm ~ Yx og — -
T(r) Ly Y . g S S
k t; r—1
1 i t. ds
= Uz [|Ynm — Y« log = —
+ lel [y Y| ;1 /t“ (og S) ;

Ll ||/t g L)
N nm ~ Y og — —
T(r) LY Y " gs S

D Mk (1)) = Ll () 0,

<

Z |2 Y () = L (£))]

which is what we needed to show.

Step 5: A priori bounds on solutions. Let y € PC(J,R) be such that y € AN(y)
with A € (0,1]. Then, there exists v € Sg,, such that, for each ¢t € J,

WO <[5 beeUoll) + {7 Qo Tyl + |
+ D og 7Y 5 ) + ()
b m+1), * c
S(m‘+1> [F( )(lgT)p¢(M*)+mw (u*)}+ —l
Thus,
e _
< —bm‘ " 1) [%i% (og Ty ([Iyllee) + mts" (o)) + '?‘
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By condition (H5), we have that ||yl # M. Let U = {y € PC(J,R) : ||yl <
M}. The operator N : U — P(PC(J,R)) is upper semi-continuous and completely
continuous. From the choice of U, there is no y € U such that y € AN(y) for some
A € (0,1]. As a consequence of the nonlinear Leray-Schauder alternative, we conclude
that N has a fixed point y € U that is a solution of the problem (1.1)-(1.3). This
completes the proof of the theorem. n

4. THE NONCONVEX CASE

In this section we consider problem (1.1)—(1.3) with a nonconvex valued right
hand side. Our result is based on the fixed point theorem for contraction multivalued

maps given by Covitz and Nadler [17] (see Lemma 2.3 above).

Theorem 4.1. Assume that (H5) and the following conditions hold:
(H6): F': J xR — P, (R) has the property that F(-,u) : J — Pep(R) is measur-

able, convex valued, and integrably bounded for each u € R.
(HT7): There exists a constant I* > 0 such that

[Ie(u) — (@) < Flu—u| for u, ue R and k=1,2,...,m.

If
1 1(logT)"
b ‘Jrl) {ml*+(m+ WAl Qg T)"] e .

4.1
(4.1) ( a+b I'(r+1)
then the BVP (1.1)-(1.3) has at least one solution on J.

Proof. We shall show that N satisfies the assumptions of Lemma 2.3; we do this in

two steps.

Step 1: N(y) € Py(PC(J,R)) for each y € PC(J,R). Let {y,}n>1 C N(y) be
such that y, — 7 in PC(J,R). Then, y € PC(J,R) and there exists v, € Sp, such
that, for each t € J,

elt) = (a_%—lb) bilk(y“(t;)H%i/t:kl (log %’“)H Un(s)%

b [ (o) e - ]

m

From (H5) and the fact that F' has compact values, we may pass to a subsequence

if necessary to obtain that v, converges weakly to v in L} (J,R) (the space endowed
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with the weak topology). An application of Mazur’s theorem [19, Lemma 2.66] implies
that {v,} converges strongly to v, and hence v € Sg,. Then for each t € J,

r—1
d

(log ) v(s)—s

tk—1 §

+ﬁ/t: (log§>r v(s)%.

Hence, 7 € N(y).
Step 2: There exists v < 1 such that

Hy(N(y), N@) <lly =3l for y, 5 € PC(J,R).

Let y, gy € PC(J,R) and hy € N(y). Then, there exists v, € F(t,y(t)) such that, for
each t € J,

hy(t) = (a+b) bsz (t:)) Z/tk 1 (log ) _IUI(S)%

L

m

k=1

+L/t lo ! T_lv(s)ﬁ
L(r) Ji, 8 N

From (H5) it follows that
Hq(F(t,y(1)), F(t, (1)) < UE)ly() —y(t)]-
Hence, there exists w € F(t,(t)) such that
vi(t) — w] < UB[y(E) —¥(@)], t € J.
Consider U : J — P(R) given by
U(t) = {w € R : [ui(t) —w| < 1(#)[y(t) —y(1)]}-

