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ABSTRACT. In general, the computational and numerical methods available in the literature for

solving nonlinear differential equations with initial conditions provide only the local existence of

the solution. In this work, we present a computational and numerical method for computing the

solution for first-order nonlinear differential equations with initial conditions on its entire interval

of existence. The interval of existence is guaranteed by upper and lower solutions and/or coupled

lower and upper solutions. In this work, we have used the generalized quasilinearization method to

construct our numerical and computational methods to compute the solution on its entire interval

of existence. As an example, we have presented various numerical results relating to the Ricatti

type of differential equations. Our work also includes examples from biological models, such as the

logistic equation where the interval of existence is [0,∞).
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1. INTRODUCTION

Mathematical modeling in many branches of science and engineering leads to the

qualitative and quantitative study of dynamic equations with initial and/or boundary

conditions. See [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 19, 11, 12, 13, 15, 16, 17, 20, 23, 25] for

some of them. However, computation of the explicit solution of a non-linear differ-

ential equation is rarely possible. Computing the explicit solution of the non-linear

differential equation by numerical methods on its interval of existence is challenging.

Several numerical methods are available in the literature to solve non-linear differ-

ential equations, but most of them provide only local existence. It is to be noted in

computing the solution by iterative methods such as Picard’s method, even though

the iterates may exist for all time, the limit of the sequence of the iterates devel-

oped is not guaranteed to exist for all time. As an example, when we are computing

the solution of u′ = u2, u(0) = 1, each of the Picard iterates are polynomial func-

tions that exist for all time, but the limit of that sequence constructed is u = 1
(1−t) ,
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which exists only on the interval [0, 1). It is well known that the method of upper

and lower solutions is a theoretical method of existence of solution, and it guaran-

tees the interval of existence for the differential equations with initial conditions.

The monotone method combined with the method of upper and lower solutions is

a versatile tool that proves both a theoretical and a constructive method of prov-

ing the existence of minimal and maximal solutions on its interval of existence. See

[8, 9, 11, 12, 13, 14, 22] for a monotone method for ordinary, partial, fractional, and

non-linear functions with discontinuities. However, to construct the monotone iter-

ates by using the monotone method, the non-linear function has to be an increasing

function or can be made increasing by adding a linear function. Again, considering

the example,u′ = u2 + t, u(0) = 1, it is easy to see that the lower solution can be

chosen as v0 = 1, and we cannot construct an upper solution easily to determine the

interval of existence of the solution in this example. On the other hand, v0 = 1
(1−t) , is

also a lower solution, which provides an upper bound for the interval of existence. In a

simple logistic equation u′ = u−u2, u(0) = u0, the upper and lower solutions are the

equilibrium solutions. For example, 0 ≤ u0 ≤ 1, then it is easy to see that v0 = 0, and

w0 = 1, are the lower and upper solutions, respectively which guarantees the interval

of existence of the solution as [0,∞). Further, the solution is unique since it is easy

to see that u − u2, satisfies global uniqueness condition. Since the non-linear func-

tion u− u2, is the sum of an increasing and decreasing function, the usual monotone

method will not work. To extend the monotone method when the non-linear function

is the sum of an increasing and decreasing function, the generalized monotone method

was developed for scalar first-order ordinary differential equations with initial condi-

tions. See [5, 23, 24, 25] and the references therein for some of the initial work for the

generalized monotone method. The generalized monotone method can handle when

the non-linear function is the sum of increasing and decreasing functions. In order

to achieve this, if we use the natural upper and lower solutions, we need an extra

assumption regarding the iterates to stay within the sector defined by means of lower

and upper solutions. This extra assumption prevents the construction of the iterates

on its entire interval of existence of the solution. See [25] for more details. How-

ever, if we use coupled lower and upper of Type 1, then we can develop iterates that

converge to coupled minimal and maximal solutions of the non-linear scalar initial

value problem when the non-linear function is the sum of increasing and decreasing

functions. Further, in this situation, we do not need any extra assumptions. Unfor-

tunately, computing coupled lower and upper solutions of Type 1 is nontrivial. See

[2, 20, 21], which provides a method of computing coupled lower and upper solutions

of Type 1 on small incremental intervals using the generalized monotone method and

mixed generalized and quasilinearization method. In this work, we develop monotone

iterates using natural upper and lower solutions and by generalized quasilinearization
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method. In order to explain what the generalized quasilinearization method, it is to

be noted that the original quasilinearization method was developed when the non-

linear function is either a convex function or a concave function. When the non-linear

function is a convex function, we can start solving the linear initial value problem

starting with a lower solution, which is monotonically increasing iterates, which con-

verges quadratically to the unique solution of the non-linear problem on its interval

of existence. Analogously, if the function is concave, one can start solving a linear

initial value problem starting with an upper solution, which is a decreasing sequence

that converges quadratically to the unique solution of the non-linear problem on its

interval of existence. See for the [3, 4, 17] for the quasilinearization method applied

for initial and boundary value problems. The generalized quasilinearization method

is a useful tool when a non-linear function is the sum of convex and concave func-

tions. Further, the increasing and decreasing linear iterates starting from the lower

and upper solutions converge quadratically to the unique solution on its interval of

existence, which is guaranteed by the lower and upper solutions. In this work, we have

used the generalized quasilinearization method using the lower and upper solutions

when the non-linear function is the sum of a convex and concave function. Further,

each of the linear iterates developed exists on the entire interval of existence of the

original non-linear problem. Further, each pair of increasing and decreasing iterates

sandwiches the unique solution on its entire interval of existence. The sequences con-

verge quadratically to the unique solution of the non-linear initial value problem on

its whole interval of existence. We present several numerical examples of the Ricatti

type of equations, especially with application to the biological models, namely the

logistic equation. In a simple logistic model, the non-linear function can be seen as

a sum of convex and concave functions. See [1, 6, 10, 19] for mathematical models

arising in biological and infectious diseases.

2. Preliminaries

In this section, we recall the definitions and results we need to develop our main

results. For this purpose, consider the first-order differential equation of the form.

(2.1) u
′
= f(t, u) + g(t, u), u(0) = u0 on [0, T ] = J,

where f, g lie in C(J × R,R), the space of continuous functions from J × R to R.

Definition 2.1. The functions v0,w0 ∈ C1(J,R) are called natural upper and lower

solutions of (2.1) if

v
′

0 ≤f(t, v0) + g(t, v0), v0(0) ≤ u0,

w
′

0 ≥f(t, w0) + g(t, w0), w0(0) ≥ u0.
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Definition 2.2. The functions v0,w0 ∈ C1(J,R) are called coupled upper and lower

solutions of (2.1) Type-I if

v
′

0 ≤f(t, v0) + g(t, w0), v0(0) ≤ u0,

w
′

0 ≥f(t, w0) + g(t, v0), w0(0) ≥ u0.

Next, we provide a result which proves the existence of a solution of the non-linear

initial value problem (2.1). For that purpose, we assume

f(t, u) + g(t, u) = F (t, u).

Theorem 2.3. Let v, w ∈ C1[J,R] be natural lower and upper solutions of (2.1) such

that v(t) ≤ w(t) on J, and let F ∈ C[Ω,R] where Ω = [(t, x) : v(t) ≤ x ≤ w(t), t ∈ J ]

then there exists a solution u(t) of (2.1) satisfying v(t) ≤ u(t) ≤ w(t) on J provided

that v(0) ≤ u(0) ≤ w(0).

See [11] for proof. Note that the above result related to Theorem 2.3 is only

theoretical. However, this theorem also provides the interval of existence and the

solution exists on the common interval where the lower and upper solutions exist.

If the non-linear problems have equilibrium solutions, computing natural lower and

upper solutions is relatively easy, provided that the initial conditions lie within the

equilibrium solutions.

Further, the next result proves the uniqueness of the solution of the initial value

problem (2.1) when F satisfies one-sided Lipschitz condition.

Theorem 2.4. Let v, w ∈ C1(J,R) be upper lower solutions of (2.1) respectively.

Suppose that F (t, x)− F (t, y) ≤ L(x− y) whenever x ≥ y, and L > 0 is a constant,

then v(0) ≤ w(0) implies that v(t) ≤ w(t), t ∈ J .

See [11] for proof. Our following results provide a methodology to compute

natural upper and lower solutions. This result is beneficial when the equilibrium

solutions are not available as easily as lower and upper solutions.

Theorem 2.5. Let f1, f2, f ∈ C[J ×R,R] and

(2.2) f1(t, u) ≤ f(t, u) ≤ f2(t, u), (t, u) ∈ J ×R.

Let v be soution of v
′

= f1(t, v), v(0) ≤ u0 and w(t) be the maximal solution of

w
′

= f2(t, w), w(0) ≥ u0 existing on J .Then v, w are lower and upper solutions of

(2.2) such that v(t) ≤ w(t), t ∈ J

See [11, 12] for proof and other details.