Since the multivalued operator V(t) = U(t) N F(¢,7y(t)) is measurable, there exists

a measurable selection vq(t) for V' (see [12]). Hence, vo(t) € F(t,7(t)), and for each
telJ,

[01(2) = va(8)] < U(B)[y(t) = H(B)], t € J.
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For t € J, let

1 AN ds _
tre [ (e2) ) = I+ S I - 1wt
<75 [;l*\y@)—y(s)ur(l); | CHNCIEEE
o)ty

i=1
|y = Flloo - /t" ( ti)r_l ds
log — —
[(r) ZZI t s s s
1212211y = oo /T TN ds
log — @
* I(r) ¢ %8 s

m k t; r—1
121z 1y = lloe / ( ti) ds
+ log — —
['(r) Zzl t s s s

. _ ]| 21
ml* ||y — Yl +

<
“la+b
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Ulpilly = 9llee [* t\" ds o
tk

S

I'(r)

b (m 4 1)[[l]| 2 (log T')" _
< 1 I* r* — Yl|oo-
() o ] ]

Therefore,

b (m 4+ 1))z (log T)" _
hi — halloo < — | +1 I " — Y| o-
|h1 — P2l < {(’a—i—b’—i_ ) {m + IO+ D) +ml*| |ly — 7
From an analogous relation obtained by interchanging the roles of y and , it follows

that

} b (m + DUl (log T)" -
Hi(N(y), N < — 1 +1 [* I* — Yl oo-
) V@) < (| 1) o+ EEEEEETE ey )
By (4.1), N is a contraction and so by Lemma 2.3, N has a fixed point y that is
solution to (1.1)—(1.3). This completes the proof of the theorem. O

5. TOPOLOGICAL STRUCTURE OF THE SOLUTION SET

In this section we present a result on the topological structure of the set of

solutions to problem (1.1)-(1.3).

Theorem 5.1. In addition to conditions (H1), (H4), and (H5), assume that:
(H8): There exists f1 € C(J,R) such that
|E(t,w)||lp < fi(t), for allt € J and u € R;
(H9): There exists ¢ € R’ such that
(W) < C foru e R,

Then the set of solutions of problem (1.1)-(1.3) is nonempty and compact in PC(J,R).

Proof. Let
S ={y € PC(J,R) | y is a solution of (1.1)—(1.3)}.

First notice that conditions (H8) and (H9) imply that (H2) and (H3) hold. Then
from Theorem 3.3, S # (. Now let {y,}neny C S. Then there exists v, € Sg,, such
that, for each t € J,

ds

i = (35) P wt + g X [ () o

+ b /T lo 0 r_lv (s)ds —c
r'r) Js,, & 5 "
m ds

£ 3 ) + %ij / (mg%)r_lvn(s);

k=1
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g )t

From (H1), (H8), and (H9), it follows that there exists M; > 0 such that ||y, | <
M, for all n > 1. It is also the case that {y,},>1 is equicontinuous in PC(J,R),
and so there exists a subsequence, relabeled {y,}, such that {y,} converges to y in
PC(J,R).

Applying (H1), for each € > 0, there exists ng(¢) € N such that v,(t) € F(t,y,(t))
C F(t,y(t)) +eB(0,1), for each n > ny and for a.e. t € J. But since F(-,-) has
compact values, there exists a subsequence {v,,, ()} such that v,,, — v(-) as m — oo
and v(t) € F(t,y(t)) for a.e. t € J. We also have |v,, (t)| < fi(t) a.e. t € J. By the
Lebesgue dominated convergence theorem, we obtain v € L'(J,R), and so v € Sp,,.
Therefore,

“ 1 “ b tk Tl ds
I (y(t — log — —
PR+ X [ () e
k=1 k=1 " tk—1

1 /t ( A ds

+ log — v(s)—

L(r) Ji, s () s

and so S is compact. n

6. AN EXAMPLE

Here we apply Theorem 3.3 to the fractional differential inclusion
(6.1)