Next, we provide a generalized monotone method result where f(t, u) is non-decreasing

and g(t, u) is non-increasing respectively in the initial value problem (2.1). The fol-

lowing result is a generalized monotone method relative to natural lower and upper

solutions of (2.1).
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Theorem 2.6. Let v0, w0 ∈ C1(J,R) be natural upper and lower solutions such that

v0(t) ≤ w0(t) on J , and assume that f, g are elements of C(J × R,R) such that

f(t, u) is nondecreasing in u and g(t, u) is non-increasing in u on J .

The, there exist monotone sequences {vn(t)} and {wn(t)} on J such that

vn(t)→ v(t) and wn(t)→ w(t)

uniformly and monotonically, and (v, w) are coupled minimal and maximal solutions,

respectively, to (2.1). That is, (v, w) satisfy on J the equations

v
′
= f(t, v) + g(t, w), v(0) = u0,(2.3)

w
′
= f(t, w) + g(t, v), w(0) = u0,(2.4)

on J , provided also that v0 ≤ v1 and w1 ≤ w0 on J .

See [25] for proof. It is to be noted that restrictions v0 ≤ v1 and w1 ≤ w0 may not

hold for the entire interval where lower and upper solutions exist. This prevents the

computation of further iterates on the whole interval where lower and upper solutions

exist.

The following result does not need the extra assumptions as needed in the above

result.

Theorem 2.7. Let v0, w0 ∈ C1(J,R) be coupled upper and lower solutions of type I

such that v0(t) ≤ w0(t) on J , and assume that f, g are elements of C(J ×R,R) such

that f(t, u) is nondecreasing in u and g(t, u) is nonincreasing in u on J .

There exist monotone sequences {vn(t)} and {wn(t)} on J such that

vn(t)→ v(t) and wn(t)→ w(t)

uniformly and monotonically, and (v, w) are coupled minimal and maximal solutions,

respectively, to (2.1). That is, (v, w) satisfy on J the equations

v
′
= f(t, v) + g(t, w), v(0) = u0,(2.5)

w
′
= f(t, w) + g(t, v), w(0) = u0.(2.6)

Here the iterative scheme is given on J by

v
′

n+1 = f(t, vn) + g(t, wn), vn+1(0) = u0,(2.7)

w
′

n+1 = f(t, wn) + g(t, vn), wn+1(0) = u0.(2.8)

See [25] for proof and other details. However, computing coupled lower-upper

solutions of type I is not trivial. In [2, 20, 21] they have computed the iterates

initially using natural lower and upper solutions and also using coupled lower and

upper solutions on a small incremental level. Now consider an example

u′ = u− u2, u(0) =
1

2
, t ∈ [0, T ].
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Using Theorem 2.7, v1(t) = 1
2
− t and w1(t) = 1

2
+ t, where the natural lower and

upper solutions respectively are v0 = 0 and w0 = 1. One can observe that v1 ≥ v0

and w1 ≤ w0 for t ∈ [0, 1
2
] only. In order to solve this issue, we recall the generalized

quasilinearization method relative to the initial value problem (2.1). However, we

assume that f, g are elements of C(J × R,R) such that f(t, u) is convex in u and

g(t, u) is concave in u on J, to use generalized monotone method. In addition, we

use the natural lower and upper solutions of (2.1). Note that, in our example. we

can consider f(t, u) = u, is convex in u, and g(t, u) = −u2 is concave in u. Further,

the iterates developed are solutions of linear initial value problems with variable

coefficients compared with the monotone method or generalized monotone method,

which requires linear equations with constant coefficients. Also, the iterates stay

within the lower and upper solution in the entire common interval of existence defined

by lower and upper solutions. In addition, the linear iterates converge quadratically

to the unique solution of the initial value problem (2.1).

The following result is precisely generalized quasilinearization method for the

nonlinear problem (2.1) using natural lower and upper solutions.

Theorem 2.8. Assume that,

1. v0, w0 ∈ C1[J,R], v0(t) ≤ w0(t)on J with v0(t) and w0(t) are natural lower and

upper solutions for (2.1). That is

v
′

0 ≤f(t, v0) + g(t, v0), v0(0) ≤ u0,

w
′

0 ≥f(t, w0) + g(t, w0), w0(0) ≥ u0, t ∈ J = [0, T ].

2. f, g ∈ C[Ω,R], fu, gu, fuu, guu exists, are continuous and satisfy

fuu(t, u) ≥ 0, guu(t, u) ≤ 0 for (t, u) ∈ Ω.

Then there exists monotone sequences {vn(t)}, {wn(t)} which converge uniformly to

the unique solution of (2.1) and the convergence is quadratic.

This is Theorem 1.3.1 of [16]. See [16] for a detailed proof.

In order to provide a proof that can be easily applied to our main result namely

the numerical application of solving Ricatti type of equations, and general logistic

equations, we use the iterative scheme which is given by,

v
′

n+1 =f(t, vn) + fu(vn)(vn+1 − vn) + g(t, vn) + gu(wn)(vn+1 − vn),(2.9)

w
′

n+1 =f(t, wn) + fu(vn)(wn+1 − wn) + g(t, wn) + gu(wn)(wn+1 − wn),(2.10)

for n = 0, 1, 2, ...... Using the convexity and concavity of f(t, u) and g(t, u) respec-

tively, we can prove that

v0 ≤ v1 ≤ v2 ≤ v3......... ≤ vn ≤ u ≤ wn ≤ ........ ≤ w2 ≤ w1 ≤ w0,
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on J. In addition, we can prove that the pair (vn, wn) will be natural lower and upper

solutions of (2.1) for all n. Further the sequences {vn(t)}, {wn(t)} converges uniformly

and quadratically to the unique solution of (2.1) on J.

Remark: Theorem 2.8 is not only a theoretical but also a constructive method. In

the main result, we develop a working formula to get the numerical results using

Theorem 2.8 on its interval of existence.

3. Main Results

It is well known that if the natural lower and upper solutions of (2.1), say v, w

exist on J = [0, t] such that v ≤ w, on J, then one can prove that there exists a

solution u(t) of the nonlinear initial value problem on J, provided v(0) ≤ u0 ≤ w(0).

See [11, 12] for proof and other details. The method of proving existence by upper

and lower solutions is only theoretical. The generalized monotone method of proving

the existence of (2.1) is both theoretical and computational. See [2, 20, 21] for

numerical and computational application of the generalized monotone method and a

combination of generalized monotone method and generalized quasilinearization by

constructing coupled lower and upper solutions on finite intervals. In this work, we

develop the computational and numerical application of Theorem 2.8 for (2.1), when

f(t, u) is convex in u, and g(t, u) is concave in u. Initially, we develop a working

formula for our numerical method using Theorem 2.8, relative to the nonlinear initial

value problem (2.1).

Consider the iterations provided in the brief proof of Theorem 2.8 as follows:

v′n+1 =f(t, vn) + fu(vn)(vn+1 − vn) + g(t, vn) + gu(wn)(vn+1 − vn),(3.1)

w′n+1 =f(t, wn) + fu(vn)(wn+1 − wn) + g(t, wn) + gu(wn)(wn+1 − wn).(3.2)

These iterations can be rearranged as:

v′n+1 + (−fu(vn)− gu(wn))vn+1 =f(vn) + g(vn) + pn(t)vn,(3.3)

w′n+1 + (−fu(vn)− gu(wn))wn+1 =f(wn) + g(wn) + pn(t)wn.(3.4)

Or we can rewrite the above iterates as,

v′n+1 + pn(t)vn+1 = qn(t),(3.5)

w′n+1 + p̄n(t)wn+1 = q̄n(t),(3.6)
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which are linear in vn+1 and wn+1.

The coefficients pn(t), qn(t), p̄n(t), and q̄n(t) are given by:

pn(t) =− fu(vn)− gu(wn),

qn(t) =f(vn) + g(vn) + pn(t)vn,

p̄n(t) =− fu(vn)− gu(wn),

q̄n(t) =f(wn) + g(wn) + p̄n(t)wn.

Note that once we decompose the right-hand side of problem into f(t, u) and g(t, u),

we use values of pn(t), qn(t), p̄n(t), and q̄n(t) into linear differential equations in vn+1

and wn+1 to solve them. Also note that pn(t) = p̄n(t). Since our objective is to

solve the Ricatti type of ordinary differential equation, we start with a special form

of Ricatti type of nonlinear function. Consider

(3.7) u
′
= a(t)u− b(t)u2 + c(t), u(0) = u0, t ∈ [0, T ],

where a(t) ≥ 0, and b(t) ≥ 0. We choose, f(t) = a(t)u + c(t) and g(t) = −b(t)u2.