3
y(t) € F(t,y(t)), forae. t € J=[l,e], t # 2 t#ty, k=1,...,m, 0<r <1,

with

(6.2) Ay = — L
| SRR TAVERTY

(6.3) y(1) +y(e) =0,

where §; D" is the Caputo-Hadamard fractional derivative, and F': [1,¢] x R — P(R)
is a multivalued map satisfying

F(t,y) ={veR: fit,y) <v < falt,y)},
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and where f1, fo : [1,e] xR +— R are such that, for each t € [1,¢], fi(¢,-) is lower semi-
continuous (i.e., the set {y € R: fi(¢,y) > u1} is open for each p; € R), and such that,
for each t € [1, €], f2(¢,-) is upper semi-continuous (i.e., the set {y € R : fo(t,y) < pz}
is open for each py € R). Assume that there exist p € C([J,R") and a continuous

nondecreasing function 1 : [0, 00) +— (0, 00) such that

max{|f1(t, y)|, [f2(t,y)|} < p(t)¥(|yl) for t € J and y € R,

and wherea =b=1,¢=0,T =e¢, and
1

= k=1,...m.
3+ |yl

Ii(y)

It is clear that F' is compact and convex valued, and is upper semi-continuous, so
(H1)—(H3) hold.

Take ¢* : [0,00) — (0,00) to be ¥*(t) = 3t. Then we have m = 2, and if we
assume there exists a number M > 0 such that

M

2 (rroan + )

where p* = sup{p(¢)}, then (H4) and (H5) hold, and so all the conditions of Theorem
ted

> 1,

3.3 are satisfied. Therefore, problem (6.1)—(6.3) has at least one solution y on [1, ¢].

We also see that (H8) holds, and (H9) holds with ¢ = 1/3. Thus, by Theorem
5.1, the set of solutions to (6.1)—(6.3) is nonempty and compact.

REFERENCES

[1] S. Abbas, M. Benchohra, J. R. Graef, and J. Henderson, Implicit Fractional Differential and
Integral Fquations, De Gruyter Series in Nonlinear Analysis and Applications, Vol. 26, De
Gruyter, Berlin, 2018.

[2] Y. Adjabi, F. Jarad, D. Baleanu, and T. Abdeljawad, On Cauchy problems with Caputo
Hadamard fractional derivatives, J. Comput. Anal. Appl. 21 (2016), 661-681.

[3] R. P Agarwal, M. Benchohra, and S. Hamani, Boundary value problems for fractional differ-
ential equations, Adv. Stud. Contemp. Math. 16 (2008), 181-196.

[4] B. Ahmad and S. K. Ntouyas, Initial value problems for hybrid Hadamard fractional equations,
FElectron. J. Differential Equations 2014 (2014), No. 161, 8 pp.

[5] E. Ait Dads, M. Benchohra, and S. Hamani, Impulsive fractional differential inclusions involv-
ing the Caputo fractional derivative, Fract. Calc. Appl. Anal. 12 (2009), 15-38.

[6] D. D. Bainov and P. S. Simeonov, Systems with Impulsive Effect, Horwood, Chichester, 1989.

[7] F. Belhannache, S. Hamani, and J. Hendrson, Impulsive fractional differential inclusions for
the Liouville-Caputo-Hadamard fractional derivative, Comm. Appl. Nonlinear Anal. 25 (2018),
52-67.

[8] M. Benchohra, J. R. Graef, N. Guerraiche, and S. Hamani, Nonlinear boundary value problems
for fractional differential inclusions with Caputo-Hadamard derivatives on the half line, AIMS
Mathematics 6 (2021), 6278-6292.



9]
[10]
11)
12]
13]
[14]
15)
16]
17)
18]

[19]

FRACTIONAL INCLUSIONS 117

M. Benchohra and S. Hamani, Nonlinear boundary value problems for differential inclusions
with Caputo fractional derivative, Topol. Methods Nonlinear Anal. 32 (2008), 115-130.

M. Benchohra, J. Henderson, and S. K. Ntouyas, Impulsive Differential Equations and Inclu-
sions, Hindawi Publishing Corporation, Contemporary Math. Appl. Vol. 2, New York, 2006.
M. Benchohra and B. A. Slimani, Impulsive fractional differential equations, Electron. J. Dif-
ferential Equations 2009 (2009), No. 10, 11 pp.