Then pn(t), qn(t), p̄n(t), and q̄n(t) are given by

pn(t) =− a(t) + 2b(t)wn,

qn(t) =a(t)vn + c(t)− b(t)v2n + (−a(t) + 2b(t)wn)vn,

p̄n(t) =− a(t) + 2b(t)wn,

q̄n(t) =a(t)wn + c(t) + b(t)w2
n + (−a(t) + 2b(t)wn)wn.

Next, we develop numerical results as an application of both the theoretical and

computational results of Theorem 2.8 for several examples. We take a simple logistic

equations and develop the iterates using the formulas provided above together with

the corresponding lower and upper solutions. All the numerical simulations are done

using Runge Kutta fourth order method (ode45), as implemented in Matlab.

The Table 1 provides the initial conditions, the coefficients a(t), b(t), and c(t), the

lower solutions, upper solutions, and the exact solutions of all the examples that we

present here.

Examples u(0) a(t) b(t) c(t) Lower Sol. v0 Upper Sol. w0 Exact Sol. u(t)

1 1
2

1 −1 0 1
2

1 1
1+e−t

2 3
2

1 −1 0 1 3
2

3
3−e−t

3 1
2

−1 1 0 0 1 1
1+et

4 1
2

1
1+t

− 1
1+t

0 1
2

1 t+1
t+2

Table 1. Lower, Upper, & Exact Solutions and respective initial conditions
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Example 3.1. Consider the following nonlinear problem (a simple logistic equation):

(3.8) u′ = u− u2, u(0) =
1

2
, t ∈ [0,∞).

Here, we choose f = u, and g = −u2, since fuu ≥ 0 and guu ≤ 0 implying f is convex

and g is concave. Clearly, v0(t) = 0.5 and w0(t) = 1 are natural lower and upper

solutions respectively. Then using the iterations as in the brief proof of Theorem 2.8,

we get v1(t) = 3
4
− e−t

4
andw1(t) = 1− e−t

2
. It is easy to see that v1(t) ≥ v0(t) = 1/2,

and w1(t) ≤ w0(t) = 1, for all t ∈ [0,∞). Then by using Theorem 2.8 we will have

1

2
= v0(t) ≤ v1(t) =

3

4
− e−t

4
≤ u ≤ w1(t) = 1− e−t

2
≤ w0(t) = 1.

The graphical iterations of the simple logistic equation (3.8) have been presented in

Figure 1, when the initial condition is such that 0 < u(0) < 1. In this example, the

actual solution of (3.8) can be computed analytically. From the graph, it is easy to

Figure 1. Graph for Example 3.1.

see that the analytical solution is sandwiched between the second lower and second

upper iterates. In addition, the iterates converge quadratically to the analytical

solution. Also, the numerical and graphical solution justifies that the equilibrium

solution u(t) = 1, is uniformly asymptotically stable. The Table 2 illustrates the

quadratic convergence of the iterates to an analytic (or exact) solution. The total

number of time steps taken, in all examples solved, are 100.

Example 3.2. Consider the following equation :

(3.9) u
′
= u− u2, u(0) =

3

2
, t ∈ [0,∞).
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time step vk vk+1 wk wk+1 ek = wk − vk ek+1 = wk+1 − vk+1
ek+1

e2k

10 0.6485 0.7206 0.7969 0.7360 0.1484 0.0154 0.6992

25 0.7273 0.8952 0.9547 0.9457 0.2274 0.0505 0.9765

45 0.7469 0.9326 0.9939 0.9936 0.2470 0.0610 0.9998

70 0.7497 0.9371 0.9995 0.9995 0.2498 0.0624 0.9999

Table 2. Proof of quadratic convergence for Example 3.1.

In this example, only the initial condition has changed compared with Example 3.1.

That is f(u) = u and g(u) = −u2 as before. However, it is easy to see that, v0(t) = 1

and w0(t) = 3
2

are natural lower and upper solutions respectively. The graph of the

Figure 2. Graph for problem Example 3.2.

first three iterations, along with the analytical solution of Example 3.2, is presented

in figure 2. In this case, also, the analytical solution can be computed, and it is

u(t) = 3
3−e−t . Since the equilibrium solution exists for all time, each of the increasing

and decreasing iterates also exists for all time. In addition, the equilibrium solution

is also asymptotically stable. The Table 3 illustrates the quadratic convergence of the

iterates to an analytic (or exact) solution.

Example 3.3. Consider

(3.10) u
′
= u2 − u, u(0) =

1

2
, t ∈ [0,∞).

In this example f(u) = u2 and g(u) = −u, and fu = 2u, gu = −1. It is easy to

observe tha, v0 = 0 and w0 = 1
2

are lower and upper solutions. Also in this example

we have
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time step vk vk+1 wk wk+1 ek = wk − vk ek+1 = wk+1 − vk+1
ek+1

e2k

10 1.0825 1.1574 1.1869 1.1631 0.1044 0.0057 0.5229

25 1.0041 1.0253 1.1281 1.0369 0.1240 0.0116 0.7544

45 1.0001 1.0021 1.1251 1.0145 0.1250 0.0124 0.7936

70 1.0000 1.0001 1.1250 1.0126 0.1250 0.0125 0.8000

Table 3. Proof of quadratic convergence for Example 3.2.

pn(t) =− 2vn + 1 = p̄n(t),

qn(t) =v2n − vn + (−2vn + 1)vn,

q̄n(t) =w2
n − wn + (−2vn + 1)wn.

Figure 3. Graph for Example 3.3.

The graph of Example 3.3. has been presented in figure 3. In addition, the

equilibrium solution u = 0 is also asymptotically stable. The Table 4 illustrates the

quadratics convergence of the iterates to analytic (or exact) solution.

Example 3.4. Consider

(3.11) u
′
=

u

1 + t
− u2

1 + t
, u(0) =

1

2
, t ∈ [0,∞).
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time step vk vk+1 wk wk+1 ek = wk − vk ek+1 = wk+1 − vk+1
ek+1

e2k

10 0.2031 0.2640 0.3515 0.2794 0.1484 0.0154 0.6992

25 0.0453 0.0543 0.2727 0.1048 0.2274 0.0505 0.9766

45 0.0061 0.0058 0.2531 0.0674 0.2470 0.0610 0.9998

75 0.0003 0.0003 0.2502 0.0627 0.2499 0.0624 0.9992

Table 4. Proof of quadratic convergence for Example 3.3.

In this example f(u) = u
1+t

and g(u) = − u2

1+t
, and fu = 1

1+t
, gu = − 2u

1+t
. It is easy to

observe that, v0 = 1
2

and w0 = 1 are lower and upper solutions. Also in this example

we have

pn(t) =
−1 + 2wn

(1 + t)
= p̄n(t),

qn(t) =
vn − v2n + (−1 + 2wn)vn

(1 + t)
,

q̄n(t) =
wn − w2

n + (−1 + 2wn)wn

(1 + t)
.

Figure 4. Graph for Example 3.4.

The Table 5 illustrates the quadratics convergence of the iterates to analytic (or

exact) solution.
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time step vk vk+1 wk wk+1 ek = wk − vk ek+1 = wk+1 − vk+1
ek+1

e2k

10 0.6185 0.6618 0.7370 0.6696 0.1185 0.0078 0.5554

25 0.6765 0.7815 0.8530 0.8070 0.1765 0.0255 0.8185

45 0.7037 0.8433 0.9074 0.8813 0.2037 0.0380 0.9158

70 0.7184 0.8760 0.9367 0.9216 0.2183 0.0456 0.9568

95 0.7260 0.8923 0.9519 0.9420 0.2259 0.0497 0.9739

Table 5. Proof of quadratic convergence for Example 3.4.

4. Conclusion

The method of upper and lower solution provides the existence of a solution of

the first-order nonlinear initial value problem on the common interval of existence of

the upper and lower solutions. It is to be noted that computing the natural lower and

upper solutions are relatively easy. In this work, we have combined natural lower and

upper solutions together with the generalized quasilinearization method to obtain the

unique solution of the nonlinear problem by computational and numerical methods.

The method of generalized quasilinearization is useful when the nonlinear function is

the sum of a convex and concave function. The methods developed in our work are

very suitable for the general logistic equation and several biological models. In addi-

tion, our method is suitable for the Ricatti type of nonlinearities, especially when the

nonlinearities are the sum of a convex and concave function. The unique solution can

be computed on the entire interval of existence by increasing and decreasing sequences

of upper and lower solutions, which sandwiches the unique solution on its interval of

existence. The iterates are solutions of linear equations with variable coefficients. As

a byproduct, it provides the stability result of the equilibrium solution. To the best

of our knowledge, the computational monotone iterates exist for all time, which are

defined by the natural lower and upper solutions for the scalar initial value problem

when the nonlinear function is the sum of convex and concave functions. The prob-

lem is open for reaction-diffusion equation and Caputo fractional differential equations

with initial conditions. It is open for a system of ordinary differential equations with

initial conditions, such as SIR models of infectious diseases and predator-prey models.
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