A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values,
Studia Math. 90 (1988), 69-86.

P. L. Butzer, A. A. Kilbas, and J. J. Trujillo, Fractional calculus in the Mellin setting and
Hadamard-type fractional integrals, J. Math. Anal. Appl. 269 (2002), 1-27.

P. L. Butzer, A. A. Kilbas, and J. J. Trujillo, Composition of Hadamard-type fractional inte-
gration operators and the semigroup property, J. Math. Anal. Appl. 269 (2002), 387-400.

P. L. Butzer, A. A. Kilbas, and J. J. Trujillo, Mellin transform analysis and integration by
parts for Hadamard-type fractional integrals, J. Math. Anal. Appl. 270 (2002), 1-15.

C. Castaing and M. Valadier, Convezr Analysis and Measurable Multi-functions, Lecture Notes
in Mathematics, Vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.

H. Covitz and S. B. Nadler, Multivalued contraction mappings in generalized metric spaces,
Israel J. Math. 8 (1970), 5-11.

Y. Y. Gambo, F. Jarad, D. Baleanu, and T. Abdeljawad, On Caputo modification of the
Hadamard fractional derivatives, Adv. Difference Equ. 2014 (2014), No. 10, 12 pp.

J. R. Graef, J. Henderson, and A. Ouahab, Impulsive Differential Inclusions, A Fixed Point
Approach, De Gruyter Series in Nonlinear Analysis and Applications, Vol. 20, De Gruyter,
Berlin, 2013.

J. R. Graef, J. Henderson, and A. Ouahab Topological Methods for Differential Equations and
Inclusions, CRC Press, Taylor and Francis, Boca Raton, 2018.

A. Granas and J. Dugundji, Fized Point Theory, Springer-Verlag, New York, 2003.

J. Hadamard, Essai sur ’etude des fonctions donnees par leur development de Taylor, J. Math.
Pure Appl. 8 (1892), 101-186.

S. Hamani, A. Hammou, and J. Henderson, Impulsive fractional differential equations involving
the Hadamard fractional derivative, Comm. Appl. Nonlinear Anal. 24 (2017), 48-58.

A. Hammou and S. Hamani, Existence results for fractional differential inclusions, Dynam.
Syst. Appl. 30 (2021), 1779-1791.

A. Hammou, S. Hamani, and J. Henderson, Impulsive Hadamard fractional differential equa-
tions in Banach spaces, PandAmer. Math. J. 28 (2018), 52-62.

N. Heymans and I. Podlubny, Physical interpretation of initial conditions for fractional dif-
ferential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 45 (2006),
765-772.

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
F. Jarad, T. Abdeljawad, and D. Baleanu, Caputo-type modification of the Hadamard frac-
tional derivatives, Adv. Difference Equ. 2012 (2012), No. 142, 8 pp.

A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc. 38 (2001), 1191-1204.
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional
Differential Equations, North-Holland Math. Studies, 204, Elsevier, Amsterdam, 2006.

M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, 1994.

M. Klimek, Sequential fractional differential equations with Hadamard derivative, Commun.
Nonlinear Sci. Numer. Simul. 16 (2011), 4689-4697.



118

[33]

[34]

A. HAMMOU, S. HAMANI, AND J. R. GRAEF

V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential
Equations, World Scientific, Singapore, 1989.

S. M. Momani and S. B. Hadid, Some comparison results for integro-fractional differential
inequalities, J. Fract. Cale. 24 (2003), 37-44.

1. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

I. Podlubny, Geometric and physical interpretation of fractional integration and fractional
differentiation, Fract. Cale. Appl. Anal. 5 (2002), 367—-386.

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific,
Singapore, 1995.

P. Thiramanus, S. K. Ntouyas, and J. Tariboon, Existence and uniqueness results for
Hadamard-type fractional differential equations with nonlocal fractional integral boundary
conditions, Abstr. Appl. Anal. 2014 (2014), Art. ID 902054, 9 pp.